示例#1
0
文件: widget.cpp 项目: JuarezASF/Code
vector<Point> Widget::findKalmanCenters(vector<Point> dataInput){
    vector<Point> kalmanCenters;
    if(dataInput.empty()){
        errorMsg("Nao ha objetos a serem detectados!");
        return kalmanCenters;
    }
    kalmanCenters.resize(dataInput.size());
    KalmanFilter *KF;

    for(unsigned int i = 0; i < targets.size(); i++){
        KF = targets[i]->KF;

        //apenas conversao de estruturas usadas
        Mat_<float> measurement(2,1);
        measurement(0) = dataInput[i].x;
        measurement(1) = dataInput[i].y;

        Mat estimated;
        Mat prediction = KF->predict();
        if(detectionSucess[i] == true)
            {
            //caso a detecção tenha sido um sucesso jogamos a nova medida no filtro
            //ao chamar correct já estamos adicionando a nova medida ao filtro
            estimated = KF->correct(measurement);
            }
        else{
            /*caso a medição tenha falhada realimentamos o filtro com a própria
            predição anterior*/
            Mat_<float> predictedMeasurement(2,1);
            predictedMeasurement(0) = prediction.at<float>(0);
            predictedMeasurement(1) = prediction.at<float>(1);
            estimated = KF->correct(predictedMeasurement);
            KF->errorCovPre.copyTo(KF->errorCovPost);
            //copiar a covPre para covPos [dica de um usuário de algum fórum]
            }
        Point statePt(estimated.at<float>(0),estimated.at<float>(1));

        kalmanCenters[i] = statePt;
        /*existe o centro medido pela previsão e o centro que o filtro de kalman
        acredita ser o real. O centro de kalman é uma ponderação das medidas e do modelo
        com conhecimento prévio de um erro aleatório*/
    }

    return kalmanCenters;
}
示例#2
0
文件: widget.cpp 项目: JuarezASF/Code
vector<vector<Point> > Widget::predictFuture(int futureSize){
    vector<vector<Point> > future;
    future.resize(targets.size());

    for(unsigned int i = 0; i < targets.size(); i++)
        {
        KalmanFilter *KF;
        KF = targets[i]->KF;

        KalmanFilter DelfusOracle = myMath::copyKF(*KF);
            /*para ver o futuro copiamos o estado do filtro atual e
              o realimentamos com suas próprias previsões um número fixo de vezes*/
        for(int j = 0; j < futureSize; j++)
                //CALCULA PONTOS DO FUTURO
            {

            Mat prediction = DelfusOracle.predict();
            Point predictPt(prediction.at<float>(0),prediction.at<float>(1));

            future[i].push_back(predictPt);

            Mat_<float> predictedMeasurement(2,1);
            predictedMeasurement(0) = prediction.at<float>(0);
            predictedMeasurement(1) = prediction.at<float>(1);

            DelfusOracle.correct(predictedMeasurement);

            DelfusOracle.errorCovPre.copyTo(DelfusOracle.errorCovPost);
                //copiamos covPre para covPost seguindo a dica de um fórum
                //o Vidal não gosta dessa dica, diz ele que isso engana o filtro
            }


        }//end for each color

    return future;
}
示例#3
0
  void Ukf::correct(const Measurement &measurement)
  {
    FB_DEBUG("---------------------- Ukf::correct ----------------------\n" <<
             "State is:\n" << state_ <<
             "\nMeasurement is:\n" << measurement.measurement_ <<
             "\nMeasurement covariance is:\n" << measurement.covariance_ << "\n");

    // In our implementation, it may be that after we call predict once, we call correct
    // several times in succession (multiple measurements with different time stamps). In
    // that event, the sigma points need to be updated to reflect the current state.
    if(!uncorrected_)
    {
      // Take the square root of a small fraction of the estimateErrorCovariance_ using LL' decomposition
      weightedCovarSqrt_ = ((STATE_SIZE + lambda_) * estimateErrorCovariance_).llt().matrixL();

      // Compute sigma points

      // First sigma point is the current state
      sigmaPoints_[0] = state_;

      // Next STATE_SIZE sigma points are state + weightedCovarSqrt_[ith column]
      // STATE_SIZE sigma points after that are state - weightedCovarSqrt_[ith column]
      for(size_t sigmaInd = 0; sigmaInd < STATE_SIZE; ++sigmaInd)
      {
        sigmaPoints_[sigmaInd + 1] = state_ + weightedCovarSqrt_.col(sigmaInd);
        sigmaPoints_[sigmaInd + 1 + STATE_SIZE] = state_ - weightedCovarSqrt_.col(sigmaInd);
      }
    }

    // We don't want to update everything, so we need to build matrices that only update
    // the measured parts of our state vector

    // First, determine how many state vector values we're updating
    std::vector<size_t> updateIndices;
    for (size_t i = 0; i < measurement.updateVector_.size(); ++i)
    {
      if (measurement.updateVector_[i])
      {
        // Handle nan and inf values in measurements
        if (std::isnan(measurement.measurement_(i)))
        {
          FB_DEBUG("Value at index " << i << " was nan. Excluding from update.\n");
        }
        else if (std::isinf(measurement.measurement_(i)))
        {
          FB_DEBUG("Value at index " << i << " was inf. Excluding from update.\n");
        }
        else
        {
          updateIndices.push_back(i);
        }
      }
    }

    FB_DEBUG("Update indices are:\n" << updateIndices << "\n");

    size_t updateSize = updateIndices.size();

    // Now set up the relevant matrices
    Eigen::VectorXd stateSubset(updateSize);                             // x (in most literature)
    Eigen::VectorXd measurementSubset(updateSize);                       // z
    Eigen::MatrixXd measurementCovarianceSubset(updateSize, updateSize); // R
    Eigen::MatrixXd stateToMeasurementSubset(updateSize, STATE_SIZE);    // H
    Eigen::MatrixXd kalmanGainSubset(STATE_SIZE, updateSize);            // K
    Eigen::VectorXd innovationSubset(updateSize);                        // z - Hx
    Eigen::VectorXd predictedMeasurement(updateSize);
    Eigen::VectorXd sigmaDiff(updateSize);
    Eigen::MatrixXd predictedMeasCovar(updateSize, updateSize);
    Eigen::MatrixXd crossCovar(STATE_SIZE, updateSize);

    std::vector<Eigen::VectorXd> sigmaPointMeasurements(sigmaPoints_.size(), Eigen::VectorXd(updateSize));

    stateSubset.setZero();
    measurementSubset.setZero();
    measurementCovarianceSubset.setZero();
    stateToMeasurementSubset.setZero();
    kalmanGainSubset.setZero();
    innovationSubset.setZero();
    predictedMeasurement.setZero();
    predictedMeasCovar.setZero();
    crossCovar.setZero();

    // Now build the sub-matrices from the full-sized matrices
    for (size_t i = 0; i < updateSize; ++i)
    {
      measurementSubset(i) = measurement.measurement_(updateIndices[i]);
      stateSubset(i) = state_(updateIndices[i]);

      for (size_t j = 0; j < updateSize; ++j)
      {
        measurementCovarianceSubset(i, j) = measurement.covariance_(updateIndices[i], updateIndices[j]);
      }

      // Handle negative (read: bad) covariances in the measurement. Rather
      // than exclude the measurement or make up a covariance, just take
      // the absolute value.
      if (measurementCovarianceSubset(i, i) < 0)
      {
        FB_DEBUG("WARNING: Negative covariance for index " << i <<
                 " of measurement (value is" << measurementCovarianceSubset(i, i) <<
                 "). Using absolute value...\n");

        measurementCovarianceSubset(i, i) = ::fabs(measurementCovarianceSubset(i, i));
      }

      // If the measurement variance for a given variable is very
      // near 0 (as in e-50 or so) and the variance for that
      // variable in the covariance matrix is also near zero, then
      // the Kalman gain computation will blow up. Really, no
      // measurement can be completely without error, so add a small
      // amount in that case.
      if (measurementCovarianceSubset(i, i) < 1e-9)
      {
        measurementCovarianceSubset(i, i) = 1e-9;

        FB_DEBUG("WARNING: measurement had very small error covariance for index " <<
                 updateIndices[i] <<
                 ". Adding some noise to maintain filter stability.\n");
      }
    }

    // The state-to-measurement function, h, will now be a measurement_size x full_state_size
    // matrix, with ones in the (i, i) locations of the values to be updated
    for (size_t i = 0; i < updateSize; ++i)
    {
      stateToMeasurementSubset(i, updateIndices[i]) = 1;
    }

    FB_DEBUG("Current state subset is:\n" << stateSubset <<
             "\nMeasurement subset is:\n" << measurementSubset <<
             "\nMeasurement covariance subset is:\n" << measurementCovarianceSubset <<
             "\nState-to-measurement subset is:\n" << stateToMeasurementSubset << "\n");

    // (1) Generate sigma points, use them to generate a predicted measurement
    for(size_t sigmaInd = 0; sigmaInd < sigmaPoints_.size(); ++sigmaInd)
    {
      sigmaPointMeasurements[sigmaInd] = stateToMeasurementSubset * sigmaPoints_[sigmaInd];
      predictedMeasurement += stateWeights_[sigmaInd] * sigmaPointMeasurements[sigmaInd];
    }

    // (2) Use the sigma point measurements and predicted measurement to compute a predicted
    // measurement covariance matrix P_zz and a state/measurement cross-covariance matrix P_xz.
    for(size_t sigmaInd = 0; sigmaInd < sigmaPoints_.size(); ++sigmaInd)
    {
      sigmaDiff = sigmaPointMeasurements[sigmaInd] - predictedMeasurement;
      predictedMeasCovar += covarWeights_[sigmaInd] * (sigmaDiff * sigmaDiff.transpose());
      crossCovar += covarWeights_[sigmaInd] * ((sigmaPoints_[sigmaInd] - state_) * sigmaDiff.transpose());
    }

    // (3) Compute the Kalman gain, making sure to use the actual measurement covariance: K = P_xz * (P_zz + R)^-1
    Eigen::MatrixXd invInnovCov  = (predictedMeasCovar + measurementCovarianceSubset).inverse();
    kalmanGainSubset = crossCovar * invInnovCov;

    // (4) Apply the gain to the difference between the actual and predicted measurements: x = x + K(z - z_hat)
    innovationSubset = (measurementSubset - predictedMeasurement);

    // (5) Check Mahalanobis distance of innovation
    if (checkMahalanobisThreshold(innovationSubset, invInnovCov, measurement.mahalanobisThresh_))
    {
      // Wrap angles in the innovation
      for (size_t i = 0; i < updateSize; ++i)
      {
        if (updateIndices[i] == StateMemberRoll || updateIndices[i] == StateMemberPitch || updateIndices[i] == StateMemberYaw)
        {
          while (innovationSubset(i) < -PI)
          {
            innovationSubset(i) += TAU;
          }

          while (innovationSubset(i) > PI)
          {
            innovationSubset(i) -= TAU;
          }
        }
      }

      state_ = state_ + kalmanGainSubset * innovationSubset;

      // (6) Compute the new estimate error covariance P = P - (K * P_zz * K')
      estimateErrorCovariance_ = estimateErrorCovariance_.eval() - (kalmanGainSubset * predictedMeasCovar * kalmanGainSubset.transpose());

      wrapStateAngles();

      // Mark that we need to re-compute sigma points for successive corrections
      uncorrected_ = false;

      FB_DEBUG("Predicated measurement covariance is:\n" << predictedMeasCovar <<
               "\nCross covariance is:\n" << crossCovar <<
               "\nKalman gain subset is:\n" << kalmanGainSubset <<
               "\nInnovation:\n" << innovationSubset <<
               "\nCorrected full state is:\n" << state_ <<
               "\nCorrected full estimate error covariance is:\n" << estimateErrorCovariance_ <<
               "\n\n---------------------- /Ukf::correct ----------------------\n");
    }
  }