示例#1
0
static int rados_metatile_write(struct storage_backend * store, const char *xmlconfig, const char *options, int x, int y, int z, const char *buf, int sz) {
    char meta_path[PATH_MAX];
    char tmp[PATH_MAX];
    struct stat_info tile_stat;
    int sz2 = sz + sizeof(struct stat_info);
    char * buf2 = malloc(sz2);
    int err;

    tile_stat.expired = 0;
    tile_stat.size = sz;
    tile_stat.mtime = time(NULL);
    tile_stat.atime = tile_stat.mtime;
    tile_stat.ctime = tile_stat.mtime;

    memcpy(buf2, &tile_stat, sizeof(tile_stat));
    memcpy(buf2 + sizeof(tile_stat), buf, sz);

    rados_xyzo_to_storagekey(xmlconfig, options, x, y, z, meta_path);
    log_message(STORE_LOGLVL_DEBUG, "Trying to create and write a tile to %s\n", rados_tile_storage_id(store, xmlconfig, options, x, y, z, tmp));

    err = rados_write_full(((struct rados_ctx *)store->storage_ctx)->io, meta_path, buf2, sz2);
    if (err < 0) {
        log_message(STORE_LOGLVL_ERR, "cannot write %s: %s\n", rados_tile_storage_id(store, xmlconfig, options, x, y, z, tmp), strerror(-err));
        free(buf2);
        return -1;
    }
    free(buf2);

    return sz;
}
示例#2
0
文件: rados.c 项目: Nikolo/uwsgi
static int uwsgi_rados_put(struct wsgi_request *wsgi_req, rados_ioctx_t ctx, char *key, size_t buffer_size, int timeout) {
	struct uwsgi_rados_io *urio = &urados.urio[wsgi_req->async_id];
	size_t remains = wsgi_req->post_cl;
	uint64_t off = 0;
	int ret;
	const char* method;
	int truncate = remains == 0;
#ifdef HAS_RADOS_POOL_REQUIRES_ALIGNMENT2
	if (!truncate && !rados_ioctx_pool_requires_alignment2(ctx, &ret) && ret) {
		uint64_t alignment;
		if (rados_ioctx_pool_required_alignment2(ctx, &alignment)) {
			/* ignore error here */
		} else
#else
	if (!truncate && rados_ioctx_pool_requires_alignment(ctx)) {
		uint64_t alignment = rados_ioctx_pool_required_alignment(ctx);
#endif
		if (buffer_size <= alignment) {
			buffer_size = alignment;
		} else if (buffer_size <= alignment * 2) {
			buffer_size = alignment * 2;
		} else if (alignment) {
			buffer_size -= buffer_size % alignment;
		}
	}
        while(truncate || remains > 0) {
                ssize_t body_len = 0;
                char *body = "\x00";
		if (!truncate) {
			body = uwsgi_request_body_read(wsgi_req, UMIN(remains, buffer_size) , &body_len);
			if (!body || body == uwsgi.empty) goto error;
		} else {
			truncate = 0;
		}
		if (uwsgi.async < 1) {
			if (off == 0) {
				ret = rados_write_full(ctx, key, body, body_len);
				method = "rados_write_full()";
			} else {
				ret = rados_write(ctx, key, body, body_len, off);
				method = "rados_write()";
			}
			if (ret < 0) {
				uwsgi_log("uwsgi_rados_put():%s() %s\n", method, strerror(-ret));
				return -1;
			}
		}
		else {
			// increase request counter
        		pthread_mutex_lock(&urio->mutex);
        		urio->rid++;
        		pthread_mutex_unlock(&urio->mutex);

			struct uwsgi_rados_cb *urcb = uwsgi_malloc(sizeof(struct uwsgi_rados_cb));
        		// map the current request id to the callback
        		urcb->rid = urio->rid;
        		// map urio to the callback
        		urcb->urio = urio;

        		rados_completion_t comp;
			// use safe for write
        		if (rados_aio_create_completion(urcb, NULL, uwsgi_rados_read_async_cb, &comp) < 0) {
                		free(urcb);
                		goto error;
        		}
			if (off == 0) {
				ret = rados_aio_write_full(ctx, key, comp, body, body_len);
				method = "rados_aio_write_full";
			} else {
				ret = rados_aio_write(ctx, key, comp, body, body_len, off);
				method = "rados_aio_write";
			}
			if (ret < 0) {
				uwsgi_log("uwsgi_rados_put():%s() %s\n", method, strerror(-ret));
				free(urcb);
				rados_aio_release(comp);
				goto error;
			}

        		// wait for the callback to be executed
        		if (uwsgi.wait_read_hook(urio->fds[0], timeout) <= 0) {
                		rados_aio_release(comp);
                		goto error;
        		}
        		char ack = 1;
        		if (read(urio->fds[0], &ack, 1) != 1) {
                		rados_aio_release(comp);
                		uwsgi_error("uwsgi_rados_read_async()/read()");
                		goto error;
        		}

        		if (rados_aio_is_safe_and_cb(comp)) {
				ret = rados_aio_get_return_value(comp);
				if (ret < 0) {
					uwsgi_log("uwsgi_rados_put():%s() %s\n", method, strerror(-ret));
                			rados_aio_release(comp);
					goto error;
				}
				
        		}
        		rados_aio_release(comp);
		}
		remains -= body_len;
		off += body_len;
        }	

	return 0;

error:
	return -1;
}

// async stat
static int uwsgi_rados_async_stat(struct uwsgi_rados_io *urio, rados_ioctx_t ctx, const char *key, uint64_t *stat_size, time_t *stat_mtime, int timeout) {
	int ret = -1;
        // increase request counter
        pthread_mutex_lock(&urio->mutex);
        urio->rid++;
        pthread_mutex_unlock(&urio->mutex);

	struct uwsgi_rados_cb *urcb = uwsgi_malloc(sizeof(struct uwsgi_rados_cb));
        // map the current request id to the callback
        urcb->rid = urio->rid;
        // map urio to the callback
        urcb->urio = urio;

	rados_completion_t comp;
	if (rados_aio_create_completion(urcb, uwsgi_rados_read_async_cb, NULL, &comp) < 0) {
        	free(urcb);
		goto end;
	}
	if (rados_aio_stat(ctx, key, comp, stat_size, stat_mtime) < 0) {
		free(urcb);
                rados_aio_release(comp);
		goto end;
	}	

	// wait for the callback to be executed
        if (uwsgi.wait_read_hook(urio->fds[0], timeout) <= 0) {
        	rados_aio_release(comp);
		goto end;
        }
        char ack = 1;
        if (read(urio->fds[0], &ack, 1) != 1) {
        	rados_aio_release(comp);
                uwsgi_error("uwsgi_rados_read_async()/read()");
		goto end;
        }

	if (rados_aio_is_complete_and_cb(comp)) {
        	ret = rados_aio_get_return_value(comp);
        }
        rados_aio_release(comp);

end:
	return ret;
}
示例#3
0
int main(int argc, const char **argv)
{
  int ret = 0;

  // we will use all of these below
  const char *pool_name = "hello_world_pool";
  const char* hello = "hello world!";
  const char* object_name = "hello_object";
  rados_ioctx_t io_ctx = NULL;
  int pool_created = 0;

  // first, we create a Rados object and initialize it
  rados_t rados = NULL;
  {
    ret = rados_create(&rados, "admin"); // just use the client.admin keyring
    if (ret < 0) { // let's handle any error that might have come back
      printf("couldn't initialize rados! error %d\n", ret);
      ret = EXIT_FAILURE;
      goto out;
    } else {
      printf("we just set up a rados cluster object\n");
    }
  }

  /*
   * Now we need to get the rados object its config info. It can
   * parse argv for us to find the id, monitors, etc, so let's just
   * use that.
   */
  {
    ret = rados_conf_parse_argv(rados, argc, argv);
    if (ret < 0) {
      // This really can't happen, but we need to check to be a good citizen.
      printf("failed to parse config options! error %d\n", ret);
      ret = EXIT_FAILURE;
      goto out;
    } else {
      printf("we just parsed our config options\n");
      // We also want to apply the config file if the user specified
      // one, and conf_parse_argv won't do that for us.
      int i;
      for (i = 0; i < argc; ++i) {
  	if ((strcmp(argv[i], "-c") == 0) || (strcmp(argv[i], "--conf") == 0)) {
  	  ret = rados_conf_read_file(rados, argv[i+1]);
  	  if (ret < 0) {
  	    // This could fail if the config file is malformed, but it'd be hard.
	    printf("failed to parse config file %s! error %d\n", argv[i+1], ret);
  	    ret = EXIT_FAILURE;
  	    goto out;
  	  }
  	  break;
  	}
      }
    }
  }

  /*
   * next, we actually connect to the cluster
   */
  {
    ret = rados_connect(rados);
    if (ret < 0) {
      printf("couldn't connect to cluster! error %d\n", ret);
      ret = EXIT_FAILURE;
      goto out;
    } else {
      printf("we just connected to the rados cluster\n");
    }
  }

  /*
   * let's create our own pool instead of scribbling over real data.
   * Note that this command creates pools with default PG counts specified
   * by the monitors, which may not be appropriate for real use -- it's fine
   * for testing, though.
   */
  {
    ret = rados_pool_create(rados, pool_name);
    if (ret < 0) {
      printf("couldn't create pool! error %d\n", ret);
      return EXIT_FAILURE;
    } else {
      printf("we just created a new pool named %s\n", pool_name);
    }
    pool_created = 1;
  }

  /*
   * create an "IoCtx" which is used to do IO to a pool
   */
  {
    ret = rados_ioctx_create(rados, pool_name, &io_ctx);
    if (ret < 0) {
      printf("couldn't set up ioctx! error %d\n", ret);
      ret = EXIT_FAILURE;
      goto out;
    } else {
      printf("we just created an ioctx for our pool\n");
    }
  }

  /*
   * now let's do some IO to the pool! We'll write "hello world!" to a
   * new object.
   */
  {
    /*
     * now that we have the data to write, let's send it to an object.
     * We'll use the synchronous interface for simplicity.
     */
    ret = rados_write_full(io_ctx, object_name, hello, strlen(hello));
    if (ret < 0) {
      printf("couldn't write object! error %d\n", ret);
      ret = EXIT_FAILURE;
      goto out;
    } else {
      printf("we just wrote new object %s, with contents '%s'\n", object_name, hello);
    }
  }

  /*
   * now let's read that object back! Just for fun, we'll do it using
   * async IO instead of synchronous. (This would be more useful if we
   * wanted to send off multiple reads at once; see
   * http://ceph.com/docs/master/rados/api/librados/#asychronous-io )
   */
  {
    int read_len = 4194304; // this is way more than we need
    char* read_buf = malloc(read_len + 1); // add one for the terminating 0 we'll add later
    if (!read_buf) {
      printf("couldn't allocate read buffer\n");
      ret = EXIT_FAILURE;
      goto out;
    }
    // allocate the completion from librados
    rados_completion_t read_completion;
    ret = rados_aio_create_completion(NULL, NULL, NULL, &read_completion);
    if (ret < 0) {
      printf("couldn't create completion! error %d\n", ret);
      ret = EXIT_FAILURE;
      free(read_buf);
      goto out;
    } else {
      printf("we just created a new completion\n");
    }
    // send off the request.
    ret = rados_aio_read(io_ctx, object_name, read_completion, read_buf, read_len, 0);
    if (ret < 0) {
      printf("couldn't start read object! error %d\n", ret);
      ret = EXIT_FAILURE;
      free(read_buf);
      rados_aio_release(read_completion);
      goto out;
    }
    // wait for the request to complete, and check that it succeeded.
    rados_aio_wait_for_complete(read_completion);
    ret = rados_aio_get_return_value(read_completion);
    if (ret < 0) {
      printf("couldn't read object! error %d\n", ret);
      ret = EXIT_FAILURE;
      free(read_buf);
      rados_aio_release(read_completion);
      goto out;
    } else {
      read_buf[ret] = 0; // null-terminate the string
      printf("we read our object %s, and got back %d bytes with contents\n%s\n", object_name, ret, read_buf);
    }

    free(read_buf);
    rados_aio_release(read_completion);
  }

  /*
   * We can also use xattrs that go alongside the object.
   */
  {
    const char* version = "1";
    ret = rados_setxattr(io_ctx, object_name, "version", version, strlen(version));
    if (ret < 0) {
      printf("failed to set xattr version entry! error %d\n", ret);
      ret = EXIT_FAILURE;
      goto out;
    } else {
      printf("we set the xattr 'version' on our object!\n");
    }
  }

  /*
   * And if we want to be really cool, we can do multiple things in a single
   * atomic operation. For instance, we can update the contents of our object
   * and set the version at the same time.
   */
  {
    const char* content = "v2";
    rados_write_op_t write_op = rados_create_write_op();
    if (!write_op) {
      printf("failed to allocate write op\n");
      ret = EXIT_FAILURE;
      goto out;
    }
    rados_write_op_write_full(write_op, content, strlen(content));
    const char* version = "2";
    rados_write_op_setxattr(write_op, "version", version, strlen(version));
    ret = rados_write_op_operate(write_op, io_ctx, object_name, NULL, 0);
    if (ret < 0) {
      printf("failed to do compound write! error %d\n", ret);
      ret = EXIT_FAILURE;
      rados_release_write_op(write_op);
      goto out;
    } else {
      printf("we overwrote our object %s with contents\n%s\n", object_name, content);
    }
    rados_release_write_op(write_op);
  }

  /*
   * And to be even cooler, we can make sure that the object looks the
   * way we expect before doing the write! Notice how this attempt fails
   * because the xattr differs.
   */
  {
    rados_write_op_t failed_write_op = rados_create_write_op();
    if (!failed_write_op) {
      printf("failed to allocate write op\n");
      ret = EXIT_FAILURE;
      goto out;
    }
    const char* content = "v2";
    const char* version = "2";
    const char* old_version = "1";
    rados_write_op_cmpxattr(failed_write_op, "version", LIBRADOS_CMPXATTR_OP_EQ, old_version, strlen(old_version));
    rados_write_op_write_full(failed_write_op, content, strlen(content));
    rados_write_op_setxattr(failed_write_op, "version", version, strlen(version));
    ret = rados_write_op_operate(failed_write_op, io_ctx, object_name, NULL, 0);
    if (ret < 0) {
      printf("we just failed a write because the xattr wasn't as specified\n");
    } else {
      printf("we succeeded on writing despite an xattr comparison mismatch!\n");
      ret = EXIT_FAILURE;
      rados_release_write_op(failed_write_op);
      goto out;
    }
    rados_release_write_op(failed_write_op);

    /*
     * Now let's do the update with the correct xattr values so it
     * actually goes through
     */
    content = "v3";
    old_version = "2";
    version = "3";
    rados_write_op_t update_op = rados_create_write_op();
    if (!failed_write_op) {
      printf("failed to allocate write op\n");
      ret = EXIT_FAILURE;
      goto out;
    }
    rados_write_op_cmpxattr(update_op, "version", LIBRADOS_CMPXATTR_OP_EQ, old_version, strlen(old_version));
    rados_write_op_write_full(update_op, content, strlen(content));
    rados_write_op_setxattr(update_op, "version", version, strlen(version));
    ret = rados_write_op_operate(update_op, io_ctx, object_name, NULL, 0);
    if (ret < 0) {
      printf("failed to do a compound write update! error %d\n", ret);
      ret = EXIT_FAILURE;
      rados_release_write_op(update_op);
      goto out;
    } else {
      printf("we overwrote our object %s following an xattr test with contents\n%s\n", object_name, content);
    }
    rados_release_write_op(update_op);
  }

  ret = EXIT_SUCCESS;

 out:
  if (io_ctx) {
    rados_ioctx_destroy(io_ctx);
  }

  if (pool_created) {
    /*
     * And now we're done, so let's remove our pool and then
     * shut down the connection gracefully.
     */
    int delete_ret = rados_pool_delete(rados, pool_name);
    if (delete_ret < 0) {
      // be careful not to
      printf("We failed to delete our test pool!\n");
      ret = EXIT_FAILURE;
    }
  }

  rados_shutdown(rados);

  return ret;
}