示例#1
0
VECTOR3D vector3d_rotation(VECTOR3D v, const QUATERNION *q)
{
  QUATERNION qv, qr;
  VECTOR3D vr;

  qv.w = 0.0;
  qv.x = v.x;
  qv.y = v.y;
  qv.z = v.z;
  qr = quaternion_mult(quaternion_mult(*q, qv), quaternion_conjugate(*q));
  vr.x = qr.x;
  vr.y = qr.y;
  vr.z = qr.z;
  return (vr);
}
示例#2
0
static int turtle_bank(TURTLE_STATE *ts, double angle)
{
  VECTOR3D axis = { 1.0, 0.0, 0.0 };

  if (ts == NULL)
    return (-1);
  ts->orientation = quaternion_normalized(quaternion_mult(rotation_quaternion(-angle * M_PI / 180.0, &axis), ts->orientation));
  return (0);
}
示例#3
0
static void ltgl_motion(int x, int y)
{
  int dx, dy;
  VECTOR3D axis = { 0.0, 0.0, 0.0 };

  if (mouse_block.state == GLUT_DOWN)
  {
    dx = x - mouse_block.x;
    dy = y - mouse_block.y;
    mouse_block.x = x;
    mouse_block.y = y;
    if (mouse_block.button == GLUT_LEFT_BUTTON)
    {
      if ((mouse_block.modifiers & GLUT_ACTIVE_CTRL))
	render_parameters.view_position.z -= dy * 0.1;
      else if ((mouse_block.modifiers & GLUT_ACTIVE_SHIFT))
	render_parameters.view_position.y += dy * 0.1;
      else
	render_parameters.view_position.x -= dx * 0.1;
    }
    if (mouse_block.button == GLUT_RIGHT_BUTTON)
    {
      if ((mouse_block.modifiers & GLUT_ACTIVE_CTRL))
      {
	axis.z = 1.0;
	render_parameters.model_orientation = quaternion_normalized(quaternion_mult(rotation_quaternion(-dx / 180.0 * M_PI, &axis), render_parameters.model_orientation));
      }
      else if ((mouse_block.modifiers & GLUT_ACTIVE_SHIFT))
      {
	axis.y = 1.0;
	render_parameters.model_orientation = quaternion_normalized(quaternion_mult(rotation_quaternion(dx / 180.0 * M_PI, &axis), render_parameters.model_orientation));
      }
      else
      {
	axis.x = 1.0;
	render_parameters.model_orientation = quaternion_normalized(quaternion_mult(rotation_quaternion(-dy / 180.0 * M_PI, &axis), render_parameters.model_orientation));
      }
    }
    glutPostRedisplay();
  }
  /* fprintf(stderr, "motion: %d %d\n", x, y); */
}
示例#4
0
static int rotate_model(RENDER_PARAMETERS *rp, int axis_no, double angle)
{
  VECTOR3D axis = { 0.0, 0.0, 0.0 };

  switch(axis_no)
  {
  case 1:
    axis.x = 1.0;
    break;
  case 2:
    axis.y = 1.0;
    break;
  case 3:
    axis.z = 1.0;
    break;
  }
  rp->model_orientation = quaternion_normalized(quaternion_mult(rotation_quaternion(angle / 180.0 * M_PI, &axis), render_parameters.model_orientation));
  return (0);
}
示例#5
0
void test_bingham_mixture_sample(int argc, char *argv[])
{
  if (argc < 3) {
    printf("usage: %s <bmx_file> <n> <outfile>\n", argv[0]);
    return;
  }

  int i, j, k, d = 5;//4th column for component
  bingham_mix_t *bmx = load_bmx(argv[1], &k);
  int n = atoi(argv[2]);

  double **X = new_matrix2(n, d);
  bingham_mixture_sample(X, &bmx[0], n);

  // Fit a BMM to sampled points from a BMM => BinghamCeption!?
  // This is just printed in terminal. Doesn't affect anything
  bingham_mix_t BM;
  bingham_cluster(&BM, X, n, d);

  for (i = 0; i < BM.n; i++) {
    print_bingham(&BM.B[i]);
    printf("---------------------------\n");
  }

  for (i = 0; i < n; i++) {
    for (j = 0; j < d; j++)
      printf("%.4f, ", X[i][j]);
    printf("\n");
  

  FILE *fp = fopen(argv[3], "w");
  for (i = 0; i < n; i++) {
    for (j = 0; j < d; j++)//d+1 is for the component index
      fprintf(fp, "%.4f, ", X[i][j]);
    fprintf(fp, "\n");
  }
}


void test_bingham_sample(int argc, char *argv[])
{
  if (argc < 5) {
    printf("usage: %s <z1> <z2> <z3> <num_samples>\n", argv[0]);
    exit(1);
  }

  double z1 = atof(argv[1]);
  double z2 = atof(argv[2]);
  double z3 = atof(argv[3]);
  int nsamples = atoi(argv[4]);

  double Z[3] = {z1, z2, z3};
  double V[3][4] = {{1,0,0,0}, {0,1,0,0}, {0,0,1,0}};
  double *Vp[3] = {&V[0][0], &V[1][0], &V[2][0]};

  bingham_t B;
  bingham_new(&B, 4, Vp, Z);
  print_bingham(&B);

  printf("---------------------------\n");

  bingham_stats(&B);

  printf("Original scatter matrix:\n");
  int i, j, d=4;
  for (i = 0; i < d; i++) {
    for (j = 0; j < d; j++)
      printf("%.4f, ", B.stats->scatter[i][j]);
    printf("\n");
  }

  double t0 = get_time_ms();
  double **X = new_matrix2(nsamples, 4);
  bingham_sample(X, &B, nsamples);
  printf("Sampled %d points in %.0f ms\n", nsamples, get_time_ms() - t0);

  bingham_fit(&B, X, nsamples, 4);

  print_bingham(&B);

  int n = nsamples;
  double **Xt = new_matrix2(d, n);
  transpose(Xt, X, n, d);
  double **S = new_matrix2(d, d);
  matrix_mult(S, Xt, X, d, n, d);
  mult(S[0], S[0], 1/(double)n, d*d);

  printf("Sample scatter matrix:\n");
  for (i = 0; i < d; i++) {
    for (j = 0; j < d; j++)
      printf("%.4f, ", S[i][j]);
    printf("\n");
  }

}


void test_bingham_sample_pmf(int argc, char *argv[])
{
  if (argc < 6) {
    printf("usage: %s <z1> <z2> <z3> <num_cells> <num_samples>\n", argv[0]);
    exit(1);
  }

  double z1 = atof(argv[1]);
  double z2 = atof(argv[2]);
  double z3 = atof(argv[3]);
  int ncells = atoi(argv[4]);
  int nsamples = atoi(argv[5]);

  double Z[3] = {z1, z2, z3};
  double V[3][4] = {{1,0,0,0}, {0,1,0,0}, {0,0,1,0}};
  double *Vp[3] = {&V[0][0], &V[1][0], &V[2][0]};

  bingham_t B;
  bingham_new(&B, 4, Vp, Z);

  bingham_pmf_t pmf;
  double t0 = get_time_ms();
  bingham_discretize(&pmf, &B, ncells);
  printf("Created PMF with %d cells in %.0f ms\n", pmf.n, get_time_ms() - t0);

  t0 = get_time_ms();
  double **X = new_matrix2(nsamples, 4);
  bingham_sample_pmf(X, &pmf, nsamples);
  printf("Sampled %d points in %.0f ms\n", nsamples, get_time_ms() - t0);

  bingham_fit(&B, X, nsamples, 4);

  print_bingham(&B);
}


void test_bingham_compose(int argc, char *argv[])
{
  int i, j, d = 4;

  if (argc < 8) {
    printf("usage: %s <z11> <z12> <z13> <z21> <z22> <z23> <num_samples>\n", argv[0]);
    exit(1);
  }

  double z11 = atof(argv[1]);
  double z12 = atof(argv[2]);
  double z13 = atof(argv[3]);
  double z21 = atof(argv[4]);
  double z22 = atof(argv[5]);
  double z23 = atof(argv[6]);
  int nsamples = atoi(argv[7]);

  bingham_t B1;
  double Z1[3] = {z11, z12, z13};
  double V1[3][4] = {{0,1,0,0}, {0,0,1,0}, {0,0,0,1}};
  double *Vp1[3] = {&V1[0][0], &V1[1][0], &V1[2][0]};
  bingham_new(&B1, 4, Vp1, Z1);
  bingham_stats(&B1);
  print_bingham(&B1);

  printf("S1:\n");
  for (i = 0; i < d; i++) {
    for (j = 0; j < d; j++)
      printf("%.4f, ", B1.stats->scatter[i][j]);
    printf("\n");
  }

  printf("---------------------------\n");

  bingham_t B2;
  double Z2[3] = {z21, z22, z23};
  double V2[3][4] = {{0,1,0,0}, {0,0,1,0}, {0,0,0,1}};  //{{1,0,0,0}, {0,1,0,0}, {0,0,1,0}};
  double *Vp2[3] = {&V2[0][0], &V2[1][0], &V2[2][0]};
  bingham_new(&B2, 4, Vp2, Z2);
  bingham_stats(&B2);
  print_bingham(&B2);

  printf("S2:\n");
  for (i = 0; i < d; i++) {
    for (j = 0; j < d; j++)
      printf("%.4f, ", B2.stats->scatter[i][j]);
    printf("\n");
  }

  printf("---------------------------\n");

  // compose with method of moments
  //double **S_mom = new_matrix2(4,4);
  bingham_t B_mom;
  double t0 = get_time_ms();
  for (i = 0; i < nsamples; i++)
    bingham_compose(&B_mom, &B1, &B2);
  printf("Composed %d Bingham pairs with Method-of-Moments in %.0f ms\n", nsamples, get_time_ms() - t0);

  // compose with sampling
  t0 = get_time_ms();
  double **X1 = new_matrix2(nsamples, 4);
  bingham_sample(X1, &B1, nsamples);
  double **X2 = new_matrix2(nsamples, 4);
  bingham_sample(X2, &B2, nsamples);

  double **Y = new_matrix2(nsamples, 4);
  for (i = 0; i < nsamples; i++)
    quaternion_mult(Y[i], X1[i], X2[i]);

  int n = nsamples;
  double **Yt = new_matrix2(d, n);
  transpose(Yt, Y, n, d);
  double **S_sam = new_matrix2(d, d);
  matrix_mult(S_sam, Yt, Y, d, n, d);
  mult(S_sam[0], S_sam[0], 1/(double)n, d*d);
  printf("Composed 1 Bingham pair with %d samples in %.0f ms\n", nsamples, get_time_ms() - t0);

  printf("---------------------------\n");


  printf("Method-of-Moments scatter matrix:\n");
  bingham_stats(&B_mom);
  for (i = 0; i < d; i++) {
    for (j = 0; j < d; j++)
      printf("%.4f, ", B_mom.stats->scatter[i][j]);
    printf("\n");
  }
  printf("---------------------------\n");
  printf("Sample scatter matrix:\n");
  for (i = 0; i < d; i++) {
    for (j = 0; j < d; j++)
      printf("%.4f, ", S_sam[i][j]);
    printf("\n");
  }

  printf("\n---------------------------\n\n");

  t0 = get_time_ms();
  for (i = 0; i < nsamples; i++)
    bingham_compose_true_pdf(X1[i], &B1, &B2);
  printf("Computed %d true composition pdf's in %.0f ms\n", nsamples, get_time_ms() - t0);

  // compute sample mean error
  double tot_err = 0;
  for (i = 0; i < nsamples; i++) {
    double f_true = bingham_compose_true_pdf(X1[i], &B1, &B2);
    double f_approx = bingham_pdf(X1[i], &B_mom);
    //printf("f_true = %f, f_approx = %f\n", f_true, f_approx);
    tot_err += 2*fabs((f_true - f_approx) / (f_true + f_approx));
  }
  printf("mean sample err = %.2f%%\n", 100*tot_err/nsamples);

  // compute KL divergence
  printf("KL divergence = %f\n", bingham_compose_error(&B1, &B2));
}
示例#6
0
void test_bingham_KL_divergence(int argc, char *argv[])
{
  if (argc < 8) {
    printf("usage: %s <z11> <z12> <z13> <z21> <z22> <z23> <theta>\n", argv[0]);
    exit(1);
  }

  double z11 = atof(argv[1]);
  double z12 = atof(argv[2]);
  double z13 = atof(argv[3]);
  double z21 = atof(argv[4]);
  double z22 = atof(argv[5]);
  double z23 = atof(argv[6]);
  double theta = atof(argv[7]);
 
  double Z1[3] = {z11, z12, z13};
  double V1[3][4] = {{1,0,0,0}, {0,1,0,0}, {0,0,1,0}};
  double *Vp1[3] = {&V1[0][0], &V1[1][0], &V1[2][0]};
  bingham_t B1;
  B1.d = 4;
  B1.Z = Z1;
  B1.V = Vp1;
  B1.F = bingham_F_lookup_3d(Z1);
  //bingham_new(&B1, 4, Vp1, Z1);

  double Z2[3] = {z21, z22, z23};
  //double V2[3][4] = {{0,1,0,0}, {0,0,1,0}, {0,0,0,1}};
  double V2[3][4] = {{1,0,0,0}, {0,1,0,0}, {0,0,1,0}};
  double *Vp2[3] = {&V2[0][0], &V2[1][0], &V2[2][0]};
  bingham_t B2;
  B2.d = 4;
  B2.Z = Z2;
  B2.V = Vp2;
  B2.F = bingham_F_lookup_3d(Z2);
  //bingham_new(&B2, 4, Vp2, Z2);

  // rotate B2 by theta about (1,0,0,0)
  double q[4] = {cos(theta/2.0), sin(theta/2.0), 0, 0};
  quaternion_mult(B2.V[0], q, B2.V[0]);
  quaternion_mult(B2.V[1], q, B2.V[1]);
  quaternion_mult(B2.V[2], q, B2.V[2]);

  printf("B2:\n");
  print_bingham(&B2);
  printf("\n");

  bingham_stats(&B1);
  bingham_stats(&B2);

  int i, j;
  printf("\n");
  printf("B1.stats->mode = [ %f %f %f %f ]\n", B1.stats->mode[0], B1.stats->mode[1], B1.stats->mode[2], B1.stats->mode[3]);
  printf("B1.stats->dF = [ %f %f %f ]\n", B1.stats->dF[0], B1.stats->dF[1], B1.stats->dF[2]);
  printf("B1.stats->entropy = %f\n", B1.stats->entropy);
  for (i = 0; i < B1.d; i++) {
    printf("B1.stats->scatter[%d] = [ ", i);
    for (j = 0; j < B1.d; j++)
      printf("%f ", B1.stats->scatter[i][j]);
    printf("]\n");
  }
  printf("\n");
  printf("B2.stats->mode = [ %f %f %f %f ]\n", B2.stats->mode[0], B2.stats->mode[1], B2.stats->mode[2], B2.stats->mode[3]);
  printf("B2.stats->dF = [ %f %f %f ]\n", B2.stats->dF[0], B2.stats->dF[1], B2.stats->dF[2]);
  printf("B2.stats->entropy = %f\n", B2.stats->entropy);
  for (i = 0; i < B2.d; i++) {
    printf("B2.stats->scatter[%d] = [ ", i);
    for (j = 0; j < B2.d; j++)
      printf("%f ", B2.stats->scatter[i][j]);
    printf("]\n");
  }


  int n = 1000;
  double t0 = get_time_ms();
  double d_KL;
  for (i = 0; i < n; i++)
    d_KL = bingham_KL_divergence(&B1, &B2);
  printf("Computed KL divergence %d times in %.0f ms\n", n, get_time_ms() - t0);
  printf("d_KL = %f\n", d_KL);

  bingham_t B;
  bingham_merge(&B, &B1, &B2, .5);
  bingham_stats(&B);

  printf("\nMerged binghams:\n");
  print_bingham(&B);

  printf("\n");
  printf("B.stats->mode = [ %f %f %f %f ]\n", B.stats->mode[0], B.stats->mode[1], B.stats->mode[2], B.stats->mode[3]);
  printf("B.stats->dF = [ %f %f %f ]\n", B.stats->dF[0], B.stats->dF[1], B.stats->dF[2]);
  printf("B.stats->entropy = %f\n", B.stats->entropy);
  for (i = 0; i < B.d; i++) {
    printf("B.stats->scatter[%d] = [ ", i);
    for (j = 0; j < B.d; j++)
      printf("%f ", B.stats->scatter[i][j]);
    printf("]\n");
  }
}
示例#7
0
void test_bingham_compose(int argc, char *argv[])
{
  int i, j, d = 4;

  if (argc < 8) {
    printf("usage: %s <z11> <z12> <z13> <z21> <z22> <z23> <num_samples>\n", argv[0]);
    exit(1);
  }

  double z11 = atof(argv[1]);
  double z12 = atof(argv[2]);
  double z13 = atof(argv[3]);
  double z21 = atof(argv[4]);
  double z22 = atof(argv[5]);
  double z23 = atof(argv[6]);
  int nsamples = atoi(argv[7]);

  bingham_t B1;
  double Z1[3] = {z11, z12, z13};
  double V1[3][4] = {{0,1,0,0}, {0,0,1,0}, {0,0,0,1}};
  double *Vp1[3] = {&V1[0][0], &V1[1][0], &V1[2][0]};
  bingham_new(&B1, 4, Vp1, Z1);
  bingham_stats(&B1);
  print_bingham(&B1);

  printf("S1:\n");
  for (i = 0; i < d; i++) {
    for (j = 0; j < d; j++)
      printf("%.4f, ", B1.stats->scatter[i][j]);
    printf("\n");
  }

  printf("---------------------------\n");

  bingham_t B2;
  double Z2[3] = {z21, z22, z23};
  double V2[3][4] = {{0,1,0,0}, {0,0,1,0}, {0,0,0,1}};  //{{1,0,0,0}, {0,1,0,0}, {0,0,1,0}};
  double *Vp2[3] = {&V2[0][0], &V2[1][0], &V2[2][0]};
  bingham_new(&B2, 4, Vp2, Z2);
  bingham_stats(&B2);
  print_bingham(&B2);

  printf("S2:\n");
  for (i = 0; i < d; i++) {
    for (j = 0; j < d; j++)
      printf("%.4f, ", B2.stats->scatter[i][j]);
    printf("\n");
  }

  printf("---------------------------\n");

  // compose with method of moments
  //double **S_mom = new_matrix2(4,4);
  bingham_t B_mom;
  double t0 = get_time_ms();
  for (i = 0; i < nsamples; i++)
    bingham_compose(&B_mom, &B1, &B2);
  printf("Composed %d Bingham pairs with Method-of-Moments in %.0f ms\n", nsamples, get_time_ms() - t0);

  // compose with sampling
  t0 = get_time_ms();
  double **X1 = new_matrix2(nsamples, 4);
  bingham_sample(X1, &B1, nsamples);
  double **X2 = new_matrix2(nsamples, 4);
  bingham_sample(X2, &B2, nsamples);

  double **Y = new_matrix2(nsamples, 4);
  for (i = 0; i < nsamples; i++)
    quaternion_mult(Y[i], X1[i], X2[i]);

  int n = nsamples;
  double **Yt = new_matrix2(d, n);
  transpose(Yt, Y, n, d);
  double **S_sam = new_matrix2(d, d);
  matrix_mult(S_sam, Yt, Y, d, n, d);
  mult(S_sam[0], S_sam[0], 1/(double)n, d*d);
  printf("Composed 1 Bingham pair with %d samples in %.0f ms\n", nsamples, get_time_ms() - t0);

  printf("---------------------------\n");


  printf("Method-of-Moments scatter matrix:\n");
  bingham_stats(&B_mom);
  for (i = 0; i < d; i++) {
    for (j = 0; j < d; j++)
      printf("%.4f, ", B_mom.stats->scatter[i][j]);
    printf("\n");
  }
  printf("---------------------------\n");
  printf("Sample scatter matrix:\n");
  for (i = 0; i < d; i++) {
    for (j = 0; j < d; j++)
      printf("%.4f, ", S_sam[i][j]);
    printf("\n");
  }

  printf("\n---------------------------\n\n");

  t0 = get_time_ms();
  for (i = 0; i < nsamples; i++)
    bingham_compose_true_pdf(X1[i], &B1, &B2);
  printf("Computed %d true composition pdf's in %.0f ms\n", nsamples, get_time_ms() - t0);

  // compute sample mean error
  double tot_err = 0;
  for (i = 0; i < nsamples; i++) {
    double f_true = bingham_compose_true_pdf(X1[i], &B1, &B2);
    double f_approx = bingham_pdf(X1[i], &B_mom);
    //printf("f_true = %f, f_approx = %f\n", f_true, f_approx);
    tot_err += 2*fabs((f_true - f_approx) / (f_true + f_approx));
  }
  printf("mean sample err = %.2f%%\n", 100*tot_err/nsamples);

  // compute KL divergence
  printf("KL divergence = %f\n", bingham_compose_error(&B1, &B2));
}