示例#1
0
文件: gds.c 项目: chrchang/eigensoft
int ranhprob(int n, int a, int m) 
// hypergeometric sampling 
// rejection sampling.  Devroye.  Computing (1987) General method for log-concave densities 
// where mode is known
/** 
 urn with n balls . a black balls.  Pick m without replacement.  Return number of black balls picked.
*/
{
 double  y ;
 double pm, logpm, w, ru, rw, rat ;
 int mode, x, zans ;

 mode = modehprob(n, a, m) ;
 logpm = loghprob(n, a, m, mode) ;
 pm = exp(logpm) ;              
 w = 1 + pm ; 
 for (;;) { 
  ru = DRAND() ;
  rw = DRAND() ;
  if (ru <= w/(1+w)) y = DRAND()*w/pm ;
  else y = (w+ranexp())/pm ;
  x = nnint(y) ; 
  if (ranmod(2)==0) x = -x ;
  zans = mode+x ;
  if (zans<0) continue ;
  if (zans>a) continue ;
  rat = exp(loghprob(n, a, m, zans)-logpm) ; 
  rw *= MIN(1, exp(w-pm*y)) ;
  if (rw <= rat) break ;
 }
 return zans ;
 
}
示例#2
0
double
rangam(double a)
{
  /**
   generate gamma deviate mean a
  */
  if (a < 1.0) {
    return( randev0(a));
  }
  if (a == 1.0) {
    return( ranexp());
  }
  return( randev1(a));
}
示例#3
0
文件: gds.c 项目: yiqinyang2/SOAPpop
double
rangam(double a)
{
  /**
   generate gamma deviate mean a
  */

  if (a<=0.0) {  
   fatalx("rangam called with bad param.  a:  %9.3f\n", a) ;
  }

  if (a < 1.0) {
    return( randev0(a));
  }
  if (a == 1.0) {
    return( ranexp());
  }
  return( randev1(a));
}
示例#4
0
int ranhprob(int n, int a, int m) 
// rejection sampling.  Devroye
{
 double v, y ;
 double pm, logpm, w, ru, rw, rat ;
 int mode, k, x, zans ;

 v = (double) (a+1)*(m+1) / (double) (n+1) ; 
 mode = (int) v ;

/**
 for (k=-5; k<=5; ++k) {  
  x = mode+k ;
  y = exp(loghprob(n, a, m, x)) ;
  printf("%4d %4d %12.6f\n", mode, x, y)  ;
 }
*/

 logpm = loghprob(n, a, m, mode) ;
 pm = exp(logpm) ;              
 w = 1 + pm ; 
 for (;;) { 
  ru = DRAND() ;
  rw = DRAND() ;
  if (ru <= w/(1+w)) y = DRAND()*w/pm ;
  else y = (w+ranexp())/pm ;
  x = nnint(y) ; 
  if (ranmod(2)==0) x = -x ;
  zans = mode+x ;
  if (zans<0) continue ;
  if (zans>a) continue ;
  rat = exp(loghprob(n, a, m, zans)-logpm) ; 
  rw *= MIN(1, exp(1.0-pm*y)) ;
  if (rw <= rat) break ;
 }
 return zans ;
 
}