void __init auxio_power_probe(void) { struct linux_prom_registers regs; int node; struct resource r; /* Attempt to find the sun4m power control node. */ node = prom_getchild(prom_root_node); node = prom_searchsiblings(node, "obio"); node = prom_getchild(node); node = prom_searchsiblings(node, "power"); if (node == 0 || node == -1) return; /* Map the power control register. */ if (prom_getproperty(node, "reg", (char *)®s, sizeof(regs)) <= 0) return; prom_apply_obio_ranges(®s, 1); memset(&r, 0, sizeof(r)); r.flags = regs.which_io & 0xF; r.start = regs.phys_addr; r.end = regs.phys_addr + regs.reg_size - 1; auxio_power_register = (unsigned char *) of_ioremap(&r, 0, regs.reg_size, "auxpower"); /* Display a quick message on the console. */ if (auxio_power_register) printk(KERN_INFO "Power off control detected.\n"); }
void __init auxio_power_probe(void) { struct linux_prom_registers regs; phandle node; struct resource r; node = prom_getchild(prom_root_node); node = prom_searchsiblings(node, "obio"); node = prom_getchild(node); node = prom_searchsiblings(node, "power"); if (node == 0 || (s32)node == -1) return; if (prom_getproperty(node, "reg", (char *)®s, sizeof(regs)) <= 0) return; prom_apply_obio_ranges(®s, 1); memset(&r, 0, sizeof(r)); r.flags = regs.which_io & 0xF; r.start = regs.phys_addr; r.end = regs.phys_addr + regs.reg_size - 1; auxio_power_register = (unsigned char *) of_ioremap(&r, 0, regs.reg_size, "auxpower"); if (auxio_power_register) printk(KERN_INFO "Power off control detected.\n"); }
void __init auxio_probe(void) { int node, auxio_nd; struct linux_prom_registers auxregs[1]; struct resource r; switch (sparc_cpu_model) { case sun4d: case sun4: auxio_register = 0; return; default: break; } node = prom_getchild(prom_root_node); auxio_nd = prom_searchsiblings(node, "auxiliary-io"); if(!auxio_nd) { node = prom_searchsiblings(node, "obio"); node = prom_getchild(node); auxio_nd = prom_searchsiblings(node, "auxio"); if(!auxio_nd) { #ifdef CONFIG_PCI /* There may be auxio on Ebus */ auxio_register = 0; return; #else if(prom_searchsiblings(node, "leds")) { /* VME chassis sun4m machine, no auxio exists. */ auxio_register = 0; return; } prom_printf("Cannot find auxio node, cannot continue...\n"); prom_halt(); #endif } } prom_getproperty(auxio_nd, "reg", (char *) auxregs, sizeof(auxregs)); prom_apply_obio_ranges(auxregs, 0x1); /* Map the register both read and write */ r.flags = auxregs[0].which_io & 0xF; r.start = auxregs[0].phys_addr; r.end = auxregs[0].phys_addr + auxregs[0].reg_size - 1; auxio_register = (unsigned char *) sbus_ioremap(&r, 0, auxregs[0].reg_size, "auxio"); /* Fix the address on sun4m and sun4c. */ if((((unsigned long) auxregs[0].phys_addr) & 3) == 3 || sparc_cpu_model == sun4c) auxio_register = (unsigned char *) ((int)auxio_register | 3); TURN_ON_LED; }
void __init auxio_probe(void) { phandle node, auxio_nd; struct linux_prom_registers auxregs[1]; struct resource r; switch (sparc_cpu_model) { case sparc_leon: case sun4d: case sun4: return; default: break; } node = prom_getchild(prom_root_node); auxio_nd = prom_searchsiblings(node, "auxiliary-io"); if(!auxio_nd) { node = prom_searchsiblings(node, "obio"); node = prom_getchild(node); auxio_nd = prom_searchsiblings(node, "auxio"); if(!auxio_nd) { #ifdef CONFIG_PCI return; #else if(prom_searchsiblings(node, "leds")) { return; } prom_printf("Cannot find auxio node, cannot continue...\n"); prom_halt(); #endif } } if(prom_getproperty(auxio_nd, "reg", (char *) auxregs, sizeof(auxregs)) <= 0) return; prom_apply_obio_ranges(auxregs, 0x1); r.flags = auxregs[0].which_io & 0xF; r.start = auxregs[0].phys_addr; r.end = auxregs[0].phys_addr + auxregs[0].reg_size - 1; auxio_register = of_ioremap(&r, 0, auxregs[0].reg_size, "auxio"); if((((unsigned long) auxregs[0].phys_addr) & 3) == 3 || sparc_cpu_model == sun4c) auxio_register += (3 - ((unsigned long)auxio_register & 3)); set_auxio(AUXIO_LED, 0); }
__initfunc(void auxio_power_probe(void)) { struct linux_prom_registers regs; int node; /* Attempt to find the sun4m power control node. */ node = prom_getchild(prom_root_node); node = prom_searchsiblings(node, "obio"); node = prom_getchild(node); node = prom_searchsiblings(node, "power"); if (node == 0 || node == -1) return; /* Map the power control register. */ prom_getproperty(node, "reg", (char *)®s, sizeof(regs)); prom_apply_obio_ranges(®s, 1); auxio_power_register = (volatile unsigned char *) sparc_alloc_io(regs.phys_addr, 0, regs.reg_size, "power off control", regs.which_io, 0); /* Display a quick message on the console. */ if (auxio_power_register) printk(KERN_INFO "Power off control detected.\n"); }
/* Probe for the mostek real time clock chip. */ static __inline__ void clock_probe(void) { struct linux_prom_registers clk_reg[2]; char model[128]; register int node, cpuunit, bootbus; struct resource r; cpuunit = bootbus = 0; memset(&r, 0, sizeof(r)); /* Determine the correct starting PROM node for the probe. */ node = prom_getchild(prom_root_node); switch (sparc_cpu_model) { case sun4c: break; case sun4m: node = prom_getchild(prom_searchsiblings(node, "obio")); break; case sun4d: node = prom_getchild(bootbus = prom_searchsiblings(prom_getchild(cpuunit = prom_searchsiblings(node, "cpu-unit")), "bootbus")); break; default: prom_printf("CLOCK: Unsupported architecture!\n"); prom_halt(); } /* Find the PROM node describing the real time clock. */ sp_clock_typ = MSTK_INVALID; node = prom_searchsiblings(node,"eeprom"); if (!node) { prom_printf("CLOCK: No clock found!\n"); prom_halt(); } /* Get the model name and setup everything up. */ model[0] = '\0'; prom_getstring(node, "model", model, sizeof(model)); if (strcmp(model, "mk48t02") == 0) { sp_clock_typ = MSTK48T02; if (prom_getproperty(node, "reg", (char *) clk_reg, sizeof(clk_reg)) == -1) { prom_printf("clock_probe: FAILED!\n"); prom_halt(); } if (sparc_cpu_model == sun4d) prom_apply_generic_ranges (bootbus, cpuunit, clk_reg, 1); else prom_apply_obio_ranges(clk_reg, 1); /* Map the clock register io area read-only */ r.flags = clk_reg[0].which_io; r.start = clk_reg[0].phys_addr; mstk48t02_regs = sbus_ioremap(&r, 0, sizeof(struct mostek48t02), "mk48t02"); mstk48t08_regs = NULL; /* To catch weirdness */ } else if (strcmp(model, "mk48t08") == 0) { sp_clock_typ = MSTK48T08; if(prom_getproperty(node, "reg", (char *) clk_reg, sizeof(clk_reg)) == -1) { prom_printf("clock_probe: FAILED!\n"); prom_halt(); } if (sparc_cpu_model == sun4d) prom_apply_generic_ranges (bootbus, cpuunit, clk_reg, 1); else prom_apply_obio_ranges(clk_reg, 1); /* Map the clock register io area read-only */ /* XXX r/o attribute is somewhere in r.flags */ r.flags = clk_reg[0].which_io; r.start = clk_reg[0].phys_addr; mstk48t08_regs = (struct mostek48t08 *) sbus_ioremap(&r, 0, sizeof(struct mostek48t08), "mk48t08"); mstk48t02_regs = &mstk48t08_regs->regs; } else { prom_printf("CLOCK: Unknown model name '%s'\n",model); prom_halt(); } /* Report a low battery voltage condition. */ if (has_low_battery()) printk(KERN_CRIT "NVRAM: Low battery voltage!\n"); /* Kick start the clock if it is completely stopped. */ if (mostek_read(mstk48t02_regs + MOSTEK_SEC) & MSTK_STOP) kick_start_clock(); }
void __init sun4m_init_IRQ(void) { int ie_node,i; struct linux_prom_registers int_regs[PROMREG_MAX]; int num_regs; struct resource r; int mid; local_irq_disable(); if((ie_node = prom_searchsiblings(prom_getchild(prom_root_node), "obio")) == 0 || (ie_node = prom_getchild (ie_node)) == 0 || (ie_node = prom_searchsiblings (ie_node, "interrupt")) == 0) { prom_printf("Cannot find /obio/interrupt node\n"); prom_halt(); } num_regs = prom_getproperty(ie_node, "reg", (char *) int_regs, sizeof(int_regs)); num_regs = (num_regs/sizeof(struct linux_prom_registers)); /* Apply the obio ranges to these registers. */ prom_apply_obio_ranges(int_regs, num_regs); int_regs[4].phys_addr = int_regs[num_regs-1].phys_addr; int_regs[4].reg_size = int_regs[num_regs-1].reg_size; int_regs[4].which_io = int_regs[num_regs-1].which_io; for(ie_node = 1; ie_node < 4; ie_node++) { int_regs[ie_node].phys_addr = int_regs[ie_node-1].phys_addr + PAGE_SIZE; int_regs[ie_node].reg_size = int_regs[ie_node-1].reg_size; int_regs[ie_node].which_io = int_regs[ie_node-1].which_io; } memset((char *)&r, 0, sizeof(struct resource)); /* Map the interrupt registers for all possible cpus. */ r.flags = int_regs[0].which_io; r.start = int_regs[0].phys_addr; sun4m_interrupts = (struct sun4m_intregs *) sbus_ioremap(&r, 0, PAGE_SIZE*SUN4M_NCPUS, "interrupts_percpu"); /* Map the system interrupt control registers. */ r.flags = int_regs[4].which_io; r.start = int_regs[4].phys_addr; sbus_ioremap(&r, 0, int_regs[4].reg_size, "interrupts_system"); sun4m_interrupts->set = ~SUN4M_INT_MASKALL; for (i = 0; !cpu_find_by_instance(i, NULL, &mid); i++) sun4m_interrupts->cpu_intregs[mid].clear = ~0x17fff; if (!cpu_find_by_instance(1, NULL, NULL)) { /* system wide interrupts go to cpu 0, this should always * be safe because it is guaranteed to be fitted or OBP doesn't * come up * * Not sure, but writing here on SLAVIO systems may puke * so I don't do it unless there is more than 1 cpu. */ irq_rcvreg = (unsigned long *) &sun4m_interrupts->undirected_target; sun4m_interrupts->undirected_target = 0; } BTFIXUPSET_CALL(sbint_to_irq, sun4m_sbint_to_irq, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(enable_irq, sun4m_enable_irq, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(disable_irq, sun4m_disable_irq, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(enable_pil_irq, sun4m_enable_pil_irq, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(disable_pil_irq, sun4m_disable_pil_irq, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(clear_clock_irq, sun4m_clear_clock_irq, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(clear_profile_irq, sun4m_clear_profile_irq, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(load_profile_irq, sun4m_load_profile_irq, BTFIXUPCALL_NORM); sparc_init_timers = sun4m_init_timers; #ifdef CONFIG_SMP BTFIXUPSET_CALL(set_cpu_int, sun4m_send_ipi, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(clear_cpu_int, sun4m_clear_ipi, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(set_irq_udt, sun4m_set_udt, BTFIXUPCALL_NORM); #endif /* Cannot enable interrupts until OBP ticker is disabled. */ }
static void __init sun4m_init_timers(irqreturn_t (*counter_fn)(int, void *, struct pt_regs *)) { int reg_count, irq, cpu; struct linux_prom_registers cnt_regs[PROMREG_MAX]; int obio_node, cnt_node; struct resource r; cnt_node = 0; if((obio_node = prom_searchsiblings (prom_getchild(prom_root_node), "obio")) == 0 || (obio_node = prom_getchild (obio_node)) == 0 || (cnt_node = prom_searchsiblings (obio_node, "counter")) == 0) { prom_printf("Cannot find /obio/counter node\n"); prom_halt(); } reg_count = prom_getproperty(cnt_node, "reg", (void *) cnt_regs, sizeof(cnt_regs)); reg_count = (reg_count/sizeof(struct linux_prom_registers)); /* Apply the obio ranges to the timer registers. */ prom_apply_obio_ranges(cnt_regs, reg_count); cnt_regs[4].phys_addr = cnt_regs[reg_count-1].phys_addr; cnt_regs[4].reg_size = cnt_regs[reg_count-1].reg_size; cnt_regs[4].which_io = cnt_regs[reg_count-1].which_io; for(obio_node = 1; obio_node < 4; obio_node++) { cnt_regs[obio_node].phys_addr = cnt_regs[obio_node-1].phys_addr + PAGE_SIZE; cnt_regs[obio_node].reg_size = cnt_regs[obio_node-1].reg_size; cnt_regs[obio_node].which_io = cnt_regs[obio_node-1].which_io; } memset((char*)&r, 0, sizeof(struct resource)); /* Map the per-cpu Counter registers. */ r.flags = cnt_regs[0].which_io; r.start = cnt_regs[0].phys_addr; sun4m_timers = (struct sun4m_timer_regs *) sbus_ioremap(&r, 0, PAGE_SIZE*SUN4M_NCPUS, "sun4m_cpu_cnt"); /* Map the system Counter register. */ /* XXX Here we expect consequent calls to yeld adjusent maps. */ r.flags = cnt_regs[4].which_io; r.start = cnt_regs[4].phys_addr; sbus_ioremap(&r, 0, cnt_regs[4].reg_size, "sun4m_sys_cnt"); sun4m_timers->l10_timer_limit = (((1000000/HZ) + 1) << 10); master_l10_counter = &sun4m_timers->l10_cur_count; master_l10_limit = &sun4m_timers->l10_timer_limit; irq = request_irq(TIMER_IRQ, counter_fn, (IRQF_DISABLED | SA_STATIC_ALLOC), "timer", NULL); if (irq) { prom_printf("time_init: unable to attach IRQ%d\n",TIMER_IRQ); prom_halt(); } if (!cpu_find_by_instance(1, NULL, NULL)) { for(cpu = 0; cpu < 4; cpu++) sun4m_timers->cpu_timers[cpu].l14_timer_limit = 0; sun4m_interrupts->set = SUN4M_INT_E14; } else { sun4m_timers->cpu_timers[0].l14_timer_limit = 0; } #ifdef CONFIG_SMP { unsigned long flags; extern unsigned long lvl14_save[4]; struct tt_entry *trap_table = &sparc_ttable[SP_TRAP_IRQ1 + (14 - 1)]; /* For SMP we use the level 14 ticker, however the bootup code * has copied the firmwares level 14 vector into boot cpu's * trap table, we must fix this now or we get squashed. */ local_irq_save(flags); trap_table->inst_one = lvl14_save[0]; trap_table->inst_two = lvl14_save[1]; trap_table->inst_three = lvl14_save[2]; trap_table->inst_four = lvl14_save[3]; local_flush_cache_all(); local_irq_restore(flags); } #endif }
__initfunc(static void sun4m_init_timers(void (*counter_fn)(int, void *, struct pt_regs *))) { int reg_count, irq, cpu; struct linux_prom_registers cnt_regs[PROMREG_MAX]; int obio_node, cnt_node; cnt_node = 0; if((obio_node = prom_searchsiblings (prom_getchild(prom_root_node), "obio")) == 0 || (obio_node = prom_getchild (obio_node)) == 0 || (cnt_node = prom_searchsiblings (obio_node, "counter")) == 0) { prom_printf("Cannot find /obio/counter node\n"); prom_halt(); } reg_count = prom_getproperty(cnt_node, "reg", (void *) cnt_regs, sizeof(cnt_regs)); reg_count = (reg_count/sizeof(struct linux_prom_registers)); /* Apply the obio ranges to the timer registers. */ prom_apply_obio_ranges(cnt_regs, reg_count); cnt_regs[4].phys_addr = cnt_regs[reg_count-1].phys_addr; cnt_regs[4].reg_size = cnt_regs[reg_count-1].reg_size; cnt_regs[4].which_io = cnt_regs[reg_count-1].which_io; for(obio_node = 1; obio_node < 4; obio_node++) { cnt_regs[obio_node].phys_addr = cnt_regs[obio_node-1].phys_addr + PAGE_SIZE; cnt_regs[obio_node].reg_size = cnt_regs[obio_node-1].reg_size; cnt_regs[obio_node].which_io = cnt_regs[obio_node-1].which_io; } /* Map the per-cpu Counter registers. */ sun4m_timers = sparc_alloc_io(cnt_regs[0].phys_addr, 0, PAGE_SIZE*NCPUS, "counters_percpu", cnt_regs[0].which_io, 0x0); /* Map the system Counter register. */ sparc_alloc_io(cnt_regs[4].phys_addr, 0, cnt_regs[4].reg_size, "counters_system", cnt_regs[4].which_io, 0x0); sun4m_timers->l10_timer_limit = (((1000000/HZ) + 1) << 10); master_l10_counter = &sun4m_timers->l10_cur_count; master_l10_limit = &sun4m_timers->l10_timer_limit; irq = request_irq(TIMER_IRQ, counter_fn, (SA_INTERRUPT | SA_STATIC_ALLOC), "timer", NULL); if (irq) { prom_printf("time_init: unable to attach IRQ%d\n",TIMER_IRQ); prom_halt(); } if(linux_num_cpus > 1) { for(cpu = 0; cpu < 4; cpu++) sun4m_timers->cpu_timers[cpu].l14_timer_limit = 0; sun4m_interrupts->set = SUN4M_INT_E14; } else { sun4m_timers->cpu_timers[0].l14_timer_limit = 0; } #ifdef __SMP__ { unsigned long flags; extern unsigned long lvl14_save[4]; struct tt_entry *trap_table = &sparc_ttable[SP_TRAP_IRQ1 + (14 - 1)]; /* For SMP we use the level 14 ticker, however the bootup code * has copied the firmwares level 14 vector into boot cpu's * trap table, we must fix this now or we get squashed. */ __save_and_cli(flags); trap_table->inst_one = lvl14_save[0]; trap_table->inst_two = lvl14_save[1]; trap_table->inst_three = lvl14_save[2]; trap_table->inst_four = lvl14_save[3]; local_flush_cache_all(); __restore_flags(flags); } #endif }