bool OK5553ReaderUnit::connect()
    {
        LOG(LogLevel::INFOS) << "Starting connect...";
        if (getSingleChip())
        {
            if (getSingleChip()->getCardType() == "DESFire")
            {
                std::vector<unsigned char> tmp = rats();
                if (tmp.size() == 0)
                {
                    d_insertedChip = getChipInAir();
                    tmp = rats();
                    if (tmp.size() == 0)
                    {
                        d_insertedChip.reset();
                    }
                }
            }
        }

        return bool(d_insertedChip);
    }
示例#2
0
文件: city.c 项目: blt/hamurabi
resp step(city_st *cty) {
  uint16_t died = 0;
  died += starvation(cty);
  if (died > cty->population * 0.45)
    return ESTARVE;
  cty->avg_starved = 0.1*died + 0.9*cty->avg_starved; // EMA

  if (RAND(15) == 0)
    died += plague(cty);
  cty->tot_died += died;

  cty->population += births(cty);

  cty->migrated  = 0.1*RAND(cty->population);
  cty->trade_val = 17+RAND(10);
  cty->yield = RAND(10)+1;

  cty->bushels += cty->yield*cty->planted;
  rats(cty);
  return OKAY;
}
示例#3
0
文件: qimask.cpp 项目: spinicist/QUIT
int main(int argc, char **argv) {
    args::ArgumentParser parser("Generates masks in stages.\n"
                                "Stage 1 - Otsu thresholding to generate binary mask\n"
                                "Stage 2 - RATs (optional)\n"
                                "Stage 3 - Hole filling (optional)\n"
                                "http://github.com/spinicist/QUIT");

    args::Positional<std::string> input_path(parser, "INPUT_FILE", "Input file");

    args::HelpFlag help(parser, "HELP", "Show this help menu", {'h', "help"});
    args::Flag     verbose(parser, "VERBOSE", "Print more information", {'v', "verbose"});
    args::ValueFlag<std::string> outarg(
        parser, "OUTPUT FILE", "Set output filename, default is input + _mask", {'o', "out"});
    args::ValueFlag<int> volume(
        parser, "VOLUME",
        "Choose volume to mask in multi-volume file. Default 1, -1 selects last volume",
        {'v', "volume"}, 0);
    args::Flag is_complex(parser, "COMPLEX", "Input data is complex, take magnitude first",
                          {'x', "complex"});
    args::ValueFlag<float> lower_threshold(
        parser, "LOWER THRESHOLD",
        "Specify lower intensity threshold for 1st stage, otherwise Otsu's method is used",
        {'l', "lower"}, 0.);
    args::ValueFlag<float> upper_threshold(
        parser, "UPPER THRESHOLD",
        "Specify upper intensity threshold for 1st stage, otherwise Otsu's method is used",
        {'u', "upper"}, std::numeric_limits<float>::infinity());
    args::ValueFlag<float> rats(
        parser, "RATS", "Perform the RATS step, argument is size threshold for connected component",
        {'r', "rats"}, 0.);
    args::ValueFlag<int> fillh_radius(
        parser, "FILL HOLES", "Fill holes in thresholded mask with radius N", {'F', "fillh"}, 0);

    QI::ParseArgs(parser, argc, argv, verbose);

    QI::SeriesF::Pointer vols = ITK_NULLPTR;
    if (is_complex) {
        vols = QI::ReadMagnitudeImage<QI::SeriesF>(QI::CheckPos(input_path), verbose);
    } else {
        vols = QI::ReadImage<QI::SeriesF>(QI::CheckPos(input_path), verbose);
    }

    std::string out_path;
    if (outarg.Get() == "") {
        out_path = QI::StripExt(input_path.Get()) + "_mask" + QI::OutExt();
    } else {
        out_path = outarg.Get();
    }

    // Extract one volume to process
    auto region = vols->GetLargestPossibleRegion();
    if (static_cast<size_t>(std::abs(volume.Get())) < region.GetSize()[3]) {
        int volume_to_get = (region.GetSize()[3] + volume.Get()) % region.GetSize()[3];
        QI::Log(verbose, "Masking volume {}...", volume_to_get);
        region.GetModifiableIndex()[3] = volume_to_get;
    } else {
        QI::Fail("Specified mask volume was invalid {} ", volume.Get());
    }
    region.GetModifiableSize()[3] = 0;
    auto vol                      = itk::ExtractImageFilter<QI::SeriesF, QI::VolumeF>::New();
    vol->SetExtractionRegion(region);
    vol->SetInput(vols);
    vol->SetDirectionCollapseToSubmatrix();
    vol->Update();
    QI::VolumeF::Pointer intensity_image = vol->GetOutput();
    intensity_image->DisconnectPipeline();

    /*
     *  Stage 1 - Otsu or Threshold
     */
    QI::VolumeI::Pointer mask_image = ITK_NULLPTR;
    if (lower_threshold || upper_threshold) {
        QI::Log(verbose, "Thresholding range: {}-{}", lower_threshold.Get(), upper_threshold.Get());
        mask_image =
            QI::ThresholdMask(intensity_image, lower_threshold.Get(), upper_threshold.Get());
    } else {
        QI::Log(verbose, "Generating Otsu mask");
        mask_image = QI::OtsuMask(intensity_image);
    }

    /*
     *  Stage 2 - RATS
     */
    if (rats) {
        typedef itk::BinaryBallStructuringElement<int, 3>                     TBall;
        typedef itk::BinaryErodeImageFilter<QI::VolumeI, QI::VolumeI, TBall>  TErode;
        typedef itk::BinaryDilateImageFilter<QI::VolumeI, QI::VolumeI, TBall> TDilate;
        float mask_volume  = std::numeric_limits<float>::infinity();
        float voxel_volume = QI::VoxelVolume(mask_image);
        QI::Log(verbose, "Voxel volume: {}", voxel_volume);
        int                  radius = 0;
        QI::VolumeI::Pointer mask_rats;
        while (mask_volume > rats.Get()) {
            radius++;
            TBall           ball;
            TBall::SizeType radii;
            radii.Fill(radius);
            ball.SetRadius(radii);
            ball.CreateStructuringElement();
            TErode::Pointer erode = TErode::New();
            erode->SetInput(mask_image);
            erode->SetForegroundValue(1);
            erode->SetBackgroundValue(0);
            erode->SetKernel(ball);
            erode->Update();
            std::vector<float> kept_sizes = QI::FindLabels(erode->GetOutput(), 0, 1, mask_rats);
            mask_volume                   = kept_sizes[0] * voxel_volume;
            auto dilate                   = TDilate::New();
            dilate->SetKernel(ball);
            dilate->SetInput(mask_rats);
            dilate->SetForegroundValue(1);
            dilate->SetBackgroundValue(0);
            dilate->Update();
            mask_rats = dilate->GetOutput();
            mask_rats->DisconnectPipeline();
            QI::Log(verbose, "Ran RATS iteration, radius = {} volume = {}", radius, mask_volume);
        }
        mask_image = mask_rats;
    }

    /*
     *  Stage 3 - Hole Filling
     */
    QI::VolumeI::Pointer finalMask = ITK_NULLPTR;
    if (fillh_radius) {
        QI::Log(verbose, "Filling holes");
        auto fillHoles = itk::VotingBinaryIterativeHoleFillingImageFilter<QI::VolumeI>::New();
        itk::VotingBinaryIterativeHoleFillingImageFilter<QI::VolumeI>::InputSizeType radius;
        radius.Fill(fillh_radius.Get());
        fillHoles->SetInput(mask_image);
        fillHoles->SetRadius(radius);
        fillHoles->SetMajorityThreshold(2); // Corresponds to (rad^3-1)/2 + 2 threshold
        fillHoles->SetBackgroundValue(0);
        fillHoles->SetForegroundValue(1);
        fillHoles->SetMaximumNumberOfIterations(3);
        fillHoles->Update();
        mask_image = fillHoles->GetOutput();
        mask_image->DisconnectPipeline();
    }

    QI::WriteImage(mask_image, out_path, verbose);
    QI::Log(verbose, "Finished.");
    return EXIT_SUCCESS;
}