示例#1
0
文件: mtspace.c 项目: bert/pcb-rnd
/* destroy an "empty space" representation. */
void
mtspace_destroy (mtspace_t ** mtspacep)
{
  assert (mtspacep);
  r_destroy_tree (&(*mtspacep)->ftree);
  r_destroy_tree (&(*mtspacep)->etree);
  r_destroy_tree (&(*mtspacep)->otree);
  free (*mtspacep);
  *mtspacep = NULL;
}
示例#2
0
文件: mymem.c 项目: bert/pcb-update
/* ---------------------------------------------------------------------------
 * get next slot for an element, allocates memory if necessary
 */
ElementTypePtr
GetElementMemory (DataTypePtr Data)
{
  ElementTypePtr element = Data->Element;
  int i;

  /* realloc new memory if necessary and clear it */
  if (Data->ElementN >= Data->ElementMax)
    {
      Data->ElementMax += STEP_ELEMENT;
      if (Data->element_tree)
	r_destroy_tree (&Data->element_tree);
      element = MyRealloc (element, Data->ElementMax * sizeof (ElementType),
			   "GetElementMemory()");
      Data->Element = element;
      memset (element + Data->ElementN, 0,
	      STEP_ELEMENT * sizeof (ElementType));
      Data->element_tree = r_create_tree (NULL, 0, 0);
      for (i = 0; i < MAX_ELEMENTNAMES; i++)
	{
	  if (Data->name_tree[i])
	    r_destroy_tree (&Data->name_tree[i]);
	  Data->name_tree[i] = r_create_tree (NULL, 0, 0);
	}

      ELEMENT_LOOP (Data);
      {
	r_insert_entry (Data->element_tree, (BoxType *) element, 0);
	PIN_LOOP (element);
	{
	  pin->Element = element;
	}
	END_LOOP;
	PAD_LOOP (element);
	{
	  pad->Element = element;
	}
	END_LOOP;
	ELEMENTTEXT_LOOP (element);
	{
	  text->Element = element;
	  r_insert_entry (Data->name_tree[n], (BoxType *) text, 0);
	}
	END_LOOP;
      }
      END_LOOP;
    }
  return (element + Data->ElementN++);
}
示例#3
0
文件: mymem.c 项目: bert/pcb-update
/* ---------------------------------------------------------------------------
 * get next slot for a polygon object, allocates memory if necessary
 */
PolygonTypePtr
GetPolygonMemory (LayerTypePtr Layer)
{
  PolygonTypePtr polygon = Layer->Polygon;

  /* realloc new memory if necessary and clear it */
  if (Layer->PolygonN >= Layer->PolygonMax)
    {
      Layer->PolygonMax += STEP_POLYGON;
      if (Layer->polygon_tree)
	r_destroy_tree (&Layer->polygon_tree);
      polygon = MyRealloc (polygon, Layer->PolygonMax * sizeof (PolygonType),
			   "GetPolygonMemory()");
      Layer->Polygon = polygon;
      memset (polygon + Layer->PolygonN, 0,
	      STEP_POLYGON * sizeof (PolygonType));
      Layer->polygon_tree = r_create_tree (NULL, 0, 0);
      POLYGON_LOOP (Layer);
      {
	r_insert_entry (Layer->polygon_tree, (BoxType *) polygon, 0);
      }
      END_LOOP;
    }
  return (polygon + Layer->PolygonN++);
}
示例#4
0
文件: mymem.c 项目: bert/pcb-update
/* ---------------------------------------------------------------------------
 * get next slot for a line, allocates memory if necessary
 */
LineTypePtr
GetLineMemory (LayerTypePtr Layer)
{
  LineTypePtr line = Layer->Line;

  /* realloc new memory if necessary and clear it */
  if (Layer->LineN >= Layer->LineMax)
    {
      Layer->LineMax += STEP_LINE;
      /* all of the pointers move, so rebuild the whole tree */
      if (Layer->line_tree)
	r_destroy_tree (&Layer->line_tree);
      line = MyRealloc (line, Layer->LineMax * sizeof (LineType),
			"GetLineMemory()");
      Layer->Line = line;
      memset (line + Layer->LineN, 0, STEP_LINE * sizeof (LineType));
      Layer->line_tree = r_create_tree (NULL, 0, 0);
      LINE_LOOP (Layer);
      {
	r_insert_entry (Layer->line_tree, (BoxTypePtr) line, 0);
      }
      END_LOOP;
    }
  return (line + Layer->LineN++);
}
示例#5
0
文件: mymem.c 项目: bert/pcb-update
/* ---------------------------------------------------------------------------
 * get next slot for a Rat, allocates memory if necessary
 */
RatTypePtr
GetRatMemory (DataTypePtr Data)
{
  RatTypePtr rat = Data->Rat;

  /* realloc new memory if necessary and clear it */
  if (Data->RatN >= Data->RatMax)
    {
      Data->RatMax += STEP_RAT;
      /* all of the pointers move, so rebuild the whole tree */
      if (Data->rat_tree)
        r_destroy_tree (&Data->rat_tree);
      rat = MyRealloc (rat, Data->RatMax * sizeof (RatType),
		       "GetRatMemory()");
      Data->Rat = rat;
      memset (rat + Data->RatN, 0, STEP_RAT * sizeof (RatType));
      Data->rat_tree = r_create_tree (NULL, 0, 0);
      RAT_LOOP (Data);
      {
        r_insert_entry (Data->rat_tree, (BoxTypePtr) line, 0);
      }
      END_LOOP;
    }
  return (rat + Data->RatN++);
}
示例#6
0
文件: mymem.c 项目: thequux/pcb
/* ---------------------------------------------------------------------------
 * get next slot for a text object, allocates memory if necessary
 */
TextTypePtr
GetTextMemory (LayerTypePtr Layer)
{
  TextTypePtr text = Layer->Text;

  /* realloc new memory if necessary and clear it */
  if (Layer->TextN >= Layer->TextMax)
    {
      Layer->TextMax += STEP_TEXT;
      if (Layer->text_tree)
	r_destroy_tree (&Layer->text_tree);
      text = (TextTypePtr)realloc (text, Layer->TextMax * sizeof (TextType));
      Layer->Text = text;
      memset (text + Layer->TextN, 0, STEP_TEXT * sizeof (TextType));
      Layer->text_tree = r_create_tree (NULL, 0, 0);
      TEXT_LOOP (Layer);
      {
	r_insert_entry (Layer->text_tree, (BoxTypePtr) text, 0);
      }
      END_LOOP;
    }
  return (text + Layer->TextN++);
}
示例#7
0
文件: mymem.c 项目: thequux/pcb
/* ---------------------------------------------------------------------------
 * get next slot for an arc, allocates memory if necessary
 */
ArcTypePtr
GetArcMemory (LayerTypePtr Layer)
{
  ArcTypePtr arc = Layer->Arc;

  /* realloc new memory if necessary and clear it */
  if (Layer->ArcN >= Layer->ArcMax)
    {
      Layer->ArcMax += STEP_ARC;
      if (Layer->arc_tree)
	r_destroy_tree (&Layer->arc_tree);
      arc = (ArcTypePtr)realloc (arc, Layer->ArcMax * sizeof (ArcType));
      Layer->Arc = arc;
      memset (arc + Layer->ArcN, 0, STEP_ARC * sizeof (ArcType));
      Layer->arc_tree = r_create_tree (NULL, 0, 0);
      ARC_LOOP (Layer);
      {
	r_insert_entry (Layer->arc_tree, (BoxTypePtr) arc, 0);
      }
      END_LOOP;
    }
  return (arc + Layer->ArcN++);
}
示例#8
0
文件: mymem.c 项目: thequux/pcb
/* ---------------------------------------------------------------------------
 * get next slot for a via, allocates memory if necessary
 */
PinTypePtr
GetViaMemory (DataTypePtr Data)
{
  PinTypePtr via = Data->Via;

  /* realloc new memory if necessary and clear it */
  if (Data->ViaN >= Data->ViaMax)
    {
      Data->ViaMax += STEP_VIA;
      if (Data->via_tree)
	r_destroy_tree (&Data->via_tree);
      via = (PinTypePtr)realloc (via, Data->ViaMax * sizeof (PinType));
      Data->Via = via;
      memset (via + Data->ViaN, 0, STEP_VIA * sizeof (PinType));
      Data->via_tree = r_create_tree (NULL, 0, 0);
      VIA_LOOP (Data);
      {
	r_insert_entry (Data->via_tree, (BoxType *) via, 0);
      }
      END_LOOP;
    }
  return (via + Data->ViaN++);
}
示例#9
0
/* ---------------------------------------------------------------------------
 * Compute cost function.
 *  note that area overlap cost is correct for SMD devices: SMD devices on
 *  opposite sides of the board don't overlap.
 *
 * Algorithms follow those described in sections 4.1 of
 *  "Placement and Routing of Electronic Modules" edited by Michael Pecht
 *  Marcel Dekker, Inc. 1993.  ISBN: 0-8247-8916-4 TK7868.P7.P57 1993
 */
static double
ComputeCost (NetListTypePtr Nets, double T0, double T)
{
  double W = 0;			/* wire cost */
  double delta1 = 0;		/* wire congestion penalty function */
  double delta2 = 0;		/* module overlap penalty function */
  double delta3 = 0;		/* out of bounds penalty */
  double delta4 = 0;		/* alignment bonus */
  double delta5 = 0;		/* total area penalty */
  Cardinal i, j;
  LocationType minx, maxx, miny, maxy;
  bool allpads, allsameside;
  Cardinal thegroup;
  BoxListType bounds = { 0, 0, NULL };	/* save bounding rectangles here */
  BoxListType solderside = { 0, 0, NULL };	/* solder side component bounds */
  BoxListType componentside = { 0, 0, NULL };	/* component side bounds */
  /* make sure the NetList have the proper updated X and Y coords */
  UpdateXY (Nets);
  /* wire length term.  approximated by half-perimeter of minimum
   * rectangle enclosing the net.  Note that we penalize vias in
   * all-SMD nets by making the rectangle a cube and weighting
   * the "layer height" of the net. */
  for (i = 0; i < Nets->NetN; i++)
    {
      NetTypePtr n = &Nets->Net[i];
      if (n->ConnectionN < 2)
	continue;		/* no cost to go nowhere */
      minx = maxx = n->Connection[0].X;
      miny = maxy = n->Connection[0].Y;
      thegroup = n->Connection[0].group;
      allpads = (n->Connection[0].type == PAD_TYPE);
      allsameside = true;
      for (j = 1; j < n->ConnectionN; j++)
	{
	  ConnectionTypePtr c = &(n->Connection[j]);
	  MAKEMIN (minx, c->X);
	  MAKEMAX (maxx, c->X);
	  MAKEMIN (miny, c->Y);
	  MAKEMAX (maxy, c->Y);
	  if (c->type != PAD_TYPE)
	    allpads = false;
	  if (c->group != thegroup)
	    allsameside = false;
	}
      /* save bounding rectangle */
      {
	BoxTypePtr box = GetBoxMemory (&bounds);
	box->X1 = minx;
	box->Y1 = miny;
	box->X2 = maxx;
	box->Y2 = maxy;
      }
      /* okay, add half-perimeter to cost! */
      W += (maxx - minx) / 100 + (maxy - miny) / 100 +
	((allpads && !allsameside) ? CostParameter.via_cost : 0);
    }
  /* now compute penalty function Wc which is proportional to
   * amount of overlap and congestion. */
  /* delta1 is congestion penalty function */
  delta1 = CostParameter.congestion_penalty *
    sqrt (fabs (ComputeIntersectionArea (&bounds)));
#if 0
  printf ("Wire Congestion Area: %f\n", ComputeIntersectionArea (&bounds));
#endif
  /* free bounding rectangles */
  FreeBoxListMemory (&bounds);
  /* now collect module areas (bounding rect of pins/pads) */
  /* two lists for solder side / component side. */

  ELEMENT_LOOP (PCB->Data);
  {
    BoxListTypePtr thisside;
    BoxListTypePtr otherside;
    BoxTypePtr box;
    BoxTypePtr lastbox = NULL;
    BDimension thickness;
    BDimension clearance;
    if (TEST_FLAG (ONSOLDERFLAG, element))
      {
	thisside = &solderside;
	otherside = &componentside;
      }
    else
      {
	thisside = &componentside;
	otherside = &solderside;
      }
    box = GetBoxMemory (thisside);
    /* protect against elements with no pins/pads */
    if (element->PinN == 0 && element->PadN == 0)
      continue;
    /* initialize box so that it will take the dimensions of
     * the first pin/pad */
    box->X1 = MAX_COORD;
    box->Y1 = MAX_COORD;
    box->X2 = -MAX_COORD;
    box->Y2 = -MAX_COORD;
    PIN_LOOP (element);
    {
      thickness = pin->Thickness / 2;
      clearance = pin->Clearance * 2;
    EXPANDRECTXY (box,
		    pin->X - (thickness + clearance),
		    pin->Y - (thickness + clearance),
		    pin->X + (thickness + clearance),
		    pin->Y + (thickness + clearance))}
    END_LOOP;
    PAD_LOOP (element);
    {
      thickness = pad->Thickness / 2;
      clearance = pad->Clearance * 2;
    EXPANDRECTXY (box,
		    MIN (pad->Point1.X,
			   pad->Point2.X) - (thickness +
					       clearance),
		    MIN (pad->Point1.Y,
			   pad->Point2.Y) - (thickness +
					       clearance),
		    MAX (pad->Point1.X,
			   pad->Point2.X) + (thickness +
					       clearance),
		    MAX (pad->Point1.Y,
			   pad->Point2.Y) + (thickness + clearance))}
    END_LOOP;
    /* add a box for each pin to the "opposite side":
     * surface mount components can't sit on top of pins */
    if (!CostParameter.fast)
      PIN_LOOP (element);
    {
      box = GetBoxMemory (otherside);
      thickness = pin->Thickness / 2;
      clearance = pin->Clearance * 2;
      /* we ignore clearance here */
      /* (otherwise pins don't fit next to each other) */
      box->X1 = pin->X - thickness;
      box->Y1 = pin->Y - thickness;
      box->X2 = pin->X + thickness;
      box->Y2 = pin->Y + thickness;
      /* speed hack! coalesce with last box if we can */
      if (lastbox != NULL &&
	  ((lastbox->X1 == box->X1 &&
	    lastbox->X2 == box->X2 &&
	    MIN (abs (lastbox->Y1 - box->Y2),
		 abs (box->Y1 - lastbox->Y2)) <
	    clearance) || (lastbox->Y1 == box->Y1
			   && lastbox->Y2 == box->Y2
			   &&
			   MIN (abs
				(lastbox->X1 -
				 box->X2),
				abs (box->X1 - lastbox->X2)) < clearance)))
	{
	  EXPANDRECT (lastbox, box);
	  otherside->BoxN--;
	}
      else
	lastbox = box;
    }
    END_LOOP;
    /* assess out of bounds penalty */
    if (element->VBox.X1 < 0 ||
	element->VBox.Y1 < 0 ||
	element->VBox.X2 > PCB->MaxWidth || element->VBox.Y2 > PCB->MaxHeight)
      delta3 += CostParameter.out_of_bounds_penalty;
  }
  END_LOOP;
  /* compute intersection area of module areas box list */
  delta2 = sqrt (fabs (ComputeIntersectionArea (&solderside) +
		       ComputeIntersectionArea (&componentside))) *
    (CostParameter.overlap_penalty_min +
     (1 - (T / T0)) * CostParameter.overlap_penalty_max);
#if 0
  printf ("Module Overlap Area (solder): %f\n",
	  ComputeIntersectionArea (&solderside));
  printf ("Module Overlap Area (component): %f\n",
	  ComputeIntersectionArea (&componentside));
#endif
  FreeBoxListMemory (&solderside);
  FreeBoxListMemory (&componentside);
  /* reward pin/pad x/y alignment */
  /* score higher if pins/pads belong to same *type* of component */
  /* XXX: subkey should be *distance* from thing aligned with, so that
   * aligning to something far away isn't profitable */
  {
    /* create r tree */
    PointerListType seboxes = { 0, 0, NULL }
    , ceboxes =
    {
    0, 0, NULL};
    struct ebox
    {
      BoxType box;
      ElementTypePtr element;
    };
    direction_t dir[4] = { NORTH, EAST, SOUTH, WEST };
    struct ebox **boxpp, *boxp;
    rtree_t *rt_s, *rt_c;
    int factor;
    ELEMENT_LOOP (PCB->Data);
    {
      boxpp = (struct ebox **)
	GetPointerMemory (TEST_FLAG (ONSOLDERFLAG, element) ?
			  &seboxes : &ceboxes);
      *boxpp = malloc (sizeof (**boxpp));
      if (*boxpp == NULL ) 
	{
	  fprintf (stderr, "malloc() failed in %s\n", __FUNCTION__);
	  exit (1);
	}

      (*boxpp)->box = element->VBox;
      (*boxpp)->element = element;
    }
    END_LOOP;
    rt_s = r_create_tree ((const BoxType **) seboxes.Ptr, seboxes.PtrN, 1);
    rt_c = r_create_tree ((const BoxType **) ceboxes.Ptr, ceboxes.PtrN, 1);
    FreePointerListMemory (&seboxes);
    FreePointerListMemory (&ceboxes);
    /* now, for each element, find its neighbor on all four sides */
    delta4 = 0;
    for (i = 0; i < 4; i++)
      ELEMENT_LOOP (PCB->Data);
    {
      boxp = (struct ebox *)
	r_find_neighbor (TEST_FLAG (ONSOLDERFLAG, element) ?
			 rt_s : rt_c, &element->VBox, dir[i]);
      /* score bounding box alignments */
      if (!boxp)
	continue;
      factor = 1;
      if (element->Name[0].TextString &&
	  boxp->element->Name[0].TextString &&
	  0 == NSTRCMP (element->Name[0].TextString,
			boxp->element->Name[0].TextString))
	{
	  delta4 += CostParameter.matching_neighbor_bonus;
	  factor++;
	}
      if (element->Name[0].Direction == boxp->element->Name[0].Direction)
	delta4 += factor * CostParameter.oriented_neighbor_bonus;
      if (element->VBox.X1 ==
	  boxp->element->VBox.X1 ||
	  element->VBox.X1 ==
	  boxp->element->VBox.X2 ||
	  element->VBox.X2 ==
	  boxp->element->VBox.X1 ||
	  element->VBox.X2 ==
	  boxp->element->VBox.X2 ||
	  element->VBox.Y1 ==
	  boxp->element->VBox.Y1 ||
	  element->VBox.Y1 ==
	  boxp->element->VBox.Y2 ||
	  element->VBox.Y2 ==
	  boxp->element->VBox.Y1 ||
	  element->VBox.Y2 == boxp->element->VBox.Y2)
	delta4 += factor * CostParameter.aligned_neighbor_bonus;
    }
    END_LOOP;
    /* free k-d tree memory */
    r_destroy_tree (&rt_s);
    r_destroy_tree (&rt_c);
  }
  /* penalize total area used by this layout */
  {
    LocationType minX = MAX_COORD, minY = MAX_COORD;
    LocationType maxX = -MAX_COORD, maxY = -MAX_COORD;
    ELEMENT_LOOP (PCB->Data);
    {
      MAKEMIN (minX, element->VBox.X1);
      MAKEMIN (minY, element->VBox.Y1);
      MAKEMAX (maxX, element->VBox.X2);
      MAKEMAX (maxY, element->VBox.Y2);
    }
    END_LOOP;
    if (minX < maxX && minY < maxY)
      delta5 = CostParameter.overall_area_penalty *
	sqrt ((double) (maxX - minX) * (maxY - minY) * 0.0001);
  }
  if (T == 5)
    {
      T = W + delta1 + delta2 + delta3 - delta4 + delta5;
      printf ("cost components are %.3f %.3f %.3f %.3f %.3f %.3f\n",
	      W / T, delta1 / T, delta2 / T, delta3 / T, -delta4 / T,
	      delta5 / T);
    }
  /* done! */
  return W + (delta1 + delta2 + delta3 - delta4 + delta5);
}
示例#10
0
文件: mymem.c 项目: bgamari/geda-pcb
/* ---------------------------------------------------------------------------
 * free memory used by data struct
 */
void
FreeDataMemory (DataType *data)
{
  LayerType *layer;
  int i;

  if (data == NULL)
    return;

  VIA_LOOP (data);
  {
    free (via->Name);
  }
  END_LOOP;
  g_list_free_full (data->Via, (GDestroyNotify)FreeVia);
  ELEMENT_LOOP (data);
  {
    FreeElementMemory (element);
  }
  END_LOOP;
  g_list_free_full (data->Element, (GDestroyNotify)FreeElement);
  g_list_free_full (data->Rat, (GDestroyNotify)FreeRat);

  for (layer = data->Layer, i = 0; i < MAX_LAYER + 2; layer++, i++)
    {
      FreeAttributeListMemory (&layer->Attributes);
      TEXT_LOOP (layer);
      {
        free (text->TextString);
      }
      END_LOOP;
      if (layer->Name)
        free (layer->Name);
      LINE_LOOP (layer);
      {
        if (line->Number)
          free (line->Number);
      }
      END_LOOP;
      g_list_free_full (layer->Line, (GDestroyNotify)FreeLine);
      g_list_free_full (layer->Arc, (GDestroyNotify)FreeArc);
      g_list_free_full (layer->Text, (GDestroyNotify)FreeText);
      POLYGON_LOOP (layer);
      {
        FreePolygonMemory (polygon);
      }
      END_LOOP;
      g_list_free_full (layer->Polygon, (GDestroyNotify)FreePolygon);
      if (layer->line_tree)
        r_destroy_tree (&layer->line_tree);
      if (layer->arc_tree)
        r_destroy_tree (&layer->arc_tree);
      if (layer->text_tree)
        r_destroy_tree (&layer->text_tree);
      if (layer->polygon_tree)
        r_destroy_tree (&layer->polygon_tree);
    }

  if (data->element_tree)
    r_destroy_tree (&data->element_tree);
  for (i = 0; i < MAX_ELEMENTNAMES; i++)
    if (data->name_tree[i])
      r_destroy_tree (&data->name_tree[i]);
  if (data->via_tree)
    r_destroy_tree (&data->via_tree);
  if (data->pin_tree)
    r_destroy_tree (&data->pin_tree);
  if (data->pad_tree)
    r_destroy_tree (&data->pad_tree);
  if (data->rat_tree)
    r_destroy_tree (&data->rat_tree);
  /* clear struct */
  memset (data, 0, sizeof (DataType));
}
示例#11
0
文件: mymem.c 项目: bert/pcb-update
/* ---------------------------------------------------------------------------
 * free memory used by data struct
 */
void
FreeDataMemory (DataTypePtr Data)
{
  LayerTypePtr layer;
  int i;

  if (Data)
    {
      VIA_LOOP (Data);
      {
	MYFREE (via->Name);
      }
      END_LOOP;
      ELEMENT_LOOP (Data);
      {
	FreeElementMemory (element);
      }
      END_LOOP;

      for (layer = Data->Layer, i = 0; i < MAX_LAYER + 2; layer++, i++)
	{
	  FreeAttributeListMemory (&layer->Attributes);
	  TEXT_LOOP (layer);
	  {
	    MYFREE (text->TextString);
	  }
	  END_LOOP;
	  if (layer->Name)
	    MYFREE (layer->Name);
	  LINE_LOOP (layer);
	  {
	    if (line->Number)
	      MYFREE (line->Number);
	  }
	  END_LOOP;
	  MYFREE (layer->Line);
	  MYFREE (layer->Arc);
	  MYFREE (layer->Text);
	  POLYGON_LOOP (layer);
	  {
	    FreePolygonMemory (polygon);
	  }
	  END_LOOP;
	  MYFREE (layer->Polygon);
	  if (layer->line_tree)
	    r_destroy_tree (&layer->line_tree);
	  if (layer->arc_tree)
	    r_destroy_tree (&layer->arc_tree);
	  if (layer->text_tree)
	    r_destroy_tree (&layer->text_tree);
	  if (layer->polygon_tree)
	    r_destroy_tree (&layer->polygon_tree);
	}

      if (Data->element_tree)
	r_destroy_tree (&Data->element_tree);
      for (i = 0; i < MAX_ELEMENTNAMES; i++)
	if (Data->name_tree[i])
	  r_destroy_tree (&Data->name_tree[i]);
      if (Data->via_tree)
	r_destroy_tree (&Data->via_tree);
      if (Data->pin_tree)
	r_destroy_tree (&Data->pin_tree);
      if (Data->pad_tree)
	r_destroy_tree (&Data->pad_tree);
      if (Data->rat_tree)
	r_destroy_tree (&Data->rat_tree);
      /* clear struct */
      memset (Data, 0, sizeof (DataType));
    }
  else
    {
      fprintf (stderr, "Warning:  Tried to FreeDataMemory(null)\n");
    }
}