void PropagatedValue<Id, Value, Merge>::propagate(const Graph<Id>& graph) {
    all_values = fixed_values;

    //Propagate the values
    for(const std::pair<Id,Value>& v : fixed_values) {
        propagateFrom(v.first, v.second, PropagatedValue::MAX_PONDERATION, graph);
    }

    //Normalize
    for(const std::pair<Id,Value>& v : ponderations) {
        all_values[v.first] /= v.second;
    }
}
示例#2
0
文件: PDST.cpp 项目: jvgomez/ompl
ompl::base::PlannerStatus ompl::control::PDST::solve(const base::PlannerTerminationCondition &ptc)
{
    // Make sure the planner is configured correctly.
    // ompl::base::Planner::checkValidity checks that there is at least one
    // start state and an ompl::base::Goal object specified and throws an
    // exception if this is not the case.
    checkValidity();

    // depending on how the planning problem is set up, this may be necessary
    bsp_->bounds_ = projectionEvaluator_->getBounds();
    base::Goal *goal = pdef_->getGoal().get();
    goalSampler_ = dynamic_cast<ompl::base::GoalSampleableRegion *>(goal);

    // Ensure that we have a state sampler AND a control sampler
    if (!sampler_)
        sampler_ = si_->allocStateSampler();
    if (!controlSampler_)
        controlSampler_ = siC_->allocDirectedControlSampler();

    // Initialize to correct values depending on whether or not previous calls to solve
    // generated an approximate or exact solution. If solve is being called for the first
    // time then initializes hasSolution to false and isApproximate to true.
    double distanceToGoal, closestDistanceToGoal = std::numeric_limits<double>::infinity();
    bool hasSolution = lastGoalMotion_ != nullptr;
    bool isApproximate = !hasSolution || !goal->isSatisfied(lastGoalMotion_->endState_, &closestDistanceToGoal);
    unsigned int ndim = projectionEvaluator_->getDimension();

    // If an exact solution has already been found, do not run for another iteration.
    if (hasSolution && !isApproximate)
        return ompl::base::PlannerStatus::EXACT_SOLUTION;

    // Initialize tree with start state(s)
    while (const base::State *st = pis_.nextStart())
    {
        auto *startMotion = new Motion(si_->cloneState(st));
        bsp_->addMotion(startMotion);
        startMotion->heapElement_ = priorityQueue_.insert(startMotion);
    }

    if (priorityQueue_.empty())
    {
        OMPL_ERROR("%s: There are no valid initial states!", getName().c_str());
        return base::PlannerStatus::INVALID_START;
    }

    OMPL_INFORM("%s: Starting planning with %u states already in datastructure", getName().c_str(),
                priorityQueue_.size());

    base::State *tmpState1 = si_->allocState(), *tmpState2 = si_->allocState();
    base::EuclideanProjection tmpProj1(ndim), tmpProj2(ndim);
    while (!ptc)
    {
        // Get the top priority path.
        Motion *motionSelected = priorityQueue_.top()->data;
        motionSelected->updatePriority();
        priorityQueue_.update(motionSelected->heapElement_);

        Motion *newMotion = propagateFrom(motionSelected, tmpState1, tmpState2);
        if (newMotion == nullptr)
            continue;

        addMotion(newMotion, bsp_, tmpState1, tmpState2, tmpProj1, tmpProj2);

        // Check if the newMotion reached the goal.
        hasSolution = goal->isSatisfied(newMotion->endState_, &distanceToGoal);
        if (hasSolution)
        {
            closestDistanceToGoal = distanceToGoal;
            lastGoalMotion_ = newMotion;
            isApproximate = false;
            break;
        }
        else if (distanceToGoal < closestDistanceToGoal)
        {
            closestDistanceToGoal = distanceToGoal;
            lastGoalMotion_ = newMotion;
        }

        // subdivide cell that contained selected motion, put motions of that
        // cell in subcells and split motions so that they contained within
        // one subcell
        Cell *cellSelected = motionSelected->cell_;
        std::vector<Motion *> motions;
        cellSelected->subdivide(ndim);
        motions.swap(cellSelected->motions_);
        for (auto &motion : motions)
            addMotion(motion, cellSelected, tmpState1, tmpState2, tmpProj1, tmpProj2);
    }

    if (lastGoalMotion_ != nullptr)
        hasSolution = true;

    // If a solution path has been computed, save it in the problem definition object.
    if (hasSolution)
    {
        Motion *m;
        std::vector<unsigned int> durations(
            1, findDurationAndAncestor(lastGoalMotion_, lastGoalMotion_->endState_, tmpState1, m));
        std::vector<Motion *> mpath(1, m);

        while (m->parent_)
        {
            durations.push_back(findDurationAndAncestor(m->parent_, m->startState_, tmpState1, m));
            mpath.push_back(m);
        }

        auto path(std::make_shared<PathControl>(si_));
        double dt = siC_->getPropagationStepSize();
        path->append(mpath.back()->endState_);
        for (int i = (int)mpath.size() - 2; i > 0; i--)
            path->append(mpath[i - 1]->startState_, mpath[i]->control_, durations[i] * dt);
        path->append(lastGoalMotion_->endState_, mpath[0]->control_, durations[0] * dt);
        pdef_->addSolutionPath(path, isApproximate, closestDistanceToGoal, getName());
    }

    si_->freeState(tmpState1);
    si_->freeState(tmpState2);

    OMPL_INFORM("%s: Created %u states and %u cells", getName().c_str(), priorityQueue_.size(), bsp_->size());

    return base::PlannerStatus(hasSolution, isApproximate);
}