/* result written in vec and mat */ void curve_deform_vector(Scene *scene, Object *cuOb, Object *target, float orco[3], float vec[3], float mat[][3], int no_rot_axis) { CurveDeform cd; float quat[4]; if (cuOb->type != OB_CURVE) { unit_m3(mat); return; } init_curve_deform(cuOb, target, &cd); cd.no_rot_axis = no_rot_axis; /* option to only rotate for XY, for example */ copy_v3_v3(cd.dmin, orco); copy_v3_v3(cd.dmax, orco); mul_m4_v3(cd.curvespace, vec); if (calc_curve_deform(scene, cuOb, vec, target->trackflag, &cd, quat)) { float qmat[3][3]; quat_to_mat3(qmat, quat); mul_m3_m3m3(mat, qmat, cd.objectspace3); } else unit_m3(mat); mul_m4_v3(cd.objectspace, vec); }
void crazyspace_build_sculpt(Scene *scene, Object *ob, float (**deformmats)[3][3], float (**deformcos)[3]) { int totleft= sculpt_get_first_deform_matrices(scene, ob, deformmats, deformcos); if(totleft) { /* there are deformation modifier which doesn't support deformation matricies calculation. Need additional crazyspace correction */ float (*deformedVerts)[3]= *deformcos; float (*origVerts)[3]= MEM_dupallocN(deformedVerts); float *quats= NULL; int i, deformed= 0; ModifierData *md= modifiers_getVirtualModifierList(ob); Mesh *me= (Mesh*)ob->data; for(; md; md= md->next) { ModifierTypeInfo *mti= modifierType_getInfo(md->type); if(!modifier_isEnabled(scene, md, eModifierMode_Realtime)) continue; if(mti->type==eModifierTypeType_OnlyDeform) { /* skip leading modifiers which have been already handled in sculpt_get_first_deform_matrices */ if(mti->deformMatrices && !deformed) continue; mti->deformVerts(md, ob, NULL, deformedVerts, me->totvert, 0, 0); deformed= 1; } } quats= MEM_mallocN(me->totvert*sizeof(float)*4, "crazy quats"); crazyspace_set_quats_mesh(me, (float*)origVerts, (float*)deformedVerts, quats); for(i=0; i<me->totvert; i++) { float qmat[3][3], tmat[3][3]; quat_to_mat3(qmat, &quats[i*4]); mul_m3_m3m3(tmat, qmat, (*deformmats)[i]); copy_m3_m3((*deformmats)[i], tmat); } MEM_freeN(origVerts); MEM_freeN(quats); } if(!*deformmats) { int a, numVerts; Mesh *me= (Mesh*)ob->data; *deformcos= mesh_getVertexCos(me, &numVerts); *deformmats= MEM_callocN(sizeof(*(*deformmats))*numVerts, "defmats"); for(a=0; a<numVerts; a++) unit_m3((*deformmats)[a]); } }
static PyObject *Quaternion_to_matrix(QuaternionObject *self) { float mat[9]; /* all values are set */ if (BaseMath_ReadCallback(self) == -1) return NULL; quat_to_mat3((float (*)[3])mat, self->quat); return Matrix_CreatePyObject(mat, 3, 3, Py_NEW, NULL); }
static void vertex_dupli__mapFunc(void *userData, int index, const float co[3], const float no_f[3], const short no_s[3]) { DupliObject *dob; vertexDupliData *vdd= userData; float vec[3], q2[4], mat[3][3], tmat[4][4], obmat[4][4]; int origlay; mul_v3_m4v3(vec, vdd->pmat, co); sub_v3_v3(vec, vdd->pmat[3]); add_v3_v3(vec, vdd->obmat[3]); copy_m4_m4(obmat, vdd->obmat); copy_v3_v3(obmat[3], vec); if (vdd->par->transflag & OB_DUPLIROT) { if (no_f) { vec[0]= -no_f[0]; vec[1]= -no_f[1]; vec[2]= -no_f[2]; } else if (no_s) { vec[0]= -no_s[0]; vec[1]= -no_s[1]; vec[2]= -no_s[2]; } vec_to_quat( q2,vec, vdd->ob->trackflag, vdd->ob->upflag); quat_to_mat3( mat,q2); copy_m4_m4(tmat, obmat); mul_m4_m4m3(obmat, tmat, mat); } origlay = vdd->ob->lay; dob= new_dupli_object(vdd->lb, vdd->ob, obmat, vdd->par->lay, index, OB_DUPLIVERTS, vdd->animated); /* restore the original layer so that each dupli will have proper dob->origlay */ vdd->ob->lay = origlay; if (vdd->orco) copy_v3_v3(dob->orco, vdd->orco[index]); if (vdd->ob->transflag & OB_DUPLI) { float tmpmat[4][4]; copy_m4_m4(tmpmat, vdd->ob->obmat); copy_m4_m4(vdd->ob->obmat, obmat); /* pretend we are really this mat */ object_duplilist_recursive((ID *)vdd->id, vdd->scene, vdd->ob, vdd->lb, obmat, vdd->level+1, vdd->animated); copy_m4_m4(vdd->ob->obmat, tmpmat); } }
int mathutils_any_to_rotmat(float rmat[3][3], PyObject *value, const char *error_prefix) { if (EulerObject_Check(value)) { if (BaseMath_ReadCallback((BaseMathObject *)value) == -1) { return -1; } else { eulO_to_mat3(rmat, ((EulerObject *)value)->eul, ((EulerObject *)value)->order); return 0; } } else if (QuaternionObject_Check(value)) { if (BaseMath_ReadCallback((BaseMathObject *)value) == -1) { return -1; } else { float tquat[4]; normalize_qt_qt(tquat, ((QuaternionObject *)value)->quat); quat_to_mat3(rmat, tquat); return 0; } } else if (MatrixObject_Check(value)) { if (BaseMath_ReadCallback((BaseMathObject *)value) == -1) { return -1; } else if (((MatrixObject *)value)->num_row < 3 || ((MatrixObject *)value)->num_col < 3) { PyErr_Format( PyExc_ValueError, "%.200s: matrix must have minimum 3x3 dimensions", error_prefix); return -1; } else { matrix_as_3x3(rmat, (MatrixObject *)value); normalize_m3(rmat); return 0; } } else { PyErr_Format(PyExc_TypeError, "%.200s: expected a Euler, Quaternion or Matrix type, " "found %.200s", error_prefix, Py_TYPE(value)->tp_name); return -1; } }
/* Meta object density, brute force for now * (might be good enough anyway, don't need huge number of metaobs to model volumetric objects */ static float metadensity(Object *ob, const float co[3]) { float mat[4][4], imat[4][4], dens = 0.f; MetaBall *mb = (MetaBall *)ob->data; MetaElem *ml; /* transform co to meta-element */ float tco[3] = {co[0], co[1], co[2]}; mult_m4_m4m4(mat, R.viewmat, ob->obmat); invert_m4_m4(imat, mat); mul_m4_v3(imat, tco); for (ml = mb->elems.first; ml; ml = ml->next) { float bmat[3][3], dist2; /* element rotation transform */ float tp[3] = {ml->x - tco[0], ml->y - tco[1], ml->z - tco[2]}; quat_to_mat3(bmat, ml->quat); transpose_m3(bmat); /* rot.only, so inverse == transpose */ mul_m3_v3(bmat, tp); /* MB_BALL default */ switch (ml->type) { case MB_ELIPSOID: tp[0] /= ml->expx, tp[1] /= ml->expy, tp[2] /= ml->expz; break; case MB_CUBE: tp[2] = (tp[2] > ml->expz) ? (tp[2] - ml->expz) : ((tp[2] < -ml->expz) ? (tp[2] + ml->expz) : 0.f); /* no break, xy as plane */ case MB_PLANE: tp[1] = (tp[1] > ml->expy) ? (tp[1] - ml->expy) : ((tp[1] < -ml->expy) ? (tp[1] + ml->expy) : 0.f); /* no break, x as tube */ case MB_TUBE: tp[0] = (tp[0] > ml->expx) ? (tp[0] - ml->expx) : ((tp[0] < -ml->expx) ? (tp[0] + ml->expx) : 0.f); } /* ml->rad2 is not set */ dist2 = 1.0f - (dot_v3v3(tp, tp) / (ml->rad * ml->rad)); if (dist2 > 0.f) dens += (ml->flag & MB_NEGATIVE) ? -ml->s * dist2 * dist2 * dist2 : ml->s * dist2 * dist2 * dist2; } dens -= mb->thresh; return (dens < 0.f) ? 0.f : dens; }
static PyObject *Quaternion_to_euler(QuaternionObject *self, PyObject *args) { float tquat[4]; float eul[3]; const char *order_str = NULL; short order = EULER_ORDER_XYZ; EulerObject *eul_compat = NULL; if (!PyArg_ParseTuple(args, "|sO!:to_euler", &order_str, &euler_Type, &eul_compat)) return NULL; if (BaseMath_ReadCallback(self) == -1) return NULL; if (order_str) { order = euler_order_from_string(order_str, "Matrix.to_euler()"); if (order == -1) return NULL; } normalize_qt_qt(tquat, self->quat); if (eul_compat) { float mat[3][3]; if (BaseMath_ReadCallback(eul_compat) == -1) return NULL; quat_to_mat3(mat, tquat); if (order == EULER_ORDER_XYZ) mat3_to_compatible_eul(eul, eul_compat->eul, mat); else mat3_to_compatible_eulO(eul, eul_compat->eul, order, mat); } else { if (order == EULER_ORDER_XYZ) quat_to_eul(eul, tquat); else quat_to_eulO(eul, order, tquat); } return Euler_CreatePyObject(eul, order, Py_NEW, NULL); }
static PyObject *Quaternion_rotate(QuaternionObject *self, PyObject *value) { float self_rmat[3][3], other_rmat[3][3], rmat[3][3]; float tquat[4], length; if (BaseMath_ReadCallback(self) == -1) return NULL; if (mathutils_any_to_rotmat(other_rmat, value, "Quaternion.rotate(value)") == -1) return NULL; length = normalize_qt_qt(tquat, self->quat); quat_to_mat3(self_rmat, tquat); mul_m3_m3m3(rmat, other_rmat, self_rmat); mat3_to_quat(self->quat, rmat); mul_qt_fl(self->quat, length); /* maintain length after rotating */ (void)BaseMath_WriteCallback(self); Py_RETURN_NONE; }
/* called from within the core BKE_pose_where_is loop, all animsystems and constraints * were executed & assigned. Now as last we do an IK pass */ static void execute_posetree(struct Scene *scene, Object *ob, PoseTree *tree) { float R_parmat[3][3], identity[3][3]; float iR_parmat[3][3]; float R_bonemat[3][3]; float goalrot[3][3], goalpos[3]; float rootmat[4][4], imat[4][4]; float goal[4][4], goalinv[4][4]; float irest_basis[3][3], full_basis[3][3]; float end_pose[4][4], world_pose[4][4]; float length, basis[3][3], rest_basis[3][3], start[3], *ikstretch = NULL; float resultinf = 0.0f; int a, flag, hasstretch = 0, resultblend = 0; bPoseChannel *pchan; IK_Segment *seg, *parent, **iktree, *iktarget; IK_Solver *solver; PoseTarget *target; bKinematicConstraint *data, *poleangledata = NULL; Bone *bone; if (tree->totchannel == 0) return; iktree = MEM_mallocN(sizeof(void *) * tree->totchannel, "ik tree"); for (a = 0; a < tree->totchannel; a++) { pchan = tree->pchan[a]; bone = pchan->bone; /* set DoF flag */ flag = 0; if (!(pchan->ikflag & BONE_IK_NO_XDOF) && !(pchan->ikflag & BONE_IK_NO_XDOF_TEMP)) flag |= IK_XDOF; if (!(pchan->ikflag & BONE_IK_NO_YDOF) && !(pchan->ikflag & BONE_IK_NO_YDOF_TEMP)) flag |= IK_YDOF; if (!(pchan->ikflag & BONE_IK_NO_ZDOF) && !(pchan->ikflag & BONE_IK_NO_ZDOF_TEMP)) flag |= IK_ZDOF; if (tree->stretch && (pchan->ikstretch > 0.0f)) { flag |= IK_TRANS_YDOF; hasstretch = 1; } seg = iktree[a] = IK_CreateSegment(flag); /* find parent */ if (a == 0) parent = NULL; else parent = iktree[tree->parent[a]]; IK_SetParent(seg, parent); /* get the matrix that transforms from prevbone into this bone */ copy_m3_m4(R_bonemat, pchan->pose_mat); /* gather transformations for this IK segment */ if (pchan->parent) copy_m3_m4(R_parmat, pchan->parent->pose_mat); else unit_m3(R_parmat); /* bone offset */ if (pchan->parent && (a > 0)) sub_v3_v3v3(start, pchan->pose_head, pchan->parent->pose_tail); else /* only root bone (a = 0) has no parent */ start[0] = start[1] = start[2] = 0.0f; /* change length based on bone size */ length = bone->length * len_v3(R_bonemat[1]); /* compute rest basis and its inverse */ copy_m3_m3(rest_basis, bone->bone_mat); copy_m3_m3(irest_basis, bone->bone_mat); transpose_m3(irest_basis); /* compute basis with rest_basis removed */ invert_m3_m3(iR_parmat, R_parmat); mul_m3_m3m3(full_basis, iR_parmat, R_bonemat); mul_m3_m3m3(basis, irest_basis, full_basis); /* basis must be pure rotation */ normalize_m3(basis); /* transform offset into local bone space */ normalize_m3(iR_parmat); mul_m3_v3(iR_parmat, start); IK_SetTransform(seg, start, rest_basis, basis, length); if (pchan->ikflag & BONE_IK_XLIMIT) IK_SetLimit(seg, IK_X, pchan->limitmin[0], pchan->limitmax[0]); if (pchan->ikflag & BONE_IK_YLIMIT) IK_SetLimit(seg, IK_Y, pchan->limitmin[1], pchan->limitmax[1]); if (pchan->ikflag & BONE_IK_ZLIMIT) IK_SetLimit(seg, IK_Z, pchan->limitmin[2], pchan->limitmax[2]); IK_SetStiffness(seg, IK_X, pchan->stiffness[0]); IK_SetStiffness(seg, IK_Y, pchan->stiffness[1]); IK_SetStiffness(seg, IK_Z, pchan->stiffness[2]); if (tree->stretch && (pchan->ikstretch > 0.0f)) { const float ikstretch = pchan->ikstretch * pchan->ikstretch; /* this function does its own clamping */ IK_SetStiffness(seg, IK_TRANS_Y, 1.0f - ikstretch); IK_SetLimit(seg, IK_TRANS_Y, IK_STRETCH_STIFF_MIN, IK_STRETCH_STIFF_MAX); } } solver = IK_CreateSolver(iktree[0]); /* set solver goals */ /* first set the goal inverse transform, assuming the root of tree was done ok! */ pchan = tree->pchan[0]; if (pchan->parent) { /* transform goal by parent mat, so this rotation is not part of the * segment's basis. otherwise rotation limits do not work on the * local transform of the segment itself. */ copy_m4_m4(rootmat, pchan->parent->pose_mat); /* However, we do not want to get (i.e. reverse) parent's scale, as it generates [#31008] * kind of nasty bugs... */ normalize_m4(rootmat); } else unit_m4(rootmat); copy_v3_v3(rootmat[3], pchan->pose_head); mul_m4_m4m4(imat, ob->obmat, rootmat); invert_m4_m4(goalinv, imat); for (target = tree->targets.first; target; target = target->next) { float polepos[3]; int poleconstrain = 0; data = (bKinematicConstraint *)target->con->data; /* 1.0=ctime, we pass on object for auto-ik (owner-type here is object, even though * strictly speaking, it is a posechannel) */ BKE_constraint_target_matrix_get(scene, target->con, 0, CONSTRAINT_OBTYPE_OBJECT, ob, rootmat, 1.0); /* and set and transform goal */ mul_m4_m4m4(goal, goalinv, rootmat); copy_v3_v3(goalpos, goal[3]); copy_m3_m4(goalrot, goal); normalize_m3(goalrot); /* same for pole vector target */ if (data->poletar) { BKE_constraint_target_matrix_get(scene, target->con, 1, CONSTRAINT_OBTYPE_OBJECT, ob, rootmat, 1.0); if (data->flag & CONSTRAINT_IK_SETANGLE) { /* don't solve IK when we are setting the pole angle */ break; } else { mul_m4_m4m4(goal, goalinv, rootmat); copy_v3_v3(polepos, goal[3]); poleconstrain = 1; /* for pole targets, we blend the result of the ik solver * instead of the target position, otherwise we can't get * a smooth transition */ resultblend = 1; resultinf = target->con->enforce; if (data->flag & CONSTRAINT_IK_GETANGLE) { poleangledata = data; data->flag &= ~CONSTRAINT_IK_GETANGLE; } } } /* do we need blending? */ if (!resultblend && target->con->enforce != 1.0f) { float q1[4], q2[4], q[4]; float fac = target->con->enforce; float mfac = 1.0f - fac; pchan = tree->pchan[target->tip]; /* end effector in world space */ copy_m4_m4(end_pose, pchan->pose_mat); copy_v3_v3(end_pose[3], pchan->pose_tail); mul_serie_m4(world_pose, goalinv, ob->obmat, end_pose, NULL, NULL, NULL, NULL, NULL); /* blend position */ goalpos[0] = fac * goalpos[0] + mfac * world_pose[3][0]; goalpos[1] = fac * goalpos[1] + mfac * world_pose[3][1]; goalpos[2] = fac * goalpos[2] + mfac * world_pose[3][2]; /* blend rotation */ mat3_to_quat(q1, goalrot); mat4_to_quat(q2, world_pose); interp_qt_qtqt(q, q1, q2, mfac); quat_to_mat3(goalrot, q); } iktarget = iktree[target->tip]; if ((data->flag & CONSTRAINT_IK_POS) && data->weight != 0.0f) { if (poleconstrain) IK_SolverSetPoleVectorConstraint(solver, iktarget, goalpos, polepos, data->poleangle, (poleangledata == data)); IK_SolverAddGoal(solver, iktarget, goalpos, data->weight); } if ((data->flag & CONSTRAINT_IK_ROT) && (data->orientweight != 0.0f)) if ((data->flag & CONSTRAINT_IK_AUTO) == 0) IK_SolverAddGoalOrientation(solver, iktarget, goalrot, data->orientweight); } /* solve */ IK_Solve(solver, 0.0f, tree->iterations); if (poleangledata) poleangledata->poleangle = IK_SolverGetPoleAngle(solver); IK_FreeSolver(solver); /* gather basis changes */ tree->basis_change = MEM_mallocN(sizeof(float[3][3]) * tree->totchannel, "ik basis change"); if (hasstretch) ikstretch = MEM_mallocN(sizeof(float) * tree->totchannel, "ik stretch"); for (a = 0; a < tree->totchannel; a++) { IK_GetBasisChange(iktree[a], tree->basis_change[a]); if (hasstretch) { /* have to compensate for scaling received from parent */ float parentstretch, stretch; pchan = tree->pchan[a]; parentstretch = (tree->parent[a] >= 0) ? ikstretch[tree->parent[a]] : 1.0f; if (tree->stretch && (pchan->ikstretch > 0.0f)) { float trans[3], length; IK_GetTranslationChange(iktree[a], trans); length = pchan->bone->length * len_v3(pchan->pose_mat[1]); ikstretch[a] = (length == 0.0f) ? 1.0f : (trans[1] + length) / length; } else ikstretch[a] = 1.0; stretch = (parentstretch == 0.0f) ? 1.0f : ikstretch[a] / parentstretch; mul_v3_fl(tree->basis_change[a][0], stretch); mul_v3_fl(tree->basis_change[a][1], stretch); mul_v3_fl(tree->basis_change[a][2], stretch); } if (resultblend && resultinf != 1.0f) { unit_m3(identity); blend_m3_m3m3(tree->basis_change[a], identity, tree->basis_change[a], resultinf); } IK_FreeSegment(iktree[a]); } MEM_freeN(iktree); if (ikstretch) MEM_freeN(ikstretch); }
static void face_duplilist(ListBase *lb, ID *id, Scene *scene, Object *par, float par_space_mat[][4], int level, int animated) { Object *ob, *ob_iter; Base *base = NULL; DupliObject *dob; DerivedMesh *dm; Mesh *me= par->data; MLoopUV *mloopuv; MPoly *mpoly, *mp; MLoop *mloop; MVert *mvert; float pmat[4][4], imat[3][3], (*orco)[3] = NULL, w; int lay, oblay, totface, a; Scene *sce = NULL; Group *group = NULL; GroupObject *go = NULL; BMEditMesh *em; float ob__obmat[4][4]; /* needed for groups where the object matrix needs to be modified */ /* simple preventing of too deep nested groups */ if (level>MAX_DUPLI_RECUR) return; copy_m4_m4(pmat, par->obmat); em = me->edit_btmesh; if (em) { dm= editbmesh_get_derived_cage(scene, par, em, CD_MASK_BAREMESH); } else { dm = mesh_get_derived_deform(scene, par, CD_MASK_BAREMESH); } totface= dm->getNumPolys(dm); mpoly= dm->getPolyArray(dm); mloop= dm->getLoopArray(dm); mvert= dm->getVertArray(dm); if (G.rendering) { orco= (float(*)[3])get_mesh_orco_verts(par); transform_mesh_orco_verts(me, orco, me->totvert, 0); mloopuv= me->mloopuv; } else { orco= NULL; mloopuv= NULL; } /* having to loop on scene OR group objects is NOT FUN */ if (GS(id->name) == ID_SCE) { sce = (Scene *)id; lay= sce->lay; base= sce->base.first; } else { group = (Group *)id; lay= group->layer; go = group->gobject.first; } /* Start looping on Scene OR Group objects */ while (base || go) { if (sce) { ob_iter= base->object; oblay = base->lay; } else { ob_iter= go->ob; oblay = ob_iter->lay; } if (lay & oblay && scene->obedit!=ob_iter) { ob=ob_iter->parent; while (ob) { if (ob==par) { ob = ob_iter; /* End Scene/Group object loop, below is generic */ /* par_space_mat - only used for groups so we can modify the space dupli's are in * when par_space_mat is NULL ob->obmat can be used instead of ob__obmat */ if (par_space_mat) mult_m4_m4m4(ob__obmat, par_space_mat, ob->obmat); else copy_m4_m4(ob__obmat, ob->obmat); copy_m3_m4(imat, ob->parentinv); /* mballs have a different dupli handling */ if (ob->type!=OB_MBALL) ob->flag |= OB_DONE; /* doesnt render */ for (a=0, mp= mpoly; a<totface; a++, mp++) { int mv1; int mv2; int mv3; /* int mv4; */ /* UNUSED */ float *v1; float *v2; float *v3; /* float *v4; */ /* UNUSED */ float cent[3], quat[4], mat[3][3], mat3[3][3], tmat[4][4], obmat[4][4]; MLoop *loopstart= mloop + mp->loopstart; if (mp->totloop < 3) { /* highly unlikely but to be safe */ continue; } else { v1= mvert[(mv1= loopstart[0].v)].co; v2= mvert[(mv2= loopstart[1].v)].co; v3= mvert[(mv3= loopstart[2].v)].co; #if 0 if (mp->totloop > 3) { v4= mvert[(mv4= loopstart[3].v)].co; } #endif } /* translation */ mesh_calc_poly_center(mp, loopstart, mvert, cent); mul_m4_v3(pmat, cent); sub_v3_v3v3(cent, cent, pmat[3]); add_v3_v3(cent, ob__obmat[3]); copy_m4_m4(obmat, ob__obmat); copy_v3_v3(obmat[3], cent); /* rotation */ tri_to_quat( quat,v1, v2, v3); quat_to_mat3( mat,quat); /* scale */ if (par->transflag & OB_DUPLIFACES_SCALE) { float size= mesh_calc_poly_area(mp, loopstart, mvert, NULL); size= sqrtf(size) * par->dupfacesca; mul_m3_fl(mat, size); } copy_m3_m3(mat3, mat); mul_m3_m3m3(mat, imat, mat3); copy_m4_m4(tmat, obmat); mul_m4_m4m3(obmat, tmat, mat); dob= new_dupli_object(lb, ob, obmat, par->lay, a, OB_DUPLIFACES, animated); if (G.rendering) { w= 1.0f / (float)mp->totloop; if (orco) { int j; for (j = 0; j < mpoly->totloop; j++) { madd_v3_v3fl(dob->orco, orco[loopstart[j].v], w); } } if (mloopuv) { int j; for (j = 0; j < mpoly->totloop; j++) { madd_v2_v2fl(dob->orco, mloopuv[loopstart[j].v].uv, w); } } } if (ob->transflag & OB_DUPLI) { float tmpmat[4][4]; copy_m4_m4(tmpmat, ob->obmat); copy_m4_m4(ob->obmat, obmat); /* pretend we are really this mat */ object_duplilist_recursive((ID *)id, scene, ob, lb, ob->obmat, level+1, animated); copy_m4_m4(ob->obmat, tmpmat); } } break; } ob= ob->parent; } } if (sce) base= base->next; /* scene loop */ else go= go->next; /* group loop */ } if (orco) MEM_freeN(orco); dm->release(dm); }
static int dupli_extrude_cursor(bContext *C, wmOperator *op, wmEvent *event) { ViewContext vc; EditVert *eve; float min[3], max[3]; int done= 0; short use_proj; em_setup_viewcontext(C, &vc); use_proj= (vc.scene->toolsettings->snap_flag & SCE_SNAP) && (vc.scene->toolsettings->snap_mode==SCE_SNAP_MODE_FACE); invert_m4_m4(vc.obedit->imat, vc.obedit->obmat); INIT_MINMAX(min, max); for(eve= vc.em->verts.first; eve; eve= eve->next) { if(eve->f & SELECT) { DO_MINMAX(eve->co, min, max); done= 1; } } /* call extrude? */ if(done) { const short rot_src= RNA_boolean_get(op->ptr, "rotate_source"); EditEdge *eed; float vec[3], cent[3], mat[3][3]; float nor[3]= {0.0, 0.0, 0.0}; /* 2D normal calc */ float mval_f[2]; mval_f[0]= (float)event->mval[0]; mval_f[1]= (float)event->mval[1]; done= 0; /* calculate the normal for selected edges */ for(eed= vc.em->edges.first; eed; eed= eed->next) { if(eed->f & SELECT) { float co1[3], co2[3]; mul_v3_m4v3(co1, vc.obedit->obmat, eed->v1->co); mul_v3_m4v3(co2, vc.obedit->obmat, eed->v2->co); project_float_noclip(vc.ar, co1, co1); project_float_noclip(vc.ar, co2, co2); /* 2D rotate by 90d while adding. * (x, y) = (y, -x) * * accumulate the screenspace normal in 2D, * with screenspace edge length weighting the result. */ if(line_point_side_v2(co1, co2, mval_f) >= 0.0f) { nor[0] += (co1[1] - co2[1]); nor[1] += -(co1[0] - co2[0]); } else { nor[0] += (co2[1] - co1[1]); nor[1] += -(co2[0] - co1[0]); } done= 1; } } if(done) { float view_vec[3], cross[3]; /* convert the 2D nomal into 3D */ mul_mat3_m4_v3(vc.rv3d->viewinv, nor); /* worldspace */ mul_mat3_m4_v3(vc.obedit->imat, nor); /* local space */ /* correct the normal to be aligned on the view plane */ copy_v3_v3(view_vec, vc.rv3d->viewinv[2]); mul_mat3_m4_v3(vc.obedit->imat, view_vec); cross_v3_v3v3(cross, nor, view_vec); cross_v3_v3v3(nor, view_vec, cross); normalize_v3(nor); } /* center */ mid_v3_v3v3(cent, min, max); copy_v3_v3(min, cent); mul_m4_v3(vc.obedit->obmat, min); // view space view3d_get_view_aligned_coordinate(&vc, min, event->mval, TRUE); mul_m4_v3(vc.obedit->imat, min); // back in object space sub_v3_v3(min, cent); /* calculate rotation */ unit_m3(mat); if(done) { float dot; copy_v3_v3(vec, min); normalize_v3(vec); dot= dot_v3v3(vec, nor); if( fabs(dot)<0.999) { float cross[3], si, q1[4]; cross_v3_v3v3(cross, nor, vec); normalize_v3(cross); dot= 0.5f*saacos(dot); /* halve the rotation if its applied twice */ if(rot_src) dot *= 0.5f; si= (float)sin(dot); q1[0]= (float)cos(dot); q1[1]= cross[0]*si; q1[2]= cross[1]*si; q1[3]= cross[2]*si; quat_to_mat3( mat,q1); } } if(rot_src) { rotateflag(vc.em, SELECT, cent, mat); /* also project the source, for retopo workflow */ if(use_proj) EM_project_snap_verts(C, vc.ar, vc.obedit, vc.em); } extrudeflag(vc.obedit, vc.em, SELECT, nor, 0); rotateflag(vc.em, SELECT, cent, mat); translateflag(vc.em, SELECT, min); recalc_editnormals(vc.em); } else if(vc.em->selectmode & SCE_SELECT_VERTEX) { float imat[4][4]; const float *curs= give_cursor(vc.scene, vc.v3d); copy_v3_v3(min, curs); view3d_get_view_aligned_coordinate(&vc, min, event->mval, TRUE); eve= addvertlist(vc.em, 0, NULL); invert_m4_m4(imat, vc.obedit->obmat); mul_v3_m4v3(eve->co, imat, min); eve->f= SELECT; } if(use_proj) EM_project_snap_verts(C, vc.ar, vc.obedit, vc.em); WM_event_add_notifier(C, NC_GEOM|ND_DATA, vc.obedit->data); DAG_id_tag_update(vc.obedit->data, 0); return OPERATOR_FINISHED; }
static void make_prim(Object *obedit, int type, float mat[4][4], int tot, int seg, int subdiv, float dia, float depth, int ext, int fill) { /* * type - for the type of shape * dia - the radius for cone,sphere cylinder etc. * depth - * ext - extrude * fill - end capping, and option to fill in circle * cent[3] - center of the data. * */ EditMesh *em= BKE_mesh_get_editmesh(((Mesh *)obedit->data)); EditVert *eve, *v1=NULL, *v2, *v3, *v4=NULL, *vtop, *vdown; float phi, phid, vec[3]; float q[4], cmat[3][3], nor[3]= {0.0, 0.0, 0.0}; short a, b; EM_clear_flag_all(em, SELECT); phid= 2.0f*(float)M_PI/tot; phi= .25f*(float)M_PI; switch(type) { case PRIM_GRID: /* grid */ /* clear flags */ eve= em->verts.first; while(eve) { eve->f= 0; eve= eve->next; } /* one segment first: the X axis */ phi = (2*dia)/(float)(tot-1); phid = (2*dia)/(float)(seg-1); for(a=tot-1;a>=0;a--) { vec[0] = (phi*a) - dia; vec[1]= - dia; vec[2]= 0.0f; eve= addvertlist(em, vec, NULL); eve->f= 1+2+4; if(a < tot -1) addedgelist(em, eve->prev, eve, NULL); } /* extrude and translate */ vec[0]= vec[2]= 0.0; vec[1]= phid; for(a=0;a<seg-1;a++) { extrudeflag_vert(obedit, em, 2, nor, 0); // nor unused translateflag(em, 2, vec); } /* and now do imat */ eve= em->verts.first; while(eve) { if(eve->f & SELECT) { mul_m4_v3(mat,eve->co); } eve= eve->next; } recalc_editnormals(em); break; case PRIM_UVSPHERE: /* UVsphere */ /* clear all flags */ eve= em->verts.first; while(eve) { eve->f= 0; eve= eve->next; } /* one segment first */ phi= 0; phid/=2; for(a=0; a<=tot; a++) { vec[0]= dia*sinf(phi); vec[1]= 0.0; vec[2]= dia*cosf(phi); eve= addvertlist(em, vec, NULL); eve->f= 1+2+4; if(a==0) v1= eve; else addedgelist(em, eve, eve->prev, NULL); phi+= phid; } /* extrude and rotate */ phi= M_PI/seg; q[0]= cos(phi); q[3]= sin(phi); q[1]=q[2]= 0; quat_to_mat3( cmat,q); for(a=0; a<seg; a++) { extrudeflag_vert(obedit, em, 2, nor, 0); // nor unused rotateflag(em, 2, v1->co, cmat); } removedoublesflag(em, 4, 0, 0.0001); /* and now do imat */ eve= em->verts.first; while(eve) { if(eve->f & SELECT) { mul_m4_v3(mat,eve->co); } eve= eve->next; } recalc_editnormals(em); break; case PRIM_ICOSPHERE: /* Icosphere */ { EditVert *eva[12]; EditEdge *eed; /* clear all flags */ eve= em->verts.first; while(eve) { eve->f= 0; eve= eve->next; } dia/=200; for(a=0;a<12;a++) { vec[0]= dia*icovert[a][0]; vec[1]= dia*icovert[a][1]; vec[2]= dia*icovert[a][2]; eva[a]= addvertlist(em, vec, NULL); eva[a]->f= 1+2; } for(a=0;a<20;a++) { EditFace *evtemp; v1= eva[ icoface[a][0] ]; v2= eva[ icoface[a][1] ]; v3= eva[ icoface[a][2] ]; evtemp = addfacelist(em, v1, v2, v3, 0, NULL, NULL); evtemp->e1->f = 1+2; evtemp->e2->f = 1+2; evtemp->e3->f = 1+2; } dia*=200; for(a=1; a<subdiv; a++) esubdivideflag(obedit, em, 2, dia, 0, B_SPHERE,1, SUBDIV_CORNER_PATH, 0); /* and now do imat */ eve= em->verts.first; while(eve) { if(eve->f & 2) { mul_m4_v3(mat,eve->co); } eve= eve->next; } // Clear the flag 2 from the edges for(eed=em->edges.first;eed;eed=eed->next){ if(eed->f & 2){ eed->f &= !2; } } } break; case PRIM_MONKEY: /* Monkey */ { //extern int monkeyo, monkeynv, monkeynf; //extern signed char monkeyf[][4]; //extern signed char monkeyv[][3]; EditVert **tv= MEM_mallocN(sizeof(*tv)*monkeynv*2, "tv"); int i; for (i=0; i<monkeynv; i++) { float v[3]; v[0]= (monkeyv[i][0]+127)/128.0, v[1]= monkeyv[i][1]/128.0, v[2]= monkeyv[i][2]/128.0; tv[i]= addvertlist(em, v, NULL); tv[i]->f |= SELECT; tv[monkeynv+i]= (fabs(v[0]= -v[0])<0.001)?tv[i]:addvertlist(em, v, NULL); tv[monkeynv+i]->f |= SELECT; } for (i=0; i<monkeynf; i++) { addfacelist(em, tv[monkeyf[i][0]+i-monkeyo], tv[monkeyf[i][1]+i-monkeyo], tv[monkeyf[i][2]+i-monkeyo], (monkeyf[i][3]!=monkeyf[i][2])?tv[monkeyf[i][3]+i-monkeyo]:NULL, NULL, NULL); addfacelist(em, tv[monkeynv+monkeyf[i][2]+i-monkeyo], tv[monkeynv+monkeyf[i][1]+i-monkeyo], tv[monkeynv+monkeyf[i][0]+i-monkeyo], (monkeyf[i][3]!=monkeyf[i][2])?tv[monkeynv+monkeyf[i][3]+i-monkeyo]:NULL, NULL, NULL); } MEM_freeN(tv); /* and now do imat */ for(eve= em->verts.first; eve; eve= eve->next) { if(eve->f & SELECT) { mul_m4_v3(mat,eve->co); } } recalc_editnormals(em); } break; default: /* all types except grid, sphere... */ if(type==PRIM_CONE); else if(ext==0) depth= 0.0f; /* first vertex at 0° for circular objects */ if( ELEM3(type, PRIM_CIRCLE,PRIM_CYLINDER,PRIM_CONE) ) phi = 0.0f; vtop= vdown= v1= v2= 0; for(b=0; b<=ext; b++) { for(a=0; a<tot; a++) { vec[0]= dia*sinf(phi); vec[1]= dia*cosf(phi); vec[2]= b?depth:-depth; mul_m4_v3(mat, vec); eve= addvertlist(em, vec, NULL); eve->f= SELECT; if(a==0) { if(b==0) v1= eve; else v2= eve; } phi+=phid; } } /* center vertices */ /* type PRIM_CONE can only have 1 one side filled * if the cone has no capping, dont add vtop */ if(type == PRIM_CONE || (fill && !ELEM(type, PRIM_PLANE, PRIM_CUBE))) { vec[0]= vec[1]= 0.0f; vec[2]= type==PRIM_CONE ? depth : -depth; mul_m4_v3(mat, vec); vdown= addvertlist(em, vec, NULL); if((ext || type==PRIM_CONE) && fill) { vec[0]= vec[1]= 0.0f; vec[2]= type==PRIM_CONE ? -depth : depth; mul_m4_v3(mat,vec); vtop= addvertlist(em, vec, NULL); } } else { vdown= v1; vtop= v2; } if(vtop) vtop->f= SELECT; if(vdown) vdown->f= SELECT; /* top and bottom face */ if(fill || type==PRIM_CONE) { if(tot==4 && ELEM(type, PRIM_PLANE, PRIM_CUBE)) { v3= v1->next->next; if(ext) v4= v2->next->next; addfacelist(em, v3, v1->next, v1, v3->next, NULL, NULL); if(ext) addfacelist(em, v2, v2->next, v4, v4->next, NULL, NULL); } else { v3= v1; v4= v2; for(a=1; a<tot; a++) { addfacelist(em, vdown, v3, v3->next, 0, NULL, NULL); v3= v3->next; if(ext && fill) { addfacelist(em, vtop, v4, v4->next, 0, NULL, NULL); v4= v4->next; } } if(!ELEM(type, PRIM_PLANE, PRIM_CUBE)) { addfacelist(em, vdown, v3, v1, 0, NULL, NULL); if(ext) addfacelist(em, vtop, v4, v2, 0, NULL, NULL); } } } else if(type==PRIM_CIRCLE) { /* we need edges for a circle */ v3= v1; for(a=1;a<tot;a++) { addedgelist(em, v3, v3->next, NULL); v3= v3->next; } addedgelist(em, v3, v1, NULL); } /* side faces */ if(ext) { v3= v1; v4= v2; for(a=1; a<tot; a++) { addfacelist(em, v3, v3->next, v4->next, v4, NULL, NULL); v3= v3->next; v4= v4->next; } addfacelist(em, v3, v1, v2, v4, NULL, NULL); } else if(fill && type==PRIM_CONE) { /* add the bottom flat area of the cone * if capping is disabled dont bother */ v3= v1; for(a=1; a<tot; a++) { addfacelist(em, vtop, v3->next, v3, 0, NULL, NULL); v3= v3->next; } addfacelist(em, vtop, v1, v3, 0, NULL, NULL); } } EM_stats_update(em); /* simple selection flush OK, based on fact it's a single model */ EM_select_flush(em); /* flushes vertex -> edge -> face selection */ if(!ELEM5(type, PRIM_GRID, PRIM_PLANE, PRIM_ICOSPHERE, PRIM_UVSPHERE, PRIM_MONKEY)) EM_recalc_normal_direction(em, FALSE, TRUE); /* otherwise monkey has eyes in wrong direction */ BKE_mesh_end_editmesh(obedit->data, em); }