示例#1
0
static void fmtEmitStep(DATA* data, threadData_t *threadData, MEASURE_TIME* mt, int didEventStep)
{
  if(mt->fmtReal)
  {
    int i, flag=1;
    double tmpdbl;
    unsigned int tmpint;
    int total = data->modelData->modelDataXml.nFunctions + data->modelData->modelDataXml.nProfileBlocks;
    rt_tick(SIM_TIMER_OVERHEAD);
    rt_accumulate(SIM_TIMER_STEP);

    /* Disable time measurements if we have trouble writing to the file... */
    flag = flag && 1 == fwrite(&mt->stepNo, sizeof(unsigned int), 1, mt->fmtInt);
    mt->stepNo++;
    flag = flag && 1 == fwrite(&(data->localData[0]->timeValue), sizeof(double), 1, mt->fmtReal);
    tmpdbl = rt_accumulated(SIM_TIMER_STEP);
    flag = flag && 1 == fwrite(&tmpdbl, sizeof(double), 1, mt->fmtReal);
    flag = flag && total == fwrite(rt_ncall_arr(SIM_TIMER_FIRST_FUNCTION), sizeof(uint32_t), total, mt->fmtInt);
    for(i=0; i<data->modelData->modelDataXml.nFunctions + data->modelData->modelDataXml.nProfileBlocks; i++) {
      tmpdbl = rt_accumulated(i + SIM_TIMER_FIRST_FUNCTION);
      flag = flag && 1 == fwrite(&tmpdbl, sizeof(double), 1, mt->fmtReal);
    }
    rt_accumulate(SIM_TIMER_OVERHEAD);

    if(!flag)
    {
      warningStreamPrint(LOG_SOLVER, 0, "Disabled time measurements because the output file could not be generated: %s", strerror(errno));
      fclose(mt->fmtInt);
      fclose(mt->fmtReal);
      mt->fmtInt = NULL;
      mt->fmtReal = NULL;
    }
  }

  /* prevent emit if noEventEmit flag is used, if it's an event */
  if ((omc_flag[FLAG_NOEVENTEMIT] && didEventStep == 0) || !omc_flag[FLAG_NOEVENTEMIT]) {
    sim_result.emit(&sim_result, data, threadData);
  }
#if !defined(OMC_MINIMAL_RUNTIME)
  embedded_server_update(data->embeddedServerState, data->localData[0]->timeValue);
  if (data->real_time_sync.enabled) {
    double time = data->localData[0]->timeValue;
    int64_t res = rt_ext_tp_sync_nanosec(&data->real_time_sync.clock, (uint64_t) (data->real_time_sync.scaling*(time-data->real_time_sync.time)*1e9));
    int64_t maxLateNano = data->simulationInfo->stepSize*1e9*0.1*data->real_time_sync.scaling /* Maximum late time: 10% of step size */;
    if (res > maxLateNano) {
      int t=0,tMaxLate=0;
      const char *unit = prettyPrintNanoSec(res, &t);
      const char *unit2 = prettyPrintNanoSec(maxLateNano, &tMaxLate);
      errorStreamPrint(LOG_RT, 0, "Missed deadline at time %g; delta was %d %s (maxLate=%d %s)", time, t, unit, tMaxLate, unit2);
    }
    if (res > data->real_time_sync.maxLate) {
      data->real_time_sync.maxLate = res;
    }
  }

  printAllVarsDebug(data, 0, LOG_DEBUG);  /* ??? */
#endif
}
static void fmtEmitStep(DATA* data, threadData_t *threadData, MEASURE_TIME* mt, int didEventStep)
{
  if(mt->fmtReal)
  {
    int i, flag=1;
    double tmpdbl;
    unsigned int tmpint;
    int total = data->modelData.modelDataXml.nFunctions + data->modelData.modelDataXml.nProfileBlocks;
    rt_tick(SIM_TIMER_OVERHEAD);
    rt_accumulate(SIM_TIMER_STEP);

    /* Disable time measurements if we have trouble writing to the file... */
    flag = flag && 1 == fwrite(&mt->stepNo, sizeof(unsigned int), 1, mt->fmtInt);
    mt->stepNo++;
    flag = flag && 1 == fwrite(&(data->localData[0]->timeValue), sizeof(double), 1, mt->fmtReal);
    tmpdbl = rt_accumulated(SIM_TIMER_STEP);
    flag = flag && 1 == fwrite(&tmpdbl, sizeof(double), 1, mt->fmtReal);
    flag = flag && total == fwrite(rt_ncall_arr(SIM_TIMER_FIRST_FUNCTION), sizeof(uint32_t), total, mt->fmtInt);
    for(i=0; i<data->modelData.modelDataXml.nFunctions + data->modelData.modelDataXml.nProfileBlocks; i++) {
      tmpdbl = rt_accumulated(i + SIM_TIMER_FIRST_FUNCTION);
      flag = flag && 1 == fwrite(&tmpdbl, sizeof(double), 1, mt->fmtReal);
    }
    rt_accumulate(SIM_TIMER_OVERHEAD);

    if(!flag)
    {
      warningStreamPrint(LOG_SOLVER, 0, "Disabled time measurements because the output file could not be generated: %s", strerror(errno));
      fclose(mt->fmtInt);
      fclose(mt->fmtReal);
      mt->fmtInt = NULL;
      mt->fmtReal = NULL;
    }
  }

  /* prevent emit if noEventEmit flag is used, if it's an event */
  if ((omc_flag[FLAG_NOEVENTEMIT] && didEventStep == 0) || !omc_flag[FLAG_NOEVENTEMIT])
  {
    sim_result.emit(&sim_result, data, threadData);
  }

  printAllVarsDebug(data, 0, LOG_DEBUG);  /* ??? */
}
/*! \fn performSimulation(DATA* data, SOLVER_INFO* solverInfo)
 *
 *  \param [ref] [data]
 *  \param [ref] [solverInfo]
 *
 *  This function performs the simulation controlled by solverInfo.
 */
int prefixedName_performSimulation(DATA* data, threadData_t *threadData, SOLVER_INFO* solverInfo)
{
  TRACE_PUSH

  int retValIntegrator=0;
  int retValue=0;
  int i, retry=0;

  unsigned int __currStepNo = 0;

  SIMULATION_INFO *simInfo = &(data->simulationInfo);
  solverInfo->currentTime = simInfo->startTime;

  MEASURE_TIME fmt;
  fmtInit(data, &fmt);

  printAllVarsDebug(data, 0, LOG_DEBUG); /* ??? */
  printSparseStructure(data, LOG_SOLVER);

  modelica_boolean syncStep = 0;

  /***** Start main simulation loop *****/
  while(solverInfo->currentTime < simInfo->stopTime)
  {
    int success = 0;
    threadData->currentErrorStage = ERROR_SIMULATION;

#ifdef USE_DEBUG_TRACE
    if(useStream[LOG_TRACE])
      printf("TRACE: push loop step=%u, time=%.12g\n", __currStepNo, solverInfo->currentTime);
#endif

    omc_alloc_interface.collect_a_little();

    /* try */
#if !defined(OMC_EMCC)
    MMC_TRY_INTERNAL(simulationJumpBuffer)
#endif
    {
      clear_rt_step(data);
      rotateRingBuffer(data->simulationData, 1, (void**) data->localData);

      modelica_boolean syncEventStep = solverInfo->didEventStep || syncStep;

      /***** Calculation next step size *****/
      if(syncEventStep)
      {
        infoStreamPrint(LOG_SOLVER, 0, "offset value for the next step: %.16g", (solverInfo->currentTime - solverInfo->laststep));
      }
      else
      {
        if (solverInfo->solverNoEquidistantGrid)
        {
          if (solverInfo->currentTime >= solverInfo->lastdesiredStep)
          {
            double tmpTime = solverInfo->currentTime;
            do
            {
              __currStepNo++;
              solverInfo->currentStepSize = (double)(__currStepNo*(simInfo->stopTime-simInfo->startTime))/(simInfo->numSteps) + simInfo->startTime - solverInfo->currentTime;
            }while(solverInfo->currentStepSize <= 0);
          }
        }
        else
        {
          __currStepNo++;
        }
      }
      solverInfo->currentStepSize = (double)(__currStepNo*(simInfo->stopTime-simInfo->startTime))/(simInfo->numSteps) + simInfo->startTime - solverInfo->currentTime;
      solverInfo->lastdesiredStep = solverInfo->currentTime + solverInfo->currentStepSize;

      /* if retry reduce stepsize */
      if(0 != retry)
      {
        solverInfo->currentStepSize /= 2;
      }
      /***** End calculation next step size *****/

      checkForSynchronous(data, solverInfo);
      /* check for next time event */
      checkForSampleEvent(data, solverInfo);

      /* if regular output point and last time events are almost equals
       * skip that step and go further */
      if (solverInfo->currentStepSize < 1e-15 && syncEventStep){
        __currStepNo++;
        continue;
      }

    /*
     * integration step determine all states by a integration method
     * update continuous system
     */
      retValIntegrator = simulationStep(data, threadData, solverInfo);

      if (S_OPTIMIZATION == solverInfo->solverMethod) break;
      syncStep = simulationUpdate(data, threadData, solverInfo);
      retry = 0; /* reset retry */

      fmtEmitStep(data, threadData, &fmt, solverInfo->didEventStep);
      saveDasslStats(solverInfo);
      checkSimulationTerminated(data, solverInfo);

      /* terminate for some cases:
       * - integrator fails
       * - non-linear system failed to solve
       * - assert was called
       */
      if(retValIntegrator)
      {
        retValue = -1 + retValIntegrator;
        infoStreamPrint(LOG_STDOUT, 0, "model terminate | Integrator failed. | Simulation terminated at time %g", solverInfo->currentTime);
        break;
      }
      else if(check_nonlinear_solutions(data, 0))
      {
        retValue = -2;
        infoStreamPrint(LOG_STDOUT, 0, "model terminate | non-linear system solver failed. | Simulation terminated at time %g", solverInfo->currentTime);
        break;
      }
      else if(check_linear_solutions(data, 0))
      {
        retValue = -3;
        infoStreamPrint(LOG_STDOUT, 0, "model terminate | linear system solver failed. | Simulation terminated at time %g", solverInfo->currentTime);
        break;
      }
      else if(check_mixed_solutions(data, 0))
      {
        retValue = -4;
        infoStreamPrint(LOG_STDOUT, 0, "model terminate | mixed system solver failed. | Simulation terminated at time %g", solverInfo->currentTime);
        break;
      }
      success = 1;
    }
#if !defined(OMC_EMCC)
    MMC_CATCH_INTERNAL(simulationJumpBuffer)
#endif
    if (!success) /* catch */
    {
      if(0 == retry)
      {
        retrySimulationStep(data, threadData, solverInfo);
        retry = 1;
      }
      else
      {
        retValue =  -1;
        infoStreamPrint(LOG_STDOUT, 0, "model terminate | Simulation terminated by an assert at time: %g", data->localData[0]->timeValue);
        break;
      }
    }

    TRACE_POP /* pop loop */
  } /* end while solver */

  fmtClose(&fmt);

  TRACE_POP
  return retValue;
}
示例#4
0
/*! \fn performSimulation(DATA* data, SOLVER_INFO* solverInfo)
 *
 *  \param [ref] [data]
 *  \param [ref] [solverInfo]
 *
 *  This function performs the simulation controlled by solverInfo.
 */
int prefixedName_performSimulation(DATA* data, threadData_t *threadData, SOLVER_INFO* solverInfo)
{
  TRACE_PUSH

  int retValIntegrator=0;
  int retValue=0;
  int i, retry=0, steadStateReached=0;

  unsigned int __currStepNo = 0;

  SIMULATION_INFO *simInfo = data->simulationInfo;
  solverInfo->currentTime = simInfo->startTime;

  MEASURE_TIME fmt;
  fmtInit(data, &fmt);

  printAllVarsDebug(data, 0, LOG_DEBUG); /* ??? */
  if (!compiledInDAEMode)
  {
    printSparseStructure(&(data->simulationInfo->analyticJacobians[data->callback->INDEX_JAC_A].sparsePattern),
        data->simulationInfo->analyticJacobians[data->callback->INDEX_JAC_A].sizeRows,
        data->simulationInfo->analyticJacobians[data->callback->INDEX_JAC_A].sizeCols,
        LOG_SOLVER, "ODE sparse pattern");
  }
  else
  {
    printSparseStructure(data->simulationInfo->daeModeData->sparsePattern,
        data->simulationInfo->daeModeData->nResidualVars,
        data->simulationInfo->daeModeData->nResidualVars,
        LOG_SOLVER, "DAE sparse pattern");
  }

  if(terminationTerminate)
  {
    printInfo(stdout, TermInfo);
    fputc('\n', stdout);
    infoStreamPrint(LOG_STDOUT, 0, "Simulation call terminate() at initialization (time %f)\nMessage : %s", data->localData[0]->timeValue, TermMsg);
    data->simulationInfo->stopTime = solverInfo->currentTime;
  } else {
    modelica_boolean syncStep = 0;

    /***** Start main simulation loop *****/
    while(solverInfo->currentTime < simInfo->stopTime || !simInfo->useStopTime)
    {
      int success = 0;
      threadData->currentErrorStage = ERROR_SIMULATION;

#ifdef USE_DEBUG_TRACE
      if(useStream[LOG_TRACE]) {
        printf("TRACE: push loop step=%u, time=%.12g\n", __currStepNo, solverInfo->currentTime);
      }
#endif

      /* check for steady state */
      if (omc_flag[FLAG_STEADY_STATE])
      {
        if (0 < data->modelData->nStates)
        {
          int i;
          double maxDer = 0.0;
          double currDer;
          for(i=data->modelData->nStates; i<2*data->modelData->nStates; ++i)
          {
            currDer = fabs(data->localData[0]->realVars[i] / data->modelData->realVarsData[i].attribute.nominal);
            if(maxDer < currDer)
              maxDer = currDer;
          }
          if (maxDer < steadyStateTol) {
            steadStateReached=1;
            infoStreamPrint(LOG_STDOUT, 0, "steady state reached at time = %g\n  * max(|d(x_i)/dt|/nominal(x_i)) = %g\n  * relative tolerance = %g", solverInfo->currentTime, maxDer, steadyStateTol);
            break;
          }
        }
        else
          throwStreamPrint(threadData, "No states in model. Flag -steadyState can only be used if states are present.");
      }

      omc_alloc_interface.collect_a_little();

      /* try */
#if !defined(OMC_EMCC)
      MMC_TRY_INTERNAL(simulationJumpBuffer)
#endif
      {
        printAllVars(data, 0, LOG_SOLVER_V);

        clear_rt_step(data);
        if (!compiledInDAEMode) /* do not use ringbuffer for daeMode */
          rotateRingBuffer(data->simulationData, 1, (void**) data->localData);

        modelica_boolean syncEventStep = solverInfo->didEventStep || syncStep;

        /***** Calculation next step size *****/
        if(syncEventStep) {
          infoStreamPrint(LOG_SOLVER, 0, "offset value for the next step: %.16g", (solverInfo->currentTime - solverInfo->laststep));
        } else {
          if (solverInfo->solverNoEquidistantGrid)
          {
            if (solverInfo->currentTime >= solverInfo->lastdesiredStep)
            {
              do {
                __currStepNo++;
                solverInfo->currentStepSize = (double)(__currStepNo*(simInfo->stopTime-simInfo->startTime))/(simInfo->numSteps) + simInfo->startTime - solverInfo->currentTime;
              } while(solverInfo->currentStepSize <= 0);
            }
          } else {
            __currStepNo++;
          }
        }

        solverInfo->currentStepSize = (double)(__currStepNo*(simInfo->stopTime-simInfo->startTime))/(simInfo->numSteps) + simInfo->startTime - solverInfo->currentTime;

        solverInfo->lastdesiredStep = solverInfo->currentTime + solverInfo->currentStepSize;

        /* if retry reduce stepsize */
        if (0 != retry) {
          solverInfo->currentStepSize /= 2;
        }
        /***** End calculation next step size *****/

        checkForSynchronous(data, solverInfo);
        /* check for next time event */
        checkForSampleEvent(data, solverInfo);

        /* if regular output point and last time events are almost equals
        * skip that step and go further */
        if (solverInfo->currentStepSize < 1e-15 && syncEventStep){
          __currStepNo++;
          continue;
        }

      /*
      * integration step determine all states by a integration method
      * update continuous system
      */
        infoStreamPrint(LOG_SOLVER, 1, "call solver from %g to %g (stepSize: %.15g)", solverInfo->currentTime, solverInfo->currentTime + solverInfo->currentStepSize, solverInfo->currentStepSize);
        retValIntegrator = simulationStep(data, threadData, solverInfo);
        infoStreamPrint(LOG_SOLVER, 0, "finished solver step %g", solverInfo->currentTime);
        messageClose(LOG_SOLVER);

        if (S_OPTIMIZATION == solverInfo->solverMethod) break;
        syncStep = simulationUpdate(data, threadData, solverInfo);
        retry = 0; /* reset retry */

        fmtEmitStep(data, threadData, &fmt, solverInfo);
        saveIntegratorStats(solverInfo);
        checkSimulationTerminated(data, solverInfo);

        /* terminate for some cases:
        * - integrator fails
        * - non-linear system failed to solve
        * - assert was called
        */
        if (retValIntegrator) {
          retValue = -1 + retValIntegrator;
          infoStreamPrint(LOG_STDOUT, 0, "model terminate | Integrator failed. | Simulation terminated at time %g", solverInfo->currentTime);
          break;
        } else if(check_nonlinear_solutions(data, 0)) {
          retValue = -2;
          infoStreamPrint(LOG_STDOUT, 0, "model terminate | non-linear system solver failed. | Simulation terminated at time %g", solverInfo->currentTime);
          break;
        } else if(check_linear_solutions(data, 0)) {
          retValue = -3;
          infoStreamPrint(LOG_STDOUT, 0, "model terminate | linear system solver failed. | Simulation terminated at time %g", solverInfo->currentTime);
          break;
        } else if(check_mixed_solutions(data, 0)) {
          retValue = -4;
          infoStreamPrint(LOG_STDOUT, 0, "model terminate | mixed system solver failed. | Simulation terminated at time %g", solverInfo->currentTime);
          break;
        }
        success = 1;
      }
#if !defined(OMC_EMCC)
      MMC_CATCH_INTERNAL(simulationJumpBuffer)
#endif
      if (!success) { /* catch */
        if(0 == retry) {
          retrySimulationStep(data, threadData, solverInfo);
          retry = 1;
        } else {
          retValue =  -1;
          infoStreamPrint(LOG_STDOUT, 0, "model terminate | Simulation terminated by an assert at time: %g", data->localData[0]->timeValue);
          break;
        }
      }

      TRACE_POP /* pop loop */
    } /* end while solver */
  } /* end else */

  fmtClose(&fmt);

  if (omc_flag[FLAG_STEADY_STATE] && !steadStateReached) {
    warningStreamPrint(LOG_STDOUT, 0, "Steady state has not been reached.\nThis may be due to too restrictive relative tolerance (%g) or short stopTime (%g).", steadyStateTol, simInfo->stopTime);
  }

  TRACE_POP
  return retValue;
}