示例#1
0
 // init_rc_out -- initialise motors and check if pilot wants to perform ESC calibration
void Copter::init_rc_out()
{
    motors.set_update_rate(g.rc_speed);
    motors.set_frame_orientation(g.frame_orientation);
    motors.set_loop_rate(scheduler.get_loop_rate_hz());
    motors.Init();                                              // motor initialisation
#if FRAME_CONFIG != HELI_FRAME
    motors.set_throttle_range(channel_throttle->get_radio_min(), channel_throttle->get_radio_max());
#endif

    for(uint8_t i = 0; i < 5; i++) {
        delay(20);
        read_radio();
    }

    // we want the input to be scaled correctly
    channel_throttle->set_range_out(0,1000);

    // setup correct scaling for ESCs like the UAVCAN PX4ESC which
    // take a proportion of speed. 
    hal.rcout->set_esc_scaling(channel_throttle->get_radio_min(), channel_throttle->get_radio_max());

    // check if we should enter esc calibration mode
    esc_calibration_startup_check();

    // enable output to motors
    pre_arm_rc_checks();
    if (ap.pre_arm_rc_check) {
        enable_motor_output();
    }

    // refresh auxiliary channel to function map
    RC_Channel_aux::update_aux_servo_function();
}
示例#2
0
// check if we should enter esc calibration mode
void Copter::esc_calibration_startup_check()
{
#if FRAME_CONFIG != HELI_FRAME
    // exit immediately if pre-arm rc checks fail
    pre_arm_rc_checks();
    if (!ap.pre_arm_rc_check) {
        // clear esc flag for next time
        if ((g.esc_calibrate != ESCCAL_NONE) && (g.esc_calibrate != ESCCAL_DISABLED)) {
            g.esc_calibrate.set_and_save(ESCCAL_NONE);
        }
        return;
    }

    // check ESC parameter
    switch (g.esc_calibrate) {
        case ESCCAL_NONE:
            // check if throttle is high
            if (channel_throttle->control_in >= ESC_CALIBRATION_HIGH_THROTTLE) {
                // we will enter esc_calibrate mode on next reboot
                g.esc_calibrate.set_and_save(ESCCAL_PASSTHROUGH_IF_THROTTLE_HIGH);
                // send message to gcs
                gcs_send_text_P(MAV_SEVERITY_CRITICAL,PSTR("ESC Calibration: restart board"));
                // turn on esc calibration notification
                AP_Notify::flags.esc_calibration = true;
                // block until we restart
                while(1) { delay(5); }
            }
            break;
        case ESCCAL_PASSTHROUGH_IF_THROTTLE_HIGH:
            // check if throttle is high
            if (channel_throttle->control_in >= ESC_CALIBRATION_HIGH_THROTTLE) {
                // pass through pilot throttle to escs
                esc_calibration_passthrough();
            }
            break;
        case ESCCAL_PASSTHROUGH_ALWAYS:
            // pass through pilot throttle to escs
            esc_calibration_passthrough();
            break;
        case ESCCAL_AUTO:
            // perform automatic ESC calibration
            esc_calibration_auto();
            break;
        case ESCCAL_DISABLED:
        default:
            // do nothing
            break;
    }

    // clear esc flag for next time
    if (g.esc_calibrate != ESCCAL_DISABLED) {
        g.esc_calibrate.set_and_save(ESCCAL_NONE);
    }
#endif  // FRAME_CONFIG != HELI_FRAME
}
示例#3
0
bool Copter::rc_calibration_checks(bool display_failure)
{
    // pre-arm rc checks a prerequisite
    pre_arm_rc_checks();
    if (!ap.pre_arm_rc_check) {
        if (display_failure) {
            gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: RC not calibrated");
        }
        return false;
    }
    return true;
}
示例#4
0
// mavlink_motor_test_check - perform checks before motor tests can begin
//  return true if tests can continue, false if not
bool Sub::mavlink_motor_test_check(mavlink_channel_t chan, bool check_rc)
{
    // check rc has been calibrated
    pre_arm_rc_checks();
    if (check_rc && !ap.pre_arm_rc_check) {
        gcs_chan[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL,"Motor Test: RC not calibrated");
        return false;
    }

    // check if safety switch has been pushed
    if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) {
        gcs_chan[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL,"Motor Test: Safety switch");
        return false;
    }

    // if we got this far the check was successful and the motor test can continue
    return true;
}
示例#5
0
// perform pre-arm checks and set ap.pre_arm_check flag
//  return true if the checks pass successfully
bool Copter::pre_arm_checks(bool display_failure)
{
    // exit immediately if already armed
    if (motors.armed()) {
        return true;
    }

    // check if motor interlock and Emergency Stop aux switches are used
    // at the same time.  This cannot be allowed.
    if (check_if_auxsw_mode_used(AUXSW_MOTOR_INTERLOCK) && check_if_auxsw_mode_used(AUXSW_MOTOR_ESTOP)){
        if (display_failure) {
            gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Interlock/E-Stop Conflict");
        }
        return false;
    }

    // check if motor interlock aux switch is in use
    // if it is, switch needs to be in disabled position to arm
    // otherwise exit immediately.  This check to be repeated,
    // as state can change at any time.
    if (ap.using_interlock && ap.motor_interlock_switch) {
        if (display_failure) {
            gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Motor Interlock Enabled");
        }
        return false;
    }

    // exit immediately if we've already successfully performed the pre-arm check
    if (ap.pre_arm_check) {
        // run gps checks because results may change and affect LED colour
        // no need to display failures because arm_checks will do that if the pilot tries to arm
        pre_arm_gps_checks(false);
        return true;
    }

    // succeed if pre arm checks are disabled
    if (g.arming_check == ARMING_CHECK_NONE) {
        set_pre_arm_check(true);
        set_pre_arm_rc_check(true);
        return true;
    }

    // pre-arm rc checks a prerequisite
    pre_arm_rc_checks();
    if (!ap.pre_arm_rc_check) {
        if (display_failure) {
            gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: RC not calibrated");
        }
        return false;
    }
    // check Baro
    if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) {
        // barometer health check
        if (!barometer.all_healthy()) {
            if (display_failure) {
                gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Barometer not healthy");
            }
            return false;
        }
        // Check baro & inav alt are within 1m if EKF is operating in an absolute position mode.
        // Do not check if intending to operate in a ground relative height mode as EKF will output a ground relative height
        // that may differ from the baro height due to baro drift.
        nav_filter_status filt_status = inertial_nav.get_filter_status();
        bool using_baro_ref = (!filt_status.flags.pred_horiz_pos_rel && filt_status.flags.pred_horiz_pos_abs);
        if (using_baro_ref) {
            if (fabsf(inertial_nav.get_altitude() - baro_alt) > PREARM_MAX_ALT_DISPARITY_CM) {
                if (display_failure) {
                    gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Altitude disparity");
                }
                return false;
            }
        }
    }

    // check Compass
    if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_COMPASS)) {
        //check if compass has calibrated and requires reboot
        if (compass.compass_cal_requires_reboot()) {
            if (display_failure) {
                gcs_send_text(MAV_SEVERITY_CRITICAL, "PreArm: Compass calibrated requires reboot");
            }
            return false;
        }

        // check the primary compass is healthy
        if (!compass.healthy()) {
            if (display_failure) {
                gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Compass not healthy");
            }
            return false;
        }

        // check compass learning is on or offsets have been set
        if (!compass.configured()) {
            if (display_failure) {
                gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Compass not calibrated");
            }
            return false;
        }

        // check for unreasonable compass offsets
        Vector3f offsets = compass.get_offsets();
        if (offsets.length() > COMPASS_OFFSETS_MAX) {
            if (display_failure) {
                gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Compass offsets too high");
            }
            return false;
        }

        // check for unreasonable mag field length
        float mag_field = compass.get_field().length();
        if (mag_field > COMPASS_MAGFIELD_EXPECTED*1.65f || mag_field < COMPASS_MAGFIELD_EXPECTED*0.35f) {
            if (display_failure) {
                gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check mag field");
            }
            return false;
        }

        // check all compasses point in roughly same direction
        if (!compass.consistent()) {
            if (display_failure) {
                gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: inconsistent compasses");
            }
            return false;
        }

    }

    // check GPS
    if (!pre_arm_gps_checks(display_failure)) {
        return false;
    }

    #if AC_FENCE == ENABLED
    // check fence is initialised
    if (!fence.pre_arm_check()) {
        if (display_failure) {
            gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: check fence");
        }
        return false;
    }
    #endif

    // check INS
    if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) {
        // check accelerometers have been calibrated
        if (!ins.accel_calibrated_ok_all()) {
            if (display_failure) {
                gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Accels not calibrated");
            }
            return false;
        }

        // check accels are healthy
        if (!ins.get_accel_health_all()) {
            if (display_failure) {
                gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Accelerometers not healthy");
            }
            return false;
        }

        //check if accelerometers have calibrated and require reboot
        if (ins.accel_cal_requires_reboot()) {
            if (display_failure) {
                gcs_send_text(MAV_SEVERITY_CRITICAL, "PreArm: Accelerometers calibrated requires reboot");
            }
            return false;
        }

        // check all accelerometers point in roughly same direction
        if (ins.get_accel_count() > 1) {
            const Vector3f &prime_accel_vec = ins.get_accel();
            for(uint8_t i=0; i<ins.get_accel_count(); i++) {
                // get next accel vector
                const Vector3f &accel_vec = ins.get_accel(i);
                Vector3f vec_diff = accel_vec - prime_accel_vec;
                float threshold = PREARM_MAX_ACCEL_VECTOR_DIFF;
                if (i >= 2) {
                    /*
                     * for boards with 3 IMUs we only use the first two
                     * in the EKF. Allow for larger accel discrepancy
                     * for IMU3 as it may be running at a different temperature
                     */
                    threshold *= 2;
                }

                // EKF is less sensitive to Z-axis error
                vec_diff.z *= 0.5f;

                if (vec_diff.length() > threshold) {
                    if (display_failure) {
                        gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: inconsistent Accelerometers");
                    }
                    return false;
                }
            }
        }

        // check gyros are healthy
        if (!ins.get_gyro_health_all()) {
            if (display_failure) {
                gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Gyros not healthy");
            }
            return false;
        }

        // check all gyros are consistent
        if (ins.get_gyro_count() > 1) {
            for(uint8_t i=0; i<ins.get_gyro_count(); i++) {
                // get rotation rate difference between gyro #i and primary gyro
                Vector3f vec_diff = ins.get_gyro(i) - ins.get_gyro();
                if (vec_diff.length() > PREARM_MAX_GYRO_VECTOR_DIFF) {
                    if (display_failure) {
                        gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: inconsistent Gyros");
                    }
                    return false;
                }
            }
        }

        // get ekf attitude (if bad, it's usually the gyro biases)
        if (!pre_arm_ekf_attitude_check()) {
            if (display_failure) {
                gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: gyros still settling");
            }
            return false;
        }
    }
    #if CONFIG_HAL_BOARD != HAL_BOARD_VRBRAIN
    #ifndef CONFIG_ARCH_BOARD_PX4FMU_V1
    // check board voltage
    if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) {
        if (hal.analogin->board_voltage() < BOARD_VOLTAGE_MIN || hal.analogin->board_voltage() > BOARD_VOLTAGE_MAX) {
            if (display_failure) {
                gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check Board Voltage");
            }
            return false;
        }
    }
    #endif
    #endif

    // check battery voltage
    if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) {
        if (failsafe.battery || (!ap.usb_connected && battery.exhausted(g.fs_batt_voltage, g.fs_batt_mah))) {
            if (display_failure) {
                gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check Battery");
            }
            return false;
        }
    }

    // check various parameter values
    if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_PARAMETERS)) {

        // ensure ch7 and ch8 have different functions
        if (check_duplicate_auxsw()) {
            if (display_failure) {
                gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Duplicate Aux Switch Options");
            }
            return false;
        }

        // failsafe parameter checks
        if (g.failsafe_throttle) {
            // check throttle min is above throttle failsafe trigger and that the trigger is above ppm encoder's loss-of-signal value of 900
            if (channel_throttle->get_radio_min() <= g.failsafe_throttle_value+10 || g.failsafe_throttle_value < 910) {
                if (display_failure) {
                    gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check FS_THR_VALUE");
                }
                return false;
            }
        }

        // lean angle parameter check
        if (aparm.angle_max < 1000 || aparm.angle_max > 8000) {
            if (display_failure) {
                gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check ANGLE_MAX");
            }
            return false;
        }

        // acro balance parameter check
        if ((g.acro_balance_roll > attitude_control.get_angle_roll_p().kP()) || (g.acro_balance_pitch > attitude_control.get_angle_pitch_p().kP())) {
            if (display_failure) {
                gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: ACRO_BAL_ROLL/PITCH");
            }
            return false;
        }

        #if RANGEFINDER_ENABLED == ENABLED && OPTFLOW == ENABLED
        // check range finder if optflow enabled
        if (optflow.enabled() && !rangefinder.pre_arm_check()) {
            if (display_failure) {
                gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: check range finder");
            }
            return false;
        }
        #endif
        #if FRAME_CONFIG == HELI_FRAME
        // check helicopter parameters
        if (!motors.parameter_check(display_failure)) {
            return false;
        }
        #endif // HELI_FRAME

        // check for missing terrain data
        if (!pre_arm_terrain_check(display_failure)) {
            return false;
        }

        // check adsb avoidance failsafe
        if (failsafe.adsb) {
            if (display_failure) {
                gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: ADSB threat detected");
            }
            return false;
        }
    }

    // check throttle is above failsafe throttle
    // this is near the bottom to allow other failures to be displayed before checking pilot throttle
    if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_RC)) {
        if (g.failsafe_throttle != FS_THR_DISABLED && channel_throttle->get_radio_in() < g.failsafe_throttle_value) {
            if (display_failure) {
                #if FRAME_CONFIG == HELI_FRAME
                gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Collective below Failsafe");
                #else
                gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Throttle below Failsafe");
                #endif
            }
            return false;
        }
    }

    return true;
}
示例#6
0
// setup_compassmot - sets compass's motor interference parameters
uint8_t Copter::mavlink_compassmot(mavlink_channel_t chan)
{
#if FRAME_CONFIG == HELI_FRAME
    // compassmot not implemented for tradheli
    return 1;
#else
    int8_t   comp_type;                 // throttle or current based compensation
    Vector3f compass_base[COMPASS_MAX_INSTANCES];           // compass vector when throttle is zero
    Vector3f motor_impact[COMPASS_MAX_INSTANCES];           // impact of motors on compass vector
    Vector3f motor_impact_scaled[COMPASS_MAX_INSTANCES];    // impact of motors on compass vector scaled with throttle
    Vector3f motor_compensation[COMPASS_MAX_INSTANCES];     // final compensation to be stored to eeprom
    float    throttle_pct;              // throttle as a percentage 0.0 ~ 1.0
    float    throttle_pct_max = 0.0f;   // maximum throttle reached (as a percentage 0~1.0)
    float    current_amps_max = 0.0f;   // maximum current reached
    float    interference_pct[COMPASS_MAX_INSTANCES];       // interference as a percentage of total mag field (for reporting purposes only)
    uint32_t last_run_time;
    uint32_t last_send_time;
    bool     updated = false;           // have we updated the compensation vector at least once
    uint8_t  command_ack_start = command_ack_counter;

    // exit immediately if we are already in compassmot
    if (ap.compass_mot) {
        // ignore restart messages
        return 1;
    }else{
        ap.compass_mot = true;
    }

    // initialise output
    for (uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) {
        interference_pct[i] = 0.0f;
    }

    // check compass is enabled
    if (!g.compass_enabled) {
        gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL, "Compass disabled");
        ap.compass_mot = false;
        return 1;
    }

    // check compass health
    compass.read();
    for (uint8_t i=0; i<compass.get_count(); i++) {
        if (!compass.healthy(i)) {
            gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL, "Check compass");
            ap.compass_mot = false;
            return 1;
        }
    }

    // check if radio is calibrated
    pre_arm_rc_checks();
    if (!ap.pre_arm_rc_check) {
        gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL, "RC not calibrated");
        ap.compass_mot = false;
        return 1;
    }

    // check throttle is at zero
    read_radio();
    if (channel_throttle->control_in != 0) {
        gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL, "Throttle not zero");
        ap.compass_mot = false;
        return 1;
    }

    // check we are landed
    if (!ap.land_complete) {
        gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL, "Not landed");
        ap.compass_mot = false;
        return 1;
    }

    // disable cpu failsafe
    failsafe_disable();

    // initialise compass
    init_compass();

    // default compensation type to use current if possible
    if (battery.has_current()) {
        comp_type = AP_COMPASS_MOT_COMP_CURRENT;
    }else{
        comp_type = AP_COMPASS_MOT_COMP_THROTTLE;
    }

    // send back initial ACK
    mavlink_msg_command_ack_send(chan, MAV_CMD_PREFLIGHT_CALIBRATION,0);

    // flash leds
    AP_Notify::flags.esc_calibration = true;

    // warn user we are starting calibration
    gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_INFO, "Starting calibration");

    // inform what type of compensation we are attempting
    if (comp_type == AP_COMPASS_MOT_COMP_CURRENT) {
        gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_INFO, "Current");
    } else{
        gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_INFO, "Throttle");
    }

    // disable throttle and battery failsafe
    g.failsafe_throttle = FS_THR_DISABLED;
    g.failsafe_battery_enabled = FS_BATT_DISABLED;

    // disable motor compensation
    compass.motor_compensation_type(AP_COMPASS_MOT_COMP_DISABLED);
    for (uint8_t i=0; i<compass.get_count(); i++) {
        compass.set_motor_compensation(i, Vector3f(0,0,0));
    }

    // get initial compass readings
    last_run_time = millis();
    while ( millis() - last_run_time < 500 ) {
        compass.accumulate();
    }
    compass.read();

    // store initial x,y,z compass values
    // initialise interference percentage
    for (uint8_t i=0; i<compass.get_count(); i++) {
        compass_base[i] = compass.get_field(i);
        interference_pct[i] = 0.0f;
    }

    // enable motors and pass through throttle
    init_rc_out();
    enable_motor_output();
    motors.armed(true);

    // initialise run time
    last_run_time = millis();
    last_send_time = millis();

    // main run while there is no user input and the compass is healthy
    while (command_ack_start == command_ack_counter && compass.healthy(compass.get_primary()) && motors.armed()) {
        // 50hz loop
        if (millis() - last_run_time < 20) {
            // grab some compass values
            compass.accumulate();
            hal.scheduler->delay(5);
            continue;
        }
        last_run_time = millis();

        // read radio input
        read_radio();
        
        // pass through throttle to motors
        motors.throttle_pass_through(channel_throttle->radio_in);
        
        // read some compass values
        compass.read();
        
        // read current
        read_battery();
        
        // calculate scaling for throttle
        throttle_pct = (float)channel_throttle->control_in / 1000.0f;
        throttle_pct = constrain_float(throttle_pct,0.0f,1.0f);

        // if throttle is near zero, update base x,y,z values
        if (throttle_pct <= 0.0f) {
            for (uint8_t i=0; i<compass.get_count(); i++) {
                compass_base[i] = compass_base[i] * 0.99f + compass.get_field(i) * 0.01f;
            }

            // causing printing to happen as soon as throttle is lifted
        } else {

            // calculate diff from compass base and scale with throttle
            for (uint8_t i=0; i<compass.get_count(); i++) {
                motor_impact[i] = compass.get_field(i) - compass_base[i];
            }

            // throttle based compensation
            if (comp_type == AP_COMPASS_MOT_COMP_THROTTLE) {
                // for each compass
                for (uint8_t i=0; i<compass.get_count(); i++) {
                    // scale by throttle
                    motor_impact_scaled[i] = motor_impact[i] / throttle_pct;
                    // adjust the motor compensation to negate the impact
                    motor_compensation[i] = motor_compensation[i] * 0.99f - motor_impact_scaled[i] * 0.01f;
                }

                updated = true;
            } else {
                // for each compass
                for (uint8_t i=0; i<compass.get_count(); i++) {
                    // current based compensation if more than 3amps being drawn
                    motor_impact_scaled[i] = motor_impact[i] / battery.current_amps();
                
                    // adjust the motor compensation to negate the impact if drawing over 3amps
                    if (battery.current_amps() >= 3.0f) {
                        motor_compensation[i] = motor_compensation[i] * 0.99f - motor_impact_scaled[i] * 0.01f;
                        updated = true;
                    }
                }
            }

            // calculate interference percentage at full throttle as % of total mag field
            if (comp_type == AP_COMPASS_MOT_COMP_THROTTLE) {
                for (uint8_t i=0; i<compass.get_count(); i++) {
                    // interference is impact@fullthrottle / mag field * 100
                    interference_pct[i] = motor_compensation[i].length() / (float)COMPASS_MAGFIELD_EXPECTED * 100.0f;
                }
            }else{
                for (uint8_t i=0; i<compass.get_count(); i++) {
                    // interference is impact/amp * (max current seen / max throttle seen) / mag field * 100
                    interference_pct[i] = motor_compensation[i].length() * (current_amps_max/throttle_pct_max) / (float)COMPASS_MAGFIELD_EXPECTED * 100.0f;
                }
            }

            // record maximum throttle and current
            throttle_pct_max = MAX(throttle_pct_max, throttle_pct);
            current_amps_max = MAX(current_amps_max, battery.current_amps());

        }
        if (AP_HAL::millis() - last_send_time > 500) {
            last_send_time = AP_HAL::millis();
            mavlink_msg_compassmot_status_send(chan, 
                                               channel_throttle->control_in,
                                               battery.current_amps(),
                                               interference_pct[compass.get_primary()],
                                               motor_compensation[compass.get_primary()].x,
                                               motor_compensation[compass.get_primary()].y,
                                               motor_compensation[compass.get_primary()].z);
        }
    }

    // stop motors
    motors.output_min();
    motors.armed(false);

    // set and save motor compensation
    if (updated) {
        compass.motor_compensation_type(comp_type);
        for (uint8_t i=0; i<compass.get_count(); i++) {
            compass.set_motor_compensation(i, motor_compensation[i]);
        }
        compass.save_motor_compensation();
        // display success message
        gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_INFO, "Calibration successful");
    } else {
        // compensation vector never updated, report failure
        gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_NOTICE, "Failed");
        compass.motor_compensation_type(AP_COMPASS_MOT_COMP_DISABLED);
    }

    // display new motor offsets and save
    report_compass();

    // turn off notify leds
    AP_Notify::flags.esc_calibration = false;

    // re-enable cpu failsafe
    failsafe_enable();

    // re-enable failsafes
    g.failsafe_throttle.load();
    g.failsafe_battery_enabled.load();

    // flag we have completed
    ap.compass_mot = false;

    return 0;
#endif  // FRAME_CONFIG != HELI_FRAME
}