示例#1
0
/*
 * Called with IRQs on and fully valid regs.  Returns with IRQs off in a
 * state such that we can immediately switch to user mode.
 */
__visible inline void syscall_return_slowpath(struct pt_regs *regs)
{
	struct thread_info *ti = pt_regs_to_thread_info(regs);
	u32 cached_flags = READ_ONCE(ti->flags);

	CT_WARN_ON(ct_state() != CONTEXT_KERNEL);

	if (IS_ENABLED(CONFIG_PROVE_LOCKING) &&
	    WARN(irqs_disabled(), "syscall %ld left IRQs disabled", regs->orig_ax))
		local_irq_enable();

	/*
	 * First do one-time work.  If these work items are enabled, we
	 * want to run them exactly once per syscall exit with IRQs on.
	 */
	if (unlikely(cached_flags & SYSCALL_EXIT_WORK_FLAGS))
		syscall_slow_exit_work(regs, cached_flags);

#ifdef CONFIG_COMPAT
	/*
	 * Compat syscalls set TS_COMPAT.  Make sure we clear it before
	 * returning to user mode.
	 */
	ti->status &= ~TS_COMPAT;
#endif

	local_irq_disable();
	prepare_exit_to_usermode(regs);
}
示例#2
0
/* Called with IRQs disabled. */
__visible void prepare_exit_to_usermode(struct pt_regs *regs)
{
    if (WARN_ON(!irqs_disabled()))
        local_irq_disable();

    /*
     * In order to return to user mode, we need to have IRQs off with
     * none of _TIF_SIGPENDING, _TIF_NOTIFY_RESUME, _TIF_USER_RETURN_NOTIFY,
     * _TIF_UPROBE, or _TIF_NEED_RESCHED set.  Several of these flags
     * can be set at any time on preemptable kernels if we have IRQs on,
     * so we need to loop.  Disabling preemption wouldn't help: doing the
     * work to clear some of the flags can sleep.
     */
    while (true) {
        u32 cached_flags =
            READ_ONCE(pt_regs_to_thread_info(regs)->flags);

        if (!(cached_flags & (_TIF_SIGPENDING | _TIF_NOTIFY_RESUME |
                              _TIF_UPROBE | _TIF_NEED_RESCHED |
                              _TIF_USER_RETURN_NOTIFY)))
            break;

        /* We have work to do. */
        local_irq_enable();

        if (cached_flags & _TIF_NEED_RESCHED)
            schedule();

        if (cached_flags & _TIF_UPROBE)
            uprobe_notify_resume(regs);

        /* deal with pending signal delivery */
        if (cached_flags & _TIF_SIGPENDING)
            do_signal(regs);

        if (cached_flags & _TIF_NOTIFY_RESUME) {
            clear_thread_flag(TIF_NOTIFY_RESUME);
            tracehook_notify_resume(regs);
        }

        if (cached_flags & _TIF_USER_RETURN_NOTIFY)
            fire_user_return_notifiers();

        /* Disable IRQs and retry */
        local_irq_disable();
    }

    user_enter();
}
示例#3
0
/*
 * Called with IRQs on and fully valid regs.  Returns with IRQs off in a
 * state such that we can immediately switch to user mode.
 */
__visible void syscall_return_slowpath(struct pt_regs *regs)
{
    struct thread_info *ti = pt_regs_to_thread_info(regs);
    u32 cached_flags = READ_ONCE(ti->flags);
    bool step;

    CT_WARN_ON(ct_state() != CONTEXT_KERNEL);

    if (WARN(irqs_disabled(), "syscall %ld left IRQs disabled",
             regs->orig_ax))
        local_irq_enable();

    /*
     * First do one-time work.  If these work items are enabled, we
     * want to run them exactly once per syscall exit with IRQs on.
     */
    if (cached_flags & (_TIF_SYSCALL_TRACE | _TIF_SYSCALL_AUDIT |
                        _TIF_SINGLESTEP | _TIF_SYSCALL_TRACEPOINT)) {
        audit_syscall_exit(regs);

        if (cached_flags & _TIF_SYSCALL_TRACEPOINT)
            trace_sys_exit(regs, regs->ax);

        /*
         * If TIF_SYSCALL_EMU is set, we only get here because of
         * TIF_SINGLESTEP (i.e. this is PTRACE_SYSEMU_SINGLESTEP).
         * We already reported this syscall instruction in
         * syscall_trace_enter().
         */
        step = unlikely(
                   (cached_flags & (_TIF_SINGLESTEP | _TIF_SYSCALL_EMU))
                   == _TIF_SINGLESTEP);
        if (step || cached_flags & _TIF_SYSCALL_TRACE)
            tracehook_report_syscall_exit(regs, step);
    }

#ifdef CONFIG_COMPAT
    /*
     * Compat syscalls set TS_COMPAT.  Make sure we clear it before
     * returning to user mode.
     */
    ti->status &= ~TS_COMPAT;
#endif

    local_irq_disable();
    prepare_exit_to_usermode(regs);
}
示例#4
0
/* Called with IRQs disabled. */
__visible inline void prepare_exit_to_usermode(struct pt_regs *regs)
{
	u32 cached_flags;

	if (IS_ENABLED(CONFIG_PROVE_LOCKING) && WARN_ON(!irqs_disabled()))
		local_irq_disable();

	lockdep_sys_exit();

	cached_flags =
		READ_ONCE(pt_regs_to_thread_info(regs)->flags);

	if (unlikely(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
		exit_to_usermode_loop(regs, cached_flags);

	user_enter();
}
示例#5
0
/* Returns the syscall nr to run (which should match regs->orig_ax). */
long syscall_trace_enter_phase2(struct pt_regs *regs, u32 arch,
				unsigned long phase1_result)
{
	struct thread_info *ti = pt_regs_to_thread_info(regs);
	long ret = 0;
	u32 work = ACCESS_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY;

	if (IS_ENABLED(CONFIG_DEBUG_ENTRY))
		BUG_ON(regs != task_pt_regs(current));

	/*
	 * If we stepped into a sysenter/syscall insn, it trapped in
	 * kernel mode; do_debug() cleared TF and set TIF_SINGLESTEP.
	 * If user-mode had set TF itself, then it's still clear from
	 * do_debug() and we need to set it again to restore the user
	 * state.  If we entered on the slow path, TF was already set.
	 */
	if (work & _TIF_SINGLESTEP)
		regs->flags |= X86_EFLAGS_TF;

#ifdef CONFIG_SECCOMP
	/*
	 * Call seccomp_phase2 before running the other hooks so that
	 * they can see any changes made by a seccomp tracer.
	 */
	if (phase1_result > 1 && seccomp_phase2(phase1_result)) {
		/* seccomp failures shouldn't expose any additional code. */
		return -1;
	}
#endif

	if (unlikely(work & _TIF_SYSCALL_EMU))
		ret = -1L;

	if ((ret || test_thread_flag(TIF_SYSCALL_TRACE)) &&
	    tracehook_report_syscall_entry(regs))
		ret = -1L;

	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
		trace_sys_enter(regs, regs->orig_ax);

	do_audit_syscall_entry(regs, arch);

	return ret ?: regs->orig_ax;
}
示例#6
0
/* 32-bit kernels use a trap gate for INT80, and the asm code calls here. */
__visible
#else
/* 64-bit kernels use do_syscall_32_irqs_off() instead. */
static
#endif
__always_inline void do_syscall_32_irqs_on(struct pt_regs *regs)
{
	struct thread_info *ti = pt_regs_to_thread_info(regs);
	unsigned int nr = (unsigned int)regs->orig_ax;

#ifdef CONFIG_IA32_EMULATION
	ti->status |= TS_COMPAT;
#endif

	if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY) {
		/*
		 * Subtlety here: if ptrace pokes something larger than
		 * 2^32-1 into orig_ax, this truncates it.  This may or
		 * may not be necessary, but it matches the old asm
		 * behavior.
		 */
		nr = syscall_trace_enter(regs);
	}

	if (likely(nr < IA32_NR_syscalls)) {
		/*
		 * It's possible that a 32-bit syscall implementation
		 * takes a 64-bit parameter but nonetheless assumes that
		 * the high bits are zero.  Make sure we zero-extend all
		 * of the args.
		 */
		regs->ax = ia32_sys_call_table[nr](
			(unsigned int)regs->bx, (unsigned int)regs->cx,
			(unsigned int)regs->dx, (unsigned int)regs->si,
			(unsigned int)regs->di, (unsigned int)regs->bp);
	}

	syscall_return_slowpath(regs);
}
示例#7
0
/*
 * We can return 0 to resume the syscall or anything else to go to phase
 * 2.  If we resume the syscall, we need to put something appropriate in
 * regs->orig_ax.
 *
 * NB: We don't have full pt_regs here, but regs->orig_ax and regs->ax
 * are fully functional.
 *
 * For phase 2's benefit, our return value is:
 * 0:			resume the syscall
 * 1:			go to phase 2; no seccomp phase 2 needed
 * anything else:	go to phase 2; pass return value to seccomp
 */
unsigned long syscall_trace_enter_phase1(struct pt_regs *regs, u32 arch)
{
	struct thread_info *ti = pt_regs_to_thread_info(regs);
	unsigned long ret = 0;
	u32 work;

	if (IS_ENABLED(CONFIG_DEBUG_ENTRY))
		BUG_ON(regs != task_pt_regs(current));

	work = ACCESS_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY;

#ifdef CONFIG_CONTEXT_TRACKING
	/*
	 * If TIF_NOHZ is set, we are required to call user_exit() before
	 * doing anything that could touch RCU.
	 */
	if (work & _TIF_NOHZ) {
		enter_from_user_mode();
		work &= ~_TIF_NOHZ;
	}
#endif

#ifdef CONFIG_SECCOMP
	/*
	 * Do seccomp first -- it should minimize exposure of other
	 * code, and keeping seccomp fast is probably more valuable
	 * than the rest of this.
	 */
	if (work & _TIF_SECCOMP) {
		struct seccomp_data sd;

		sd.arch = arch;
		sd.nr = regs->orig_ax;
		sd.instruction_pointer = regs->ip;
#ifdef CONFIG_X86_64
		if (arch == AUDIT_ARCH_X86_64) {
			sd.args[0] = regs->di;
			sd.args[1] = regs->si;
			sd.args[2] = regs->dx;
			sd.args[3] = regs->r10;
			sd.args[4] = regs->r8;
			sd.args[5] = regs->r9;
		} else
#endif
		{
			sd.args[0] = regs->bx;
			sd.args[1] = regs->cx;
			sd.args[2] = regs->dx;
			sd.args[3] = regs->si;
			sd.args[4] = regs->di;
			sd.args[5] = regs->bp;
		}

		BUILD_BUG_ON(SECCOMP_PHASE1_OK != 0);
		BUILD_BUG_ON(SECCOMP_PHASE1_SKIP != 1);

		ret = seccomp_phase1(&sd);
		if (ret == SECCOMP_PHASE1_SKIP) {
			regs->orig_ax = -1;
			ret = 0;
		} else if (ret != SECCOMP_PHASE1_OK) {
			return ret;  /* Go directly to phase 2 */
		}

		work &= ~_TIF_SECCOMP;
	}
#endif

	/* Do our best to finish without phase 2. */
	if (work == 0)
		return ret;  /* seccomp and/or nohz only (ret == 0 here) */

#ifdef CONFIG_AUDITSYSCALL
	if (work == _TIF_SYSCALL_AUDIT) {
		/*
		 * If there is no more work to be done except auditing,
		 * then audit in phase 1.  Phase 2 always audits, so, if
		 * we audit here, then we can't go on to phase 2.
		 */
		do_audit_syscall_entry(regs, arch);
		return 0;
	}
#endif

	return 1;  /* Something is enabled that we can't handle in phase 1 */
}