示例#1
0
/* 
   procedure tries all combinarion of leaving out i of the 3D points
   (because not enough markers where specified) plus the points
   leaveout1 and leavout2 (if they are passed as non-negative)
 */
char *recursive_loop (Desktop * d, char omit[], int from, int to, int i, double tol, \
	    int leaveout1, int leaveout2, int calc_distortion)
{
    int j;
    double e;
    static double emin = 10e90;
    static char *omitmin = 0;
    if (!omit) {
	emin = 10e90;
	destroy ((void *) &omitmin);
	return 0;
    }
    if (i) {
	for (j = from; j <= to - i; j++) {
	    if (stop)
		break;
	    omit[j] = 1;
	    recursive_loop (d, omit, j + 1, to, i - 1, tol, leaveout1, leaveout2, \
				calc_distortion);
	    omit[j] = 0;
	}
    } else {
	Vec *v;
	double *x, *y;
	int leave_out = (leaveout1 >= 0) + (leaveout2 >= 0);
	int k;
	int n;
	for (i = 0, j = 0; j < to; i += omit[j++]);
	n = to - i - leave_out;
	v = Cmalloc (sizeof (Vec) * n);
	x = Cmalloc (sizeof (double) * n);
	y = Cmalloc (sizeof (double) * n);
	i = 0;
	k = 0;
	for (j = 0; j < to; j++) {
	    printf ("%d", (int) omit[j]);
	    if (!omit[j]) {
		if (k != leaveout1 && k != leaveout2) {
		    v[i] = d->cal_points[j];
		    x[i] = d->view[d->current_view].mark[k].x;
		    y[i] = d->view[d->current_view].mark[k].y;
		    i++;
		}
		k++;
	    }
	}
	printf ("\n");
	e = findcameraposition (x, y, v, n, \
		&(d->view[d->current_view].cam), tol, 1, calc_distortion);
	if (e < emin) {
	    emin = e;
	    destroy ((void *) &omitmin);
	    omitmin = Cmalloc (to);
	    memcpy (omitmin, omit, to);
	}
	free (x);
	free (y);
    }
    return omitmin;
}
示例#2
0
static int recursive_loop(int remaining)
{
	char buf[REC_STACK_SIZE];

	/* Make sure compiler does not optimize this away. */
	memset(buf, (remaining & 0xff) | 0x1, REC_STACK_SIZE);
	if (!remaining)
		return 0;
	else
		return recursive_loop(remaining - 1);
}
示例#3
0
文件: lkdtm.c 项目: 3null/fastsocket
static int recursive_loop(int a)
{
	char buf[1024];

	memset(buf,0xFF,1024);
	recur_count--;
	if (!recur_count)
		return 0;
	else
        	return recursive_loop(a);
}
示例#4
0
static void lkdtm_do_action(enum ctype which)
{
	switch (which) {
	case CT_PANIC:
		panic("dumptest");
		break;
	case CT_BUG:
		BUG();
		break;
	case CT_WARNING:
		WARN_ON(1);
		break;
	case CT_EXCEPTION:
		*((int *) 0) = 0;
		break;
	case CT_LOOP:
		for (;;)
			;
		break;
	case CT_OVERFLOW:
		(void) recursive_loop(recur_count);
		break;
	case CT_CORRUPT_STACK:
		corrupt_stack();
		break;
	case CT_UNALIGNED_LOAD_STORE_WRITE: {
		static u8 data[5] __attribute__((aligned(4))) = {1, 2,
				3, 4, 5};
		u32 *p;
		u32 val = 0x12345678;

		p = (u32 *)(data + 1);
		if (*p == 0)
			val = 0x87654321;
		*p = val;
		 break;
	}
	case CT_OVERWRITE_ALLOCATION: {
		size_t len = 1020;
		u32 *data = kmalloc(len, GFP_KERNEL);

		data[1024 / sizeof(u32)] = 0x12345678;
		kfree(data);
		break;
	}
	case CT_WRITE_AFTER_FREE: {
		size_t len = 1024;
		u32 *data = kmalloc(len, GFP_KERNEL);

		kfree(data);
		schedule();
		memset(data, 0x78, len);
		break;
	}
	case CT_SOFTLOCKUP:
		preempt_disable();
		for (;;)
			cpu_relax();
		break;
	case CT_HARDLOCKUP:
		local_irq_disable();
		for (;;)
			cpu_relax();
		break;
	case CT_SPINLOCKUP:
		/* Must be called twice to trigger. */
		spin_lock(&lock_me_up);
		/* Let sparse know we intended to exit holding the lock. */
		__release(&lock_me_up);
		break;
	case CT_HUNG_TASK:
		set_current_state(TASK_UNINTERRUPTIBLE);
		schedule();
		break;
	case CT_EXEC_DATA:
		execute_location(data_area);
		break;
	case CT_EXEC_STACK: {
		u8 stack_area[EXEC_SIZE];
		execute_location(stack_area);
		break;
	}
	case CT_EXEC_KMALLOC: {
		u32 *kmalloc_area = kmalloc(EXEC_SIZE, GFP_KERNEL);
		execute_location(kmalloc_area);
		kfree(kmalloc_area);
		break;
	}
	case CT_EXEC_VMALLOC: {
		u32 *vmalloc_area = vmalloc(EXEC_SIZE);
		execute_location(vmalloc_area);
		vfree(vmalloc_area);
		break;
	}
	case CT_EXEC_USERSPACE: {
		unsigned long user_addr;

		user_addr = vm_mmap(NULL, 0, PAGE_SIZE,
				    PROT_READ | PROT_WRITE | PROT_EXEC,
				    MAP_ANONYMOUS | MAP_PRIVATE, 0);
		if (user_addr >= TASK_SIZE) {
			pr_warn("Failed to allocate user memory\n");
			return;
		}
		execute_user_location((void *)user_addr);
		vm_munmap(user_addr, PAGE_SIZE);
		break;
	}
	case CT_ACCESS_USERSPACE: {
		unsigned long user_addr, tmp;
		unsigned long *ptr;

		user_addr = vm_mmap(NULL, 0, PAGE_SIZE,
				    PROT_READ | PROT_WRITE | PROT_EXEC,
				    MAP_ANONYMOUS | MAP_PRIVATE, 0);
		if (user_addr >= TASK_SIZE) {
			pr_warn("Failed to allocate user memory\n");
			return;
		}

		ptr = (unsigned long *)user_addr;

		pr_info("attempting bad read at %p\n", ptr);
		tmp = *ptr;
		tmp += 0xc0dec0de;

		pr_info("attempting bad write at %p\n", ptr);
		*ptr = tmp;

		vm_munmap(user_addr, PAGE_SIZE);

		break;
	}
	case CT_WRITE_RO: {
		unsigned long *ptr;

		ptr = (unsigned long *)&rodata;

		pr_info("attempting bad write at %p\n", ptr);
		*ptr ^= 0xabcd1234;

		break;
	}
	case CT_WRITE_KERN: {
		size_t size;
		unsigned char *ptr;

		size = (unsigned long)do_overwritten -
		       (unsigned long)do_nothing;
		ptr = (unsigned char *)do_overwritten;

		pr_info("attempting bad %zu byte write at %p\n", size, ptr);
		memcpy(ptr, (unsigned char *)do_nothing, size);
		flush_icache_range((unsigned long)ptr,
				   (unsigned long)(ptr + size));

		do_overwritten();
		break;
	}
	case CT_NONE:
	default:
		break;
	}

}
示例#5
0
文件: lkdtm.c 项目: 3null/fastsocket
static void lkdtm_do_action(enum ctype which)
{
	switch (which) {
	case CT_PANIC:
		panic("dumptest");
		break;
	case CT_BUG:
		BUG();
		break;
	case CT_EXCEPTION:
		*((int *) 0) = 0;
		break;
	case CT_LOOP:
		for (;;)
			;
		break;
	case CT_OVERFLOW:
		(void) recursive_loop(0);
		break;
	case CT_CORRUPT_STACK: {
		volatile u32 data[8];
		volatile u32 *p = data;

		p[12] = 0x12345678;
		break;
	}
	case CT_UNALIGNED_LOAD_STORE_WRITE: {
		static u8 data[5] __attribute__((aligned(4))) = {1, 2,
				3, 4, 5};
		u32 *p;
		u32 val = 0x12345678;

		p = (u32 *)(data + 1);
		if (*p == 0)
			val = 0x87654321;
		*p = val;
		 break;
	}
	case CT_OVERWRITE_ALLOCATION: {
		size_t len = 1020;
		u32 *data = kmalloc(len, GFP_KERNEL);

		data[1024 / sizeof(u32)] = 0x12345678;
		kfree(data);
		break;
	}
	case CT_WRITE_AFTER_FREE: {
		size_t len = 1024;
		u32 *data = kmalloc(len, GFP_KERNEL);

		kfree(data);
		schedule();
		memset(data, 0x78, len);
		break;
	}
	case CT_SOFTLOCKUP:
		preempt_disable();
		for (;;)
			cpu_relax();
		break;
	case CT_HARDLOCKUP:
		local_irq_disable();
		for (;;)
			cpu_relax();
		break;
	case CT_HUNG_TASK:
		set_current_state(TASK_UNINTERRUPTIBLE);
		schedule();
		break;
	case CT_NONE:
	default:
		break;
	}

}
示例#6
0
void lkdtm_OVERFLOW(void)
{
	(void) recursive_loop(recur_count);
}
示例#7
0
文件: lkdtm.c 项目: 03199618/linux
static void lkdtm_do_action(enum ctype which)
{
	switch (which) {
	case CT_PANIC:
		panic("dumptest");
		break;
	case CT_BUG:
		BUG();
		break;
	case CT_WARNING:
		WARN_ON(1);
		break;
	case CT_EXCEPTION:
		*((int *) 0) = 0;
		break;
	case CT_LOOP:
		for (;;)
			;
		break;
	case CT_OVERFLOW:
		(void) recursive_loop(0);
		break;
	case CT_CORRUPT_STACK: {
		/* Make sure the compiler creates and uses an 8 char array. */
		volatile char data[8];

		memset((void *)data, 0, 64);
		break;
	}
	case CT_UNALIGNED_LOAD_STORE_WRITE: {
		static u8 data[5] __attribute__((aligned(4))) = {1, 2,
				3, 4, 5};
		u32 *p;
		u32 val = 0x12345678;

		p = (u32 *)(data + 1);
		if (*p == 0)
			val = 0x87654321;
		*p = val;
		 break;
	}
	case CT_OVERWRITE_ALLOCATION: {
		size_t len = 1020;
		u32 *data = kmalloc(len, GFP_KERNEL);

		data[1024 / sizeof(u32)] = 0x12345678;
		kfree(data);
		break;
	}
	case CT_WRITE_AFTER_FREE: {
		size_t len = 1024;
		u32 *data = kmalloc(len, GFP_KERNEL);

		kfree(data);
		schedule();
		memset(data, 0x78, len);
		break;
	}
	case CT_SOFTLOCKUP:
		preempt_disable();
		for (;;)
			cpu_relax();
		break;
	case CT_HARDLOCKUP:
		local_irq_disable();
		for (;;)
			cpu_relax();
		break;
	case CT_SPINLOCKUP:
		/* Must be called twice to trigger. */
		spin_lock(&lock_me_up);
		break;
	case CT_HUNG_TASK:
		set_current_state(TASK_UNINTERRUPTIBLE);
		schedule();
		break;
	case CT_EXEC_DATA:
		execute_location(data_area);
		break;
	case CT_EXEC_STACK: {
		u8 stack_area[EXEC_SIZE];
		execute_location(stack_area);
		break;
	}
	case CT_EXEC_KMALLOC: {
		u32 *kmalloc_area = kmalloc(EXEC_SIZE, GFP_KERNEL);
		execute_location(kmalloc_area);
		kfree(kmalloc_area);
		break;
	}
	case CT_EXEC_VMALLOC: {
		u32 *vmalloc_area = vmalloc(EXEC_SIZE);
		execute_location(vmalloc_area);
		vfree(vmalloc_area);
		break;
	}
	case CT_NONE:
	default:
		break;
	}

}