/** * \ingroup sd_raw * Initializes memory card communication. * * \returns 0 on failure, 1 on success. */ uint8_t sd_raw_init() { uint8_t b; sd_raw_spi_init(); printf("Send SD on command.\r\n"); /* test SPI IRQ based communication */ b = sd_raw_send_command(CMD_SD_ON, 0x12345678); if (b == 0xff) { printf("SD on failed.\r\n"); return 0; } printf("SD on success.\r\n"); /* initialization procedure */ sd_raw_card_type = 0; /* the first block is likely to be accessed first, so precache it here */ raw_block_address = (offset_t) -1; #if SD_RAW_WRITE_BUFFERING raw_block_written = 1; #endif if(!sd_raw_read(0, raw_block, sizeof(raw_block))) return 0; return 1; }
uint8_t sd_raw_read(const uint64_t offset, uint8_t* buffer, uint16_t length) { uint32_t blk = (offset / 4); uint16_t n = 0; uint8_t rem = offset & 3; //reminder needed for byte-oriented unaligned accesses if ((length > 1) && (length % 4)) return 0; //misaligned access while (length) { /* address card */ SPI_CARD; /* send single block request */ if(sd_raw_send_command(CMD_READ_SINGLE_BLOCK, (sd_raw_card_type & (1 << SD_RAW_SPEC_SDHC) ? blk : blk * 512))) { SPI_PERIPH; return 0; } /* wait for data block (start byte 0xfe) */ while(sd_raw_rec_byte() != 0xfe); /* read byte block */ for (uint16_t i = 0, j = 0; i < 512; i++) { uint8_t b = sd_raw_rec_byte(); if ((i >= img_blk_offset) && (j < 4) && length) { if (rem) rem--; else { buffer[n++] = b; length--; } j++; } if (j == 4) { sd_raw_hispeed_on(); SD_RAW_HISPEED_WAIT; sd_raw_hispeed_off(); break; } } /* deaddress card */ SPI_PERIPH; /* let card some time to finish */ SPI_PREAD; SPI_PREAD; /* shift block */ blk++; } return 1; }
uint8_t sd_write_block(unsigned long block_address, unsigned char buffer[512]) { //unsigned int block_offset = (block_address*512) & 0x01FF; //block_address = (block_address*512) - block_offset; block_address *= 512; if(sd_raw_locked()) return 0; /* address card */ select_card(); /* send single block request */ #if SD_RAW_SDHC if(sd_raw_send_command(CMD_WRITE_SINGLE_BLOCK, (sd_raw_card_type & (1 << SD_RAW_SPEC_SDHC) ? block_address / 512 : block_address))) #else if(sd_raw_send_command(CMD_WRITE_SINGLE_BLOCK, block_address)) #endif { unselect_card(); return 0; } /* send start byte */ sd_raw_send_byte(0xfe); /* write byte block */ uint16_t i; for(i = 0; i < 512; i++) sd_raw_send_byte(buffer[i]); /* write dummy crc16 */ sd_raw_send_byte(0xff); sd_raw_send_byte(0xff); /* wait while card is busy */ while(sd_raw_rec_byte() != 0xff); sd_raw_rec_byte(); /* deaddress card */ unselect_card(); return 1; }
uint8_t sd_read_block(unsigned long block_address, unsigned char buffer[512]) { //unsigned int block_offset = (block_address*512) & 0x01FF; //block_address = (block_address*512) - block_offset; block_address *= 512; if(sd_raw_locked()) return 0; /* address card */ select_card(); /* send single block request */ #if SD_RAW_SDHC if(sd_raw_send_command(CMD_READ_SINGLE_BLOCK, (sd_raw_card_type & (1 << SD_RAW_SPEC_SDHC) ? block_address / 512 : block_address))) #else if(sd_raw_send_command(CMD_READ_SINGLE_BLOCK, block_address)) #endif { unselect_card(); return 0; } /* wait for data block (start byte 0xfe) */ while(sd_raw_rec_byte() != 0xfe); /* read byte block */ uint16_t i; for(i = 0; i < 512; i++) buffer[i] = sd_raw_rec_byte(); /* read crc16 */ sd_raw_rec_byte(); sd_raw_rec_byte(); /* deaddress card */ unselect_card(); /* let card some time to finish */ sd_raw_rec_byte(); return 1; }
uint8_t sd_raw_write(const uint64_t offset, const uint8_t* buffer, uint16_t length) { uint32_t blk = (offset / 4); uint16_t n = 0; if ((length > 1) && (length % 4)) return 0; //misaligned access while (length) { /* address card */ SPI_CARD; /* send single block request */ if(sd_raw_send_command(CMD_WRITE_SINGLE_BLOCK, (sd_raw_card_type & (1 << SD_RAW_SPEC_SDHC) ? blk : blk * 512))) { SPI_PERIPH; return 0; } /* send start byte */ sd_raw_send_byte(0xfe); /* read byte block */ for (uint16_t i = 0, j = 0; i < 512; i++) { uint8_t b = 0xFF; //empty Flash cell state if ((i >= img_blk_offset) && (j < 4) && length) { b = buffer[n++]; j++; length--; } sd_raw_send_byte(b); if (j == 4) { sd_raw_hispeed_on(); SD_RAW_HISPEED_WAIT; sd_raw_hispeed_off(); break; } } /* wait while card is busy */ while(sd_raw_rec_byte() != 0xff); sd_raw_rec_byte(); /* deaddress card */ SPI_PERIPH; /* shift block */ blk++; } return 1; }
/** * \ingroup sd_raw * Continuously reads units of \c interval bytes and calls a callback function. * * This function starts reading at the specified offset. Every \c interval bytes, * it calls the callback function with the associated data buffer. * * By returning zero, the callback may stop reading. * * \note Within the callback function, you can not start another read or * write operation. * \note This function only works if the following conditions are met: * - (offset - (offset % 512)) % interval == 0 * - length % interval == 0 * * \param[in] offset Offset from which to start reading. * \param[in] buffer Pointer to a buffer which is at least interval bytes in size. * \param[in] interval Number of bytes to read before calling the callback function. * \param[in] length Number of bytes to read altogether. * \param[in] callback The function to call every interval bytes. * \param[in] p An opaque pointer directly passed to the callback function. * \returns 0 on failure, 1 on success * \see sd_raw_write_interval, sd_raw_read, sd_raw_write */ uint8_t sd_raw_read_interval(offset_t offset, uint8_t* buffer, uintptr_t interval, uintptr_t length, sd_raw_read_interval_handler_t callback, void* p) { if(!buffer || interval == 0 || length < interval || !callback) return 0; #if !SD_RAW_SAVE_RAM while(length >= interval) { /* as reading is now buffered, we directly * hand over the request to sd_raw_read() */ if(!sd_raw_read(offset, buffer, interval)) return 0; if(!callback(buffer, offset, p)) break; offset += interval; length -= interval; } return 1; #else /* address card */ select_card(); uint16_t block_offset; uint16_t read_length; uint8_t* buffer_cur; uint8_t finished = 0; do { /* determine byte count to read at once */ block_offset = offset & 0x01ff; read_length = 512 - block_offset; /* send single block request */ #if SD_RAW_SDHC if(sd_raw_send_command(CMD_READ_SINGLE_BLOCK, (sd_raw_card_type & (1 << SD_RAW_SPEC_SDHC) ? offset / 512 : offset - block_offset))) #else if(sd_raw_send_command(CMD_READ_SINGLE_BLOCK, offset - block_offset)) #endif { unselect_card(); return 0; } /* wait for data block (start byte 0xfe) */ while(sd_raw_rec_byte() != 0xfe); /* read up to the data of interest */ for(uint16_t i = 0; i < block_offset; ++i) sd_raw_rec_byte(); /* read interval bytes of data and execute the callback */ do { if(read_length < interval || length < interval) break; buffer_cur = buffer; for(uint16_t i = 0; i < interval; ++i) *buffer_cur++ = sd_raw_rec_byte(); if(!callback(buffer, offset + (512 - read_length), p)) { finished = 1; break; } read_length -= interval; length -= interval; } while(read_length > 0 && length > 0); /* read rest of data block */ while(read_length-- > 0) sd_raw_rec_byte(); /* read crc16 */ sd_raw_rec_byte(); sd_raw_rec_byte(); if(length < interval) break; offset = offset - block_offset + 512; } while(!finished); /* deaddress card */ unselect_card(); /* let card some time to finish */ sd_raw_rec_byte(); return 1; #endif }
/** * \ingroup sd_raw * Reads raw data from the card. * * \param[in] offset The offset from which to read. * \param[out] buffer The buffer into which to write the data. * \param[in] length The number of bytes to read. * \returns 0 on failure, 1 on success. * \see sd_raw_read_interval, sd_raw_write, sd_raw_write_interval */ uint8_t sd_raw_read(offset_t offset, uint8_t* buffer, uintptr_t length) { offset_t block_address; uint16_t block_offset; uint16_t read_length; while(length > 0) { /* determine byte count to read at once */ block_offset = offset & 0x01ff; block_address = offset - block_offset; read_length = 512 - block_offset; /* read up to block border */ if(read_length > length) read_length = length; #if !SD_RAW_SAVE_RAM /* check if the requested data is cached */ if(block_address != raw_block_address) #endif { #if SD_RAW_WRITE_BUFFERING if(!sd_raw_sync()) return 0; #endif /* address card */ select_card(); /* send single block request */ #if SD_RAW_SDHC if(sd_raw_send_command(CMD_READ_SINGLE_BLOCK, (sd_raw_card_type & (1 << SD_RAW_SPEC_SDHC) ? block_address / 512 : block_address))) #else if(sd_raw_send_command(CMD_READ_SINGLE_BLOCK, block_address)) #endif { unselect_card(); return 0; } /* wait for data block (start byte 0xfe) */ while(sd_raw_rec_byte() != 0xfe); #if SD_RAW_SAVE_RAM /* read byte block */ uint16_t read_to = block_offset + read_length; for(uint16_t i = 0; i < 512; ++i) { uint8_t b = sd_raw_rec_byte(); if(i >= block_offset && i < read_to) *buffer++ = b; } #else /* read byte block */ uint8_t* cache = raw_block; for(uint16_t i = 0; i < 512; ++i) *cache++ = sd_raw_rec_byte(); raw_block_address = block_address; memcpy(buffer, raw_block + block_offset, read_length); buffer += read_length; #endif /* read crc16 */ sd_raw_rec_byte(); sd_raw_rec_byte(); /* deaddress card */ unselect_card(); /* let card some time to finish */ sd_raw_rec_byte(); } #if !SD_RAW_SAVE_RAM else { /* use cached data */ memcpy(buffer, raw_block + block_offset, read_length); buffer += read_length; } #endif length -= read_length; offset += read_length; } return 1; }
/** * \ingroup sd_raw * Initializes memory card communication. * * \returns 0 on failure, 1 on success. */ uint8_t sd_raw_init() { /* enable inputs for reading card status */ configure_pin_available(); configure_pin_locked(); /* enable outputs for MOSI, SCK, SS, input for MISO */ configure_pin_mosi(); configure_pin_sck(); configure_pin_ss(); configure_pin_miso(); unselect_card(); /* initialize SPI with lowest frequency; max. 400kHz during identification mode of card */ S0SPCCR = 150; /* Set frequency to 400kHz */ S0SPCR = 0x38; /* initialization procedure */ sd_raw_card_type = 0; if(!sd_raw_available()) return 0; /* card needs 74 cycles minimum to start up */ for(uint8_t i = 0; i < 10; ++i) { /* wait 8 clock cycles */ sd_raw_rec_byte(); } /* address card */ select_card(); /* reset card */ uint8_t response; for(uint16_t i = 0; ; ++i) { response = sd_raw_send_command(CMD_GO_IDLE_STATE, 0); if(response == (1 << R1_IDLE_STATE)) break; if(i == 0x1ff) { unselect_card(); return 0; } } #if SD_RAW_SDHC /* check for version of SD card specification */ response = sd_raw_send_command(CMD_SEND_IF_COND, 0x100 /* 2.7V - 3.6V */ | 0xaa /* test pattern */); if((response & (1 << R1_ILL_COMMAND)) == 0) { sd_raw_rec_byte(); sd_raw_rec_byte(); if((sd_raw_rec_byte() & 0x01) == 0) return 0; /* card operation voltage range doesn't match */ if(sd_raw_rec_byte() != 0xaa) return 0; /* wrong test pattern */ /* card conforms to SD 2 card specification */ sd_raw_card_type |= (1 << SD_RAW_SPEC_2); } else #endif { /* determine SD/MMC card type */ sd_raw_send_command(CMD_APP, 0); response = sd_raw_send_command(CMD_SD_SEND_OP_COND, 0); if((response & (1 << R1_ILL_COMMAND)) == 0) { /* card conforms to SD 1 card specification */ sd_raw_card_type |= (1 << SD_RAW_SPEC_1); } else { /* MMC card */ } } /* wait for card to get ready */ for(uint16_t i = 0; ; ++i) { if(sd_raw_card_type & ((1 << SD_RAW_SPEC_1) | (1 << SD_RAW_SPEC_2))) { uint32_t arg = 0; #if SD_RAW_SDHC if(sd_raw_card_type & (1 << SD_RAW_SPEC_2)) arg = 0x40000000; #endif sd_raw_send_command(CMD_APP, 0); response = sd_raw_send_command(CMD_SD_SEND_OP_COND, arg); } else { response = sd_raw_send_command(CMD_SEND_OP_COND, 0); } if((response & (1 << R1_IDLE_STATE)) == 0) break; if(i == 0x7fff) { unselect_card(); return 0; } } #if SD_RAW_SDHC if(sd_raw_card_type & (1 << SD_RAW_SPEC_2)) { if(sd_raw_send_command(CMD_READ_OCR, 0)) { unselect_card(); return 0; } if(sd_raw_rec_byte() & 0x40) sd_raw_card_type |= (1 << SD_RAW_SPEC_SDHC); sd_raw_rec_byte(); sd_raw_rec_byte(); sd_raw_rec_byte(); } #endif /* set block size to 512 bytes */ if(sd_raw_send_command(CMD_SET_BLOCKLEN, 512)) { unselect_card(); return 0; } /* deaddress card */ unselect_card(); /* switch to highest SPI frequency possible */ S0SPCCR = 60; /* ~1MHz-- potentially can be faster */ #if !SD_RAW_SAVE_RAM /* the first block is likely to be accessed first, so precache it here */ raw_block_address = (offset_t) -1; #if SD_RAW_WRITE_BUFFERING raw_block_written = 1; #endif if(!sd_raw_read(0, raw_block, sizeof(raw_block))) return 0; #endif return 1; }
/** * \ingroup sd_raw * Reads informational data from the card. * * This function reads and returns the card's registers * containing manufacturing and status information. * * \note: The information retrieved by this function is * not required in any way to operate on the card, * but it might be nice to display some of the data * to the user. * * \param[in] info A pointer to the structure into which to save the information. * \returns 0 on failure, 1 on success. */ uint8_t sd_raw_get_info(struct sd_raw_info* info) { if(!info || !sd_raw_available()) return 0; memset(info, 0, sizeof(*info)); select_card(); /* read cid register */ if(sd_raw_send_command(CMD_SEND_CID, 0)) { unselect_card(); return 0; } while(sd_raw_rec_byte() != 0xfe); for(uint8_t i = 0; i < 18; ++i) { uint8_t b = sd_raw_rec_byte(); switch(i) { case 0: info->manufacturer = b; break; case 1: case 2: info->oem[i - 1] = b; break; case 3: case 4: case 5: case 6: case 7: info->product[i - 3] = b; break; case 8: info->revision = b; break; case 9: case 10: case 11: case 12: info->serial |= (uint32_t) b << ((12 - i) * 8); break; case 13: info->manufacturing_year = b << 4; break; case 14: info->manufacturing_year |= b >> 4; info->manufacturing_month = b & 0x0f; break; } } /* read csd register */ uint8_t csd_read_bl_len = 0; uint8_t csd_c_size_mult = 0; #if SD_RAW_SDHC uint16_t csd_c_size = 0; #else uint32_t csd_c_size = 0; #endif uint8_t csd_structure = 0; if(sd_raw_send_command(CMD_SEND_CSD, 0)) { unselect_card(); return 0; } while(sd_raw_rec_byte() != 0xfe); for(uint8_t i = 0; i < 18; ++i) { uint8_t b = sd_raw_rec_byte(); if(i == 0) { csd_structure = b >> 6; } else if(i == 14)
/** * \ingroup sd_raw * Reads raw data from the card. * * \param[in] offset The offset from which to read. * \param[out] buffer The buffer into which to write the data. * \param[in] length The number of bytes to read. * \returns 0 on failure, 1 on success. * \see sd_raw_read_interval, sd_raw_write, sd_raw_write_interval */ uint8_t sd_raw_read(offset_t offset, uint8_t* buffer, uintptr_t length) { #if !SD_RAW_SAVE_RAM uint8_t attempts = 0; #endif offset_t block_address; uint16_t block_offset; uint16_t read_length; while(length > 0) { /* determine byte count to read at once */ block_offset = offset & 0x01ff; block_address = offset - block_offset; read_length = 512 - block_offset; /* read up to block border */ if(read_length > length) read_length = length; #if !SD_RAW_SAVE_RAM /* check if the requested data is cached */ if(block_address != raw_block_address) #endif { #if SD_RAW_WRITE_BUFFERING if(!sd_raw_sync()) return 0; #endif read_block: /* address card */ select_card(); /* send single block request */ #if SD_RAW_SDHC if(sd_raw_send_command(CMD_READ_SINGLE_BLOCK, (sd_raw_card_type & (1 << SD_RAW_SPEC_SDHC) ? block_address / 512 : block_address))) #else if(sd_raw_send_command(CMD_READ_SINGLE_BLOCK, block_address)) #endif { unselect_card(); sd_errno = SDR_ERR_BADRESPONSE; return 0; } /* wait for data block (start byte 0xfe) */ uint16_t tries = 0; while(sd_raw_rec_byte() != 0xfe) { if(tries++ >= 0x7FFF) { unselect_card(); sd_errno = SDR_ERR_COMMS; return 0; } } #if SD_RAW_SAVE_RAM /* read byte block */ uint16_t read_to = block_offset + read_length; for(uint16_t i = 0; i < 512; ++i) { uint8_t b = sd_raw_rec_byte(); if(i >= block_offset && i < read_to) *buffer++ = b; } /* ignore crc bytes */ sd_raw_rec_byte(); sd_raw_rec_byte(); #else /* read byte block */ uint8_t* cache = raw_block; for(uint16_t i = 0; i < 512; ++i) *cache++ = sd_raw_rec_byte(); raw_block_address = block_address; /* read crc16 */ if ( sd_use_crc ) { uint16_t crc = sd_raw_rec_byte() << 8; crc |= sd_raw_rec_byte(); if ( crc != sd_crc16(raw_block, (uint16_t)512) ) { unselect_card(); if ( ++attempts < 5 ) { sd_raw_rec_byte(); // pause a little goto read_block; } sd_errno = SDR_ERR_CRC; return 0; } } else { /* ignore crc bytes */ sd_raw_rec_byte(); sd_raw_rec_byte(); } memcpy(buffer, raw_block + block_offset, read_length); buffer += read_length; #endif /* deaddress card */ unselect_card(); /* let card some time to finish */ sd_raw_rec_byte(); } #if !SD_RAW_SAVE_RAM else { /* use cached data */ memcpy(buffer, raw_block + block_offset, read_length); buffer += read_length; } #endif length -= read_length; offset += read_length; } return 1; }
/** * \ingroup sd_raw * Initializes memory card communication. * * \returns 0 on failure, 1 on success. */ uint8_t sd_raw_init(bool use_crc, uint8_t speed) { #if !SD_POOR_DESIGN (void)speed; #endif #if !SD_RAW_SAVE_RAM sd_use_crc = use_crc; #else (void)use_crc; #endif sd_errno = 0; /* enable inputs for reading card status */ configure_pin_available(); configure_pin_locked(); /* enable outputs for MOSI, SCK, SS, input for MISO */ configure_pin_ss(); /* unselect SS as it may be CS for another SPI device */ unselect_card(); configure_pin_mosi(); configure_pin_sck(); configure_pin_miso(); /* initialize SPI with lowest frequency; max. 400kHz during identification mode of card */ SPCR = (0 << SPIE) | /* SPI Interrupt Enable */ (1 << SPE) | /* SPI Enable */ (0 << DORD) | /* Data Order: MSB first */ (1 << MSTR) | /* Master mode */ (0 << CPOL) | /* Clock Polarity: SCK low when idle */ (0 << CPHA) | /* Clock Phase: sample on rising SCK edge */ (1 << SPR1) | /* Clock Frequency: f_OSC / 128 */ (1 << SPR0); SPSR = 0; // &= ~(1 << SPI2X); /* No doubled clock frequency */ /* initialization procedure */ sd_raw_card_type = 0; if(!sd_raw_available()) { sd_errno = SDR_ERR_NOCARD; return 0; } /* card needs 74 cycles minimum to start up with SS/CS high */ for(uint8_t i = 0; i < 10; ++i) { /* wait 8 clock cycles */ sd_raw_rec_byte(); } /* now lower CS */ select_card(); /* reset card */ uint8_t response; for(uint16_t i = 0; ; ++i) { response = sd_raw_send_command(CMD_GO_IDLE_STATE, 0); if(response == (1 << R1_IDLE_STATE)) break; if(i == 0x1ff) { unselect_card(); sd_errno = SDR_ERR_COMMS; return 0; } } #if !SD_RAW_SAVE_RAM if ( sd_use_crc ) { if ( sd_raw_send_command(CMD_CRC_ON_OFF, 1) != (1 << R1_IDLE_STATE) ) { unselect_card(); sd_errno = SDR_ERR_CRC; return 0; } } #endif #if SD_RAW_SDHC /* check for version of SD card specification */ response = sd_raw_send_command(CMD_SEND_IF_COND, 0x100 /* 2.7V - 3.6V */ | 0xaa /* test pattern */); if((response & (1 << R1_ILL_COMMAND)) == 0) { sd_raw_rec_byte(); sd_raw_rec_byte(); if((sd_raw_rec_byte() & 0x01) == 0) { sd_errno = SDR_ERR_VOLTAGE; return 0; /* card operation voltage range doesn't match */ } if(sd_raw_rec_byte() != 0xaa) { sd_errno = SDR_ERR_PATTERN; return 0; /* wrong test pattern */ } /* card conforms to SD 2 card specification */ sd_raw_card_type |= (1 << SD_RAW_SPEC_2); } else #endif { /* determine SD/MMC card type */ sd_raw_send_command(CMD_APP, 0); response = sd_raw_send_command(CMD_SD_SEND_OP_COND, 0); if((response & (1 << R1_ILL_COMMAND)) == 0) { /* card conforms to SD 1 card specification */ sd_raw_card_type |= (1 << SD_RAW_SPEC_1); } else { /* MMC card */ } } /* wait for card to get ready */ for(uint16_t i = 0; ; ++i) { if(sd_raw_card_type & ((1 << SD_RAW_SPEC_1) | (1 << SD_RAW_SPEC_2))) { uint32_t arg = 0; #if SD_RAW_SDHC if(sd_raw_card_type & (1 << SD_RAW_SPEC_2)) arg = 0x40000000; #endif sd_raw_send_command(CMD_APP, 0); response = sd_raw_send_command(CMD_SD_SEND_OP_COND, arg); } else { response = sd_raw_send_command(CMD_SEND_OP_COND, 0); } if((response & (1 << R1_IDLE_STATE)) == 0) break; if(i == 0x1ff) { unselect_card(); sd_errno = SDR_ERR_COMMS; return 0; } } #if SD_RAW_SDHC if(sd_raw_card_type & (1 << SD_RAW_SPEC_2)) { if(sd_raw_send_command(CMD_READ_OCR, 0)) { unselect_card(); sd_errno = SDR_ERR_BADRESPONSE; return 0; } if(sd_raw_rec_byte() & 0x40) sd_raw_card_type |= (1 << SD_RAW_SPEC_SDHC); sd_raw_rec_byte(); sd_raw_rec_byte(); sd_raw_rec_byte(); } #endif /* set block size to 512 bytes */ if(sd_raw_send_command(CMD_SET_BLOCKLEN, 512)) { unselect_card(); sd_errno = SDR_ERR_BADRESPONSE; return 0; } /* deaddress card */ unselect_card(); /* switch to highest SPI frequency possible */ #if SD_POOR_DESIGN switch(speed) { /* f_OSC / 2 */ case 0: SPCR &= ~((1 << SPR1) | (1 << SPR0)); SPSR |= (1 << SPI2X); break; /* f_OSC / 4 */ case 1: SPCR &= ~((1 << SPR1) | (1 << SPR0)); SPSR &= ~(1 << SPI2X); break; /* f_OSC / 8 */ case 2: SPCR |= (1 << SPR0); SPCR &= ~(1 << SPR1); SPSR |= (1 << SPI2X); /* Doubled Clock Frequency: f_OSC / 2 */ break; /* f_OSC / 16 */ case 3: SPCR |= (1 << SPR0); SPCR &= ~(1 << SPR1); SPSR &= ~(1 << SPI2X); /* Doubled Clock Frequency: f_OSC / 2 */ break; /* f_OSC / 32 */ case 4: SPCR &= ~(1 << SPR0); SPCR |= (1 << SPR1); SPSR |= (1 << SPI2X); /* Doubled Clock Frequency: f_OSC / 2 */ break; /* f_OSC / 64 [two ways of achieving] */ case 5: SPCR &= ~(1 << SPR0); SPCR |= (1 << SPR1); SPSR &= ~(1 << SPI2X); break; /* f_OSC / 128 */ case 6: SPCR |= (1 << SPR1) | (1 << SPR0); SPSR &= ~(1 << SPI2X); break; default: sd_errno = SDR_ERR_COMMS; return 0; } #else // MBI used to use f_OSC / 2 // But owing to the lousy SD card bus, that doesn't work well // Then with the introduction of the revH MightyBoard, they dropped // down to f_OSC / 16. // / * f_OSC / 2 */ // SPCR &= ~((1 << SPR1) | (1 << SPR0)); /* Clock Frequency: f_OSC / 4 */ // SPSR |= (1 << SPI2X); /* Doubled Clock Frequency: f_OSC / 2 */ /* f_OSC / 16 */ SPCR |= ( 1 << SPR0 ); SPCR &= ~( 1 << SPR1 ); SPSR &= ~( 1 << SPI2X ); #endif #if !SD_RAW_SAVE_RAM /* the first block is likely to be accessed first, so precache it here */ raw_block_address = (offset_t) -1; #if SD_RAW_WRITE_BUFFERING raw_block_written = 1; #endif if(!sd_raw_read(0, raw_block, sizeof(raw_block))) return 0; #endif #if defined(DEBUG_SD) sd_errno = SDR_ERR_FOO; #endif // sd_errno set by sd_raw_read return 1; }
/** * \ingroup sd_raw_read_block * Reads block of raw data from the card. * * \param[in] block_address the address of the block to read * \param[in] block_offset The offset from which to read. * \param[out] raw_buffer The buffer into which to write the data. * \param[in] read_length The number of bytes to read. * \returns 0 on failure, 1 on success. * \see sd_raw_read_interval, sd_raw_write, sd_raw_write_interval */ uint8_t sd_raw_read_block(offset_t block_address, offset_t block_offset, uint8_t* raw_buffer, uintptr_t read_length) { #if SD_RAW_WRITE_BUFFERING if(!sd_raw_sync()) return 0; #endif /* address card */ select_card(); /* send single block request */ #if SD_RAW_SDHC if(sd_raw_send_command(CMD_READ_SINGLE_BLOCK, (sd_raw_card_type & (1 << SD_RAW_SPEC_SDHC) ? block_address / 512 : block_address))) #else if(sd_raw_send_command(CMD_READ_SINGLE_BLOCK, block_address)) #endif { unselect_card(); return 0; } uint16_t tries = 0; /* wait for data block (start byte 0xfe) */ while((sd_raw_rec_byte() != 0xfe)){ if(tries >= 0x7FFF){ unselect_card(); return 0; } tries++; } #if SD_RAW_SAVE_RAM /* read byte block */ uint16_t read_to = block_offset + read_length; for(uint16_t i = 0; i < 512; ++i) { uint8_t b = sd_raw_rec_byte(); if(i >= block_offset && i < read_to) *buffer++ = b; } #else /* read byte block */ // uint8_t* cache = raw_block; uint8_t* cache = raw_buffer; for(uint16_t i = 0; i < 512; ++i) *cache++ = sd_raw_rec_byte(); #endif /* read crc16 */ sd_raw_rec_byte(); sd_raw_rec_byte(); /* deaddress card */ unselect_card(); /* let card some time to finish */ sd_raw_rec_byte(); return 1; }
/** * \ingroup sd_raw * Initializes memory card communication. * * \returns 0 on failure, 1 on success. */ uint8_t sd_raw_init(void) { _sd_infodirty = 1; /* enable inputs for reading card status */ configure_pin_available(); configure_pin_locked(); /* enable outputs for MOSI, SCK, SS, input for MISO */ configure_pin_mosi(); configure_pin_sck(); configure_pin_ss(); configure_pin_miso(); unselect_card(); /* initialize SPI with lowest frequency; max. 400kHz during identification mode of card */ SPCR = (0 << SPIE) | /* SPI Interrupt Enable */ (1 << SPE) | /* SPI Enable */ (0 << DORD) | /* Data Order: MSB first */ (1 << MSTR) | /* Master mode */ (0 << CPOL) | /* Clock Polarity: SCK low when idle */ (0 << CPHA) | /* Clock Phase: sample on rising SCK edge */ (1 << SPR1) | /* Clock Frequency: f_OSC / 128 */ (1 << SPR0); SPSR &= ~(1 << SPI2X); /* No doubled clock frequency */ /* initialization procedure */ sd_raw_card_type = 0; if(!sd_raw_available()) { SD_DEBUG("SD card not available"); return 0; } /* card needs 74 cycles minimum to start up */ uint16_t i; for(i = 0; i < 10; ++i) { /* wait 8 clock cycles */ sd_raw_rec_byte(); } /* address card */ select_card(); /* reset card */ uint8_t response; for(i = 0; ; ++i) { response = sd_raw_send_command(CMD_GO_IDLE_STATE, 0); if(response == (1 << R1_IDLE_STATE)) break; if(i == 0x1ff) { unselect_card(); SD_DEBUG("Some kind of error."); return 0; } } #if SD_RAW_SDHC /* check for version of SD card specification */ response = sd_raw_send_command(CMD_SEND_IF_COND, 0x100 /* 2.7V - 3.6V */ | 0xaa /* test pattern */); if((response & (1 << R1_ILL_COMMAND)) == 0) { sd_raw_rec_byte(); sd_raw_rec_byte(); if((sd_raw_rec_byte() & 0x01) == 0) { SD_DEBUG("Bad voltage"); return 0; /* card operation voltage range doesn't match */ } if(sd_raw_rec_byte() != 0xaa) { SD_DEBUG("Bad test pattern."); return 0; /* wrong test pattern */ } /* card conforms to SD 2 card specification */ sd_raw_card_type |= (1 << SD_RAW_SPEC_2); } else #endif { /* determine SD/MMC card type */ sd_raw_send_command(CMD_APP, 0); response = sd_raw_send_command(CMD_SD_SEND_OP_COND, 0); if((response & (1 << R1_ILL_COMMAND)) == 0) { /* card conforms to SD 1 card specification */ sd_raw_card_type |= (1 << SD_RAW_SPEC_1); } else { /* MMC card */ } } /* wait for card to get ready */ for(i = 0; ; ++i) { if(sd_raw_card_type & ((1 << SD_RAW_SPEC_1) | (1 << SD_RAW_SPEC_2))) { uint32_t arg = 0; #if SD_RAW_SDHC if(sd_raw_card_type & (1 << SD_RAW_SPEC_2)) arg = 0x40000000; #endif sd_raw_send_command(CMD_APP, 0); response = sd_raw_send_command(CMD_SD_SEND_OP_COND, arg); } else { response = sd_raw_send_command(CMD_SEND_OP_COND, 0); } if((response & (1 << R1_IDLE_STATE)) == 0) break; if(i == 0x7fff) { unselect_card(); SD_DEBUG("Some kind of error."); return 0; } } #if SD_RAW_SDHC if(sd_raw_card_type & (1 << SD_RAW_SPEC_2)) { if(sd_raw_send_command(CMD_READ_OCR, 0)) { unselect_card(); SD_DEBUG("Some kind of error."); return 0; } if(sd_raw_rec_byte() & 0x40) sd_raw_card_type |= (1 << SD_RAW_SPEC_SDHC); sd_raw_rec_byte(); sd_raw_rec_byte(); sd_raw_rec_byte(); } #endif /* set block size to 512 bytes */ if(sd_raw_send_command(CMD_SET_BLOCKLEN, 512)) { unselect_card(); SD_DEBUG("Some kind of error."); return 0; } /* deaddress card */ unselect_card(); /* switch to highest SPI frequency possible */ SPCR &= ~((1 << SPR1) | (1 << SPR0)); /* Clock Frequency: f_OSC / 4 */ SPSR |= (1 << SPI2X); /* Doubled Clock Frequency: f_OSC / 2 */ #if !SD_RAW_SAVE_RAM /* the first block is likely to be accessed first, so precache it here */ raw_block_address = (unsigned long) -1; #if SD_RAW_WRITE_BUFFERING raw_block_written = 1; #endif if(!sd_raw_read(0, raw_block, sizeof(raw_block))) { SD_DEBUG("Some kind of error."); return 0; } #endif return 1; }
uint8_t sd_raw_init() { SPI_PERIPH; /* initialization procedure */ sd_raw_card_type = 0; /* address card */ SPI_CARD; /* reset card */ uint8_t response; for(uint16_t i = 0; ; ++i) { response = sd_raw_send_command(CMD_GO_IDLE_STATE, 0); if(response == (1 << R1_IDLE_STATE)) break; if(i == 0x1ff) { SPI_PERIPH; return 0; } } /* check for version of SD card specification */ response = sd_raw_send_command(CMD_SEND_IF_COND, 0x100 /* 2.7V - 3.6V */ | 0xaa /* test pattern */); if((response & (1 << R1_ILL_COMMAND)) == 0) { sd_raw_rec_byte(); sd_raw_rec_byte(); if((sd_raw_rec_byte() & 0x01) == 0) return 0; /* card operation voltage range doesn't match */ if(sd_raw_rec_byte() != 0xaa) return 0; /* wrong test pattern */ /* card conforms to SD 2 card specification */ sd_raw_card_type |= (1 << SD_RAW_SPEC_2); } else { /* determine SD/MMC card type */ sd_raw_send_command(CMD_APP, 0); response = sd_raw_send_command(CMD_SD_SEND_OP_COND, 0); if((response & (1 << R1_ILL_COMMAND)) == 0) { /* card conforms to SD 1 card specification */ sd_raw_card_type |= (1 << SD_RAW_SPEC_1); } else { /* MMC card */ } } /* wait for card to get ready */ for(uint16_t i = 0; ; ++i) { if(sd_raw_card_type & ((1 << SD_RAW_SPEC_1) | (1 << SD_RAW_SPEC_2))) { uint32_t arg = 0; if(sd_raw_card_type & (1 << SD_RAW_SPEC_2)) arg = 0x40000000; sd_raw_send_command(CMD_APP, 0); response = sd_raw_send_command(CMD_SD_SEND_OP_COND, arg); } else { response = sd_raw_send_command(CMD_SEND_OP_COND, 0); } if((response & (1 << R1_IDLE_STATE)) == 0) break; if(i == 0x7fff) { SPI_PERIPH; return 0; } } if(sd_raw_card_type & (1 << SD_RAW_SPEC_2)) { if(sd_raw_send_command(CMD_READ_OCR, 0)) { SPI_PERIPH; return 0; } if(sd_raw_rec_byte() & 0x40) sd_raw_card_type |= (1 << SD_RAW_SPEC_SDHC); sd_raw_rec_byte(); sd_raw_rec_byte(); sd_raw_rec_byte(); } /* set block size to 512 bytes */ if(sd_raw_send_command(CMD_SET_BLOCKLEN, 512)) { SPI_PERIPH; return 0; } /* deaddress card */ SPI_PERIPH; /* prepare high-speed signal generator */ while (!(PLLCSR & (1<<PLOCK))) ; //wait for PLL to sync (must be set already, as the PLL is used for system clock, though) PLLCSR |= (1<<PCKE); //enable High-Speed clock #if PIN_SCK == PB4 TCCR1 = (1<<CS10); //PLL input clock OCR1B = 1; //duty (will be 33%, but I can't do anything with it) OCR1C = 2; //period #else #error "Please configure Timer1 to match pinout!" #endif return 1; }
/** * \ingroup sd_raw * Reads raw data from the card. * * \param[in] offset The offset from which to read. * \param[out] buffer The buffer into which to write the data. * \param[in] length The number of bytes to read. * \returns 0 on failure, 1 on success. * \see sd_raw_read_interval, sd_raw_write, sd_raw_write_interval */ uint8_t sd_raw_read(offset_t offset, uint8_t* buffer, uintptr_t length) { offset_t block_address; uint16_t block_offset; uint16_t read_length; while(length > 0) { /* determine byte count to read at once */ block_offset = offset & 0x01ff; block_address = offset - block_offset; read_length = 512 - block_offset; /* read up to block border */ if(read_length > length) read_length = length; /* check if the requested data is cached */ if(block_address != raw_block_address) { #if SD_RAW_WRITE_BUFFERING if(!sd_raw_sync()) return 0; #endif /* send single block request */ #if SD_RAW_SDHC if(sd_raw_send_command(CMD_READ_SINGLE_BLOCK, (sd_raw_card_type & (1 << SD_RAW_SPEC_SDHC) ? block_address / 512 : block_address))) #else if(sd_raw_send_command(CMD_READ_SINGLE_BLOCK, block_address)) #endif { return 0; } /* wait for data block (start byte 0xfe) */ //while(sd_raw_rec_byte() != 0xfe); sd_raw_send_byte(0xef); /* read byte block */ uint8_t* cache = raw_block; for(uint16_t i = 0; i < 512; ++i) { while(!(SPSR & (1<<SPIF))); *cache++ = SPDR; } raw_block_address = block_address; /* read crc16 */ sd_raw_send_byte(0xab); sd_raw_send_byte(0xcd); memcpy(buffer, raw_block + block_offset, read_length); buffer += read_length; } else { /* use cached data */ memcpy(buffer, raw_block + block_offset, read_length); buffer += read_length; } length -= read_length; offset += read_length; } return 1; }
/** * \ingroup sd_raw * Writes raw data to the card. * * \note If write buffering is enabled, you might have to * call sd_raw_sync() before disconnecting the card * to ensure all remaining data has been written. * * \param[in] offset The offset where to start writing. * \param[in] buffer The buffer containing the data to be written. * \param[in] length The number of bytes to write. * \returns 0 on failure, 1 on success. * \see sd_raw_write_interval, sd_raw_read, sd_raw_read_interval */ uint8_t sd_raw_write(offset_t offset, const uint8_t* buffer, uintptr_t length) { if(sd_raw_locked()) return 0; offset_t block_address; uint16_t block_offset; uint16_t write_length; while(length > 0) { /* determine byte count to write at once */ block_offset = offset & 0x01ff; block_address = offset - block_offset; write_length = 512 - block_offset; /* write up to block border */ if(write_length > length) write_length = length; /* Merge the data to write with the content of the block. * Use the cached block if available. */ if(block_address != raw_block_address) { #if SD_RAW_WRITE_BUFFERING if(!sd_raw_sync()) return 0; #endif if(block_offset || write_length < 512) { if(!sd_raw_read(block_address, raw_block, sizeof(raw_block))) return 0; } raw_block_address = block_address; } if(buffer != raw_block) { memcpy(raw_block + block_offset, buffer, write_length); #if SD_RAW_WRITE_BUFFERING raw_block_written = 0; if(length == write_length) return 1; #endif } /* address card */ select_card(); /* send single block request */ #if SD_RAW_SDHC if(sd_raw_send_command(CMD_WRITE_SINGLE_BLOCK, (sd_raw_card_type & (1 << SD_RAW_SPEC_SDHC) ? block_address / 512 : block_address))) #else if(sd_raw_send_command(CMD_WRITE_SINGLE_BLOCK, block_address)) #endif { unselect_card(); return 0; } /* send start byte */ sd_raw_send_byte(0xfe); /* write byte block */ uint8_t* cache = raw_block; for(uint16_t i = 0; i < 512; ++i) sd_raw_send_byte(*cache++); /* write dummy crc16 */ sd_raw_send_byte(0xff); sd_raw_send_byte(0xff); /* wait while card is busy */ while(sd_raw_rec_byte() != 0xff); sd_raw_rec_byte(); /* deaddress card */ unselect_card(); buffer += write_length; offset += write_length; length -= write_length; #if SD_RAW_WRITE_BUFFERING raw_block_written = 1; #endif } return 1; }
/** * \ingroup sd_raw * Reads informational data from the card. * * This function reads and returns the card's registers * containing manufacturing and status information. * * \note: The information retrieved by this function is * not required in any way to operate on the card, * but it might be nice to display some of the data * to the user. * * \param[in] info A pointer to the structure into which to save the information. * \returns 0 on failure, 1 on success. */ uint8_t sd_raw_get_info(struct sd_raw_info* info) { if(!info || !sd_raw_available()) return 0; memset(info, 0, sizeof(*info)); select_card(); /* read cid register */ if(sd_raw_send_command(CMD_SEND_CID, 0)) { unselect_card(); return 0; } while(sd_raw_rec_byte() != 0xfe); for(uint8_t i = 0; i < 18; ++i) { uint8_t b = sd_raw_rec_byte(); switch(i) { case 0: info->manufacturer = b; break; case 1: case 2: info->oem[i - 1] = b; break; case 3: case 4: case 5: case 6: case 7: info->product[i - 3] = b; break; case 8: info->revision = b; break; case 9: case 10: case 11: case 12: info->serial |= (uint32_t) b << ((12 - i) * 8); break; case 13: info->manufacturing_year = b << 4; break; case 14: info->manufacturing_year |= b >> 4; info->manufacturing_month = b & 0x0f; break; } } /* read csd register */ uint8_t csd_read_bl_len = 0; uint8_t csd_c_size_mult = 0; #if SD_RAW_SDHC uint16_t csd_c_size = 0; #else uint32_t csd_c_size = 0; #endif if(sd_raw_send_command(CMD_SEND_CSD, 0)) { unselect_card(); return 0; } while(sd_raw_rec_byte() != 0xfe); for(uint8_t i = 0; i < 18; ++i) { uint8_t b = sd_raw_rec_byte(); if(i == 14) { if(b & 0x40) info->flag_copy = 1; if(b & 0x20) info->flag_write_protect = 1; if(b & 0x10) info->flag_write_protect_temp = 1; info->format = (b & 0x0c) >> 2; } else { #if SD_RAW_SDHC if(sd_raw_card_type & (1 << SD_RAW_SPEC_2)) { switch(i) { case 7: b &= 0x3f; case 8: case 9: csd_c_size <<= 8; csd_c_size |= b; break; } if(i == 9) { ++csd_c_size; info->capacity = (offset_t) csd_c_size * 512 * 1024; } } else #endif { switch(i) { case 5: csd_read_bl_len = b & 0x0f; break; case 6: csd_c_size = b & 0x03; csd_c_size <<= 8; break; case 7: csd_c_size |= b; csd_c_size <<= 2; break; case 8: csd_c_size |= b >> 6; ++csd_c_size; break; case 9: csd_c_size_mult = b & 0x03; csd_c_size_mult <<= 1; break; case 10: csd_c_size_mult |= b >> 7; info->capacity = (uint32_t) csd_c_size << (csd_c_size_mult + csd_read_bl_len + 2); break; } } } }
/** * \ingroup sd_raw * Initializes memory card communication. * * \returns 0 on failure, 1 on success. */ uint8_t sd_raw_init() { /* Configure Chip-Select Pin*/ configure_pin_ss(); #if defined(AVRNETIO) && defined(AVRNETIO_ADDON) /* enable inputs for reading card status */ DDRD |= (1<<PD7); PORTD |= (1<<PD7); DDRD |= (1<<PD5); PORTD |= (1<<PD5); configure_pin_available(); // configure_pin_locked(); #elif defined(AVRNETIO) && !defined(AVRNETIO_ADDON) /* enable inputs for reading card status */ configure_pin_available(); configure_pin_locked(); configure_pin_available_pullup(); configure_pin_locked_pullup(); #endif /* unselect MMC-Card */ select_card(); unselect_card(); /* SPI-Bus Init */ SPI_init( spi_bus_num ); #if defined(AVRNETIO) && !defined(AVRNETIO_ADDON) /* Power up the MMC-Interface */ configure_power_up(); power_up(); #endif /* initialization procedure */ sd_raw_card_type = 0; if(!sd_raw_available()) { return 0; } /* card needs 74 cycles minimum to start up */ for(uint8_t i = 0; i < 100; ++i) { /* wait 8 clock cycles */ sd_raw_rec_byte(); } /* address card */ select_card(); /* reset card */ uint8_t response; for(uint16_t i = 0; ; ++i) { response = sd_raw_send_command(CMD_GO_IDLE_STATE, 0); if(response == (1 << R1_IDLE_STATE)) break; if(i == 0xfff) { unselect_card(); return 0; } } #if SD_RAW_SDHC /* check for version of SD card specification */ response = sd_raw_send_command(CMD_SEND_IF_COND, 0x100 /* 2.7V - 3.6V */ | 0xaa /* test pattern */); if((response & (1 << R1_ILL_COMMAND)) == 0) { sd_raw_rec_byte(); sd_raw_rec_byte(); if((sd_raw_rec_byte() & 0x01) == 0) { unselect_card(); return 0; /* card operation voltage range doesn't match */ } if(sd_raw_rec_byte() != 0xaa) { unselect_card(); return 0; /* wrong test pattern */ } /* card conforms to SD 2 card specification */ sd_raw_card_type |= (1 << SD_RAW_SPEC_2); } else #endif { /* determine SD/MMC card type */ sd_raw_send_command(CMD_APP, 0); response = sd_raw_send_command(CMD_SD_SEND_OP_COND, 0); if((response & (1 << R1_ILL_COMMAND)) == 0) { /* card conforms to SD 1 card specification */ sd_raw_card_type |= (1 << SD_RAW_SPEC_1); } else { /* MMC card */ } } /* wait for card to get ready */ for(uint16_t i = 0; ; ++i) { if(sd_raw_card_type & ((1 << SD_RAW_SPEC_1) | (1 << SD_RAW_SPEC_2))) { uint32_t arg = 0; #if SD_RAW_SDHC if(sd_raw_card_type & (1 << SD_RAW_SPEC_2)) arg = 0x40000000; #endif sd_raw_send_command(CMD_APP, 0); response = sd_raw_send_command(CMD_SD_SEND_OP_COND, arg); } else { response = sd_raw_send_command(CMD_SEND_OP_COND, 0); } if((response & (1 << R1_IDLE_STATE)) == 0) break; if(i == 0x7fff) { unselect_card(); return 0; } } #if SD_RAW_SDHC if(sd_raw_card_type & (1 << SD_RAW_SPEC_2)) { if(sd_raw_send_command(CMD_READ_OCR, 0)) { unselect_card(); return 0; } if(sd_raw_rec_byte() & 0x40) sd_raw_card_type |= (1 << SD_RAW_SPEC_SDHC); sd_raw_rec_byte(); sd_raw_rec_byte(); sd_raw_rec_byte(); } #endif /* set block size to 512 bytes */ if(sd_raw_send_command(CMD_SET_BLOCKLEN, 512)) { unselect_card(); return 0; } /* deaddress card */ unselect_card(); // /* switch to highest SPI frequency possible */ // SPCR &= ~((1 << SPR1) | (1 << SPR0)); /* Clock Frequency: f_OSC / 4 */ // SPSR |= (1 << SPI2X); /* Doubled Clock Frequency: f_OSC / 2 */ #if !SD_RAW_SAVE_RAM /* the first block is likely to be accessed first, so precache it here */ raw_block_address = (offset_t) -1; #if SD_RAW_WRITE_BUFFERING raw_block_written = 1; #endif if(!sd_raw_read(0, raw_block, sizeof(raw_block))) { unselect_card(); return 0; } #endif return 1; }