示例#1
0
文件: brsscla.c 项目: brnrc/ion-dtn
static int	reforwardStrandedBundles()
{
	Sdr	sdr = getIonsdr();
	BpDB	*bpConstants = getBpConstants();
	Object	elt;
	Object	nextElt;

	CHKERR(sdr_begin_xn(sdr));
	for (elt = sdr_list_first(sdr, bpConstants->limboQueue); elt;
			elt = nextElt)
	{
		nextElt = sdr_list_next(sdr, elt);
		if (releaseFromLimbo(elt, 0) < 0)
		{
			putErrmsg("Failed releasing bundle from limbo.", NULL);
			sdr_cancel_xn(sdr);
			return -1;
		}
	}

	if (sdr_end_xn(sdr) < 0)
	{
		putErrmsg("brss failed limbo release on client connect.", NULL);
		return -1;
	}

	return 0;
}
示例#2
0
文件: libdtn2fw.c 项目: brnrc/ion-dtn
int	dtn2Init()
{
	Sdr	sdr = getIonsdr();
	Object	dtn2dbObject;
	DtnDB	dtn2dbBuf;

	/*	Recover the DTN database, creating it if necessary.	*/

	CHKERR(sdr_begin_xn(sdr));
	dtn2dbObject = sdr_find(sdr, DTN_DBNAME, NULL);
	switch (dtn2dbObject)
	{
	case -1:		/*	SDR error.			*/
		sdr_cancel_xn(sdr);
		putErrmsg("Failed seeking DTN database in SDR.", NULL);
		return -1;

	case 0:			/*	Not found; must create new DB.	*/
		dtn2dbObject = sdr_malloc(sdr, sizeof(DtnDB));
		if (dtn2dbObject == 0)
		{
			sdr_cancel_xn(sdr);
			putErrmsg("No space for DTN database.", NULL);
			return -1;
		}

		memset((char *) &dtn2dbBuf, 0, sizeof(DtnDB));
		dtn2dbBuf.plans = sdr_list_create(sdr);
		sdr_write(sdr, dtn2dbObject, (char *) &dtn2dbBuf,
				sizeof(DtnDB));
		sdr_catlg(sdr, DTN_DBNAME, 0, dtn2dbObject);
		if (sdr_end_xn(sdr))
		{
			putErrmsg("Can't create DTN database.", NULL);
			return -1;
		}

		break;

	default:		/*	Found DB in the SDR.		*/
		sdr_exit_xn(sdr);
	}

	oK(_dtn2dbObject(&dtn2dbObject));
	oK(_dtn2Constants());
	return 0;
}
示例#3
0
文件: cfdpclock.c 项目: b/ION
static int	scanInFdus(Sdr sdr, time_t currentTime)
{
	CfdpDB		*cfdpConstants;
	Object		entityElt;
			OBJ_POINTER(Entity, entity);
	Object		elt;
	Object		nextElt;
	Object		fduObj;
			OBJ_POINTER(InFdu, fdu);
	CfdpHandler	handler;

	cfdpConstants = getCfdpConstants();
	sdr_begin_xn(sdr);
	for (entityElt = sdr_list_first(sdr, cfdpConstants->entities);
			entityElt; entityElt = sdr_list_next(sdr, entityElt))
	{
		GET_OBJ_POINTER(sdr, Entity, entity, sdr_list_data(sdr,
				entityElt));
		for (elt = sdr_list_first(sdr, entity->inboundFdus); elt;
				elt = nextElt)
		{
			nextElt = sdr_list_next(sdr, elt);
			fduObj = sdr_list_data(sdr, elt);
			GET_OBJ_POINTER(sdr, InFdu, fdu, fduObj);
			if (fdu->eofReceived && fdu->checkTime < currentTime)
			{
				sdr_stage(sdr, NULL, fduObj, 0);
				fdu->checkTimeouts++;
				fdu->checkTime
					+= cfdpConstants->checkTimerPeriod;
				sdr_write(sdr, fduObj, (char *) fdu,
						sizeof(InFdu));
			}

			if (fdu->checkTimeouts
				> cfdpConstants->checkTimeoutLimit)
			{
				if (handleFault(&(fdu->transactionId),
					CfdpCheckLimitReached, &handler) < 0)
				{
					sdr_cancel_xn(sdr);
					putErrmsg("Can't handle check limit \
reached.", NULL);
					return -1;
				}
			}
		}
	}
示例#4
0
文件: libbp.c 项目: b/ION
int	bp_cancel(Object bundleObj)
{
	Sdr	sdr = getIonsdr();

	sdr_begin_xn(sdr);
	if (bpDestroyBundle(bundleObj, 1) < 0)
	{
		sdr_cancel_xn(sdr);
		putErrmsg("Can't cancel bundle.", NULL);
		return -1;
	}

	if (sdr_end_xn(sdr) < 0)
	{
		putErrmsg("Failure in bundle cancellation.", NULL);
		return -1;
	}

	return 0;
}
示例#5
0
文件: bpclock.c 项目: b/ION
static int	dispatchEvents(Sdr sdr, Object events, time_t currentTime)
{
	Object	elt;
	Object	eventObj;
		OBJ_POINTER(BpEvent, event);
	int	result;

	while (1)
	{
		sdr_begin_xn(sdr);
		CHKERR(ionLocked());	/*	In case of killm.	*/
		elt = sdr_list_first(sdr, events);
		if (elt == 0)	/*	No more events to dispatch.	*/
		{
			sdr_exit_xn(sdr);
			return 0;
		}

		eventObj = sdr_list_data(sdr, elt);
		GET_OBJ_POINTER(sdr, BpEvent, event, eventObj);
		if (event->time > currentTime)
		{
			/*	This is the first future event.		*/

			sdr_exit_xn(sdr);
			return 0;
		}

		switch (event->type)
		{
		case expiredTTL:
			result = bpDestroyBundle(event->ref, 1);

			/*	Note that bpDestroyBundle() always
			 *	erases the bundle's timeline event,
			 *	so we must NOT do so here.		*/

			break;		/*	Out of switch.		*/

		case xmitOverdue:
			result = bpReforwardBundle(event->ref);

			/*	Note that bpReforwardBundle() always
			 *	erases the bundle's xmitOverdue event,
			 *	so we must NOT do so here.		*/

			break;		/*	Out of switch.		*/

		case ctDue:
			result = bpReforwardBundle(event->ref);

			/*	Note that bpReforwardBundle() always
			 *	erases the bundle's ctDue event, so
			 *	we must NOT do so here.			*/

			break;		/*	Out of switch.		*/

		default:		/*	Spurious event; erase.	*/
			sdr_free(sdr, eventObj);
			sdr_list_delete(sdr, elt, NULL, NULL);
			result = 0;	/*	Event is ignored.	*/
		}

		if (result != 0)	/*	Dispatching failed.	*/
		{
			sdr_cancel_xn(sdr);
			putErrmsg("Failed handing BP event.", NULL);
			return result;
		}

		if (sdr_end_xn(sdr) < 0)
		{
			putErrmsg("Failed dispatching BP event.", NULL);
			return -1;
		}
	}
}
示例#6
0
文件: ltpclock.c 项目: b/ION
static int	dispatchEvents(Sdr sdr, Object events, time_t currentTime)
{
	Object		elt;
	Object		eventObj;
	LtpEvent	event;
	int		result;

	while (1)
	{
		sdr_begin_xn(sdr);
		elt = sdr_list_first(sdr, events);
		if (elt == 0)	/*	No more events to dispatch.	*/
		{
			sdr_exit_xn(sdr);
			return 0;
		}

		eventObj = sdr_list_data(sdr, elt);
		sdr_read(sdr, (char *) &event, eventObj, sizeof(LtpEvent));
		if (event.scheduledTime > currentTime)
		{
			/*	This is the first future event.		*/

			sdr_exit_xn(sdr);
			return 0;
		}

		sdr_free(sdr, eventObj);
		sdr_list_delete(sdr, elt, NULL, NULL);
		switch (event.type)
		{
		case LtpResendCheckpoint:
			result = ltpResendCheckpoint(event.refNbr2,
					event.refNbr3);
			break;		/*	Out of switch.		*/

		case LtpResendXmitCancel:
			result = ltpResendXmitCancel(event.refNbr2);
			break;		/*	Out of switch.		*/

		case LtpResendReport:
			result = ltpResendReport(event.refNbr1,
					event.refNbr2, event.refNbr3);
			break;		/*	Out of switch.		*/

		case LtpResendRecvCancel:
			result = ltpResendRecvCancel(event.refNbr1,
					event.refNbr2);
			break;		/*	Out of switch.		*/

		default:		/*	Spurious event.		*/
			result = 0;	/*	Event is ignored.	*/
		}

		if (result < 0)		/*	Dispatching failed.	*/
		{
			sdr_cancel_xn(sdr);
			putErrmsg("failed handing LTP event", NULL);
			return result;
		}

		if (sdr_end_xn(sdr) < 0)
		{
			putErrmsg("failed dispatching LTP event", NULL);
			return -1;
		}
	}
}
示例#7
0
文件: dtn2fw.c 项目: brnrc/ion-dtn
int	dtn2fw(int a1, int a2, int a3, int a4, int a5,
		int a6, int a7, int a8, int a9, int a10)
{
#else
int	main(int argc, char *argv[])
{
#endif
	int		running = 1;
	Sdr		sdr;
	VScheme		*vscheme;
	PsmAddress	vschemeElt;
	Scheme		scheme;
	Object		elt;
	Object		bundleAddr;
	Bundle		bundle;

	if (bpAttach() < 0)
	{
		putErrmsg("dtn2fw can't attach to BP.", NULL);
		return 1;
	}

	if (dtn2Init(NULL) < 0)
	{
		putErrmsg("dtn2fw can't load routing database.", NULL);
		return 1;
	}

	sdr = getIonsdr();
	findScheme("dtn", &vscheme, &vschemeElt);
	if (vschemeElt == 0)
	{
		putErrmsg("Scheme name for dtn2 is unknown.", "dtn");
		return 1;
	}

	CHKZERO(sdr_begin_xn(sdr));
	sdr_read(sdr, (char *) &scheme, sdr_list_data(sdr,
			vscheme->schemeElt), sizeof(Scheme));
	sdr_exit_xn(sdr);
	oK(_dtn2fwSemaphore(&vscheme->semaphore));
	isignal(SIGTERM, shutDown);

	/*	Main loop: wait until forwarding queue is non-empty,
	 *	then drain it.						*/

	writeMemo("[i] dtn2fw is running.");
	while (running && !(sm_SemEnded(vscheme->semaphore)))
	{
		/*	We wrap forwarding in an SDR transaction to
		 *	prevent race condition with bpclock (which
		 *	is destroying bundles as their TTLs expire).	*/

		CHKZERO(sdr_begin_xn(sdr));
		elt = sdr_list_first(sdr, scheme.forwardQueue);
		if (elt == 0)	/*	Wait for forwarding notice.	*/
		{
			sdr_exit_xn(sdr);
			if (sm_SemTake(vscheme->semaphore) < 0)
			{
				putErrmsg("Can't take forwarder semaphore.",
						NULL);
				running = 0;
			}

			continue;
		}

		bundleAddr = (Object) sdr_list_data(sdr, elt);
		sdr_stage(sdr, (char *) &bundle, bundleAddr, sizeof(Bundle));
		sdr_list_delete(sdr, elt, NULL, NULL);
		bundle.fwdQueueElt = 0;

		/*	Must rewrite bundle to note removal of
		 *	fwdQueueElt, in case the bundle is abandoned
		 *	and bpDestroyBundle re-reads it from the
		 *	database.					*/

		sdr_write(sdr, bundleAddr, (char *) &bundle, sizeof(Bundle));
		if (enqueueBundle(&bundle, bundleAddr) < 0)
		{
			sdr_cancel_xn(sdr);
			putErrmsg("Can't enqueue bundle.", NULL);
			running = 0;	/*	Terminate loop.		*/
			continue;
		}

		if (sdr_end_xn(sdr) < 0)
		{
			putErrmsg("Can't enqueue bundle.", NULL);
			running = 0;	/*	Terminate loop.		*/
		}

		/*	Make sure other tasks have a chance to run.	*/

		sm_TaskYield();
	}

	writeErrmsgMemos();
	writeMemo("[i] dtn2fw forwarder has ended.");
	ionDetach();
	return 0;
}
示例#8
0
int	ionInitialize(IonParms *parms, uvast ownNodeNbr)
{
	char		wdname[256];
	Sdr		ionsdr;
	Object		iondbObject;
	IonDB		iondbBuf;
	vast		limit;
	sm_WmParms	ionwmParms;
	char		*ionvdbName = _ionvdbName();
	ZcoCallback	notify = ionOfferZcoSpace;

	CHKERR(parms);
	CHKERR(ownNodeNbr);
#ifdef mingw
	if (_winsock(0) < 0)
	{
		return -1;
	}
#endif
	if (sdr_initialize(0, NULL, SM_NO_KEY, NULL) < 0)
	{
		putErrmsg("Can't initialize the SDR system.", NULL);
		return -1;
	}

	if (igetcwd(wdname, 256) == NULL)
	{
		putErrmsg("Can't get cwd name.", NULL);
		return -1;
	}

	if (checkNodeListParms(parms, wdname, ownNodeNbr) < 0)
	{
		putErrmsg("Failed checking node list parms.", NULL);
		return -1;
	}

	if (sdr_load_profile(parms->sdrName, parms->configFlags,
			parms->heapWords, parms->heapKey, parms->pathName,
			"ionrestart") < 0)
	{
		putErrmsg("Unable to load SDR profile for ION.", NULL);
		return -1;
	}

	ionsdr = sdr_start_using(parms->sdrName);
	if (ionsdr == NULL)
	{
		putErrmsg("Can't start using SDR for ION.", NULL);
		return -1;
	}

	ionsdr = _ionsdr(&ionsdr);

	/*	Recover the ION database, creating it if necessary.	*/

	CHKERR(sdr_begin_xn(ionsdr));
	iondbObject = sdr_find(ionsdr, _iondbName(), NULL);
	switch (iondbObject)
	{
	case -1:		/*	SDR error.			*/
		sdr_cancel_xn(ionsdr);
		putErrmsg("Can't seek ION database in SDR.", NULL);
		return -1;

	case 0:			/*	Not found; must create new DB.	*/
		if (ownNodeNbr == 0)
		{
			sdr_cancel_xn(ionsdr);
			putErrmsg("Must supply non-zero node number.", NULL);
			return -1;
		}

		memset((char *) &iondbBuf, 0, sizeof(IonDB));
		memcpy(iondbBuf.workingDirectoryName, wdname, 256);
		iondbBuf.ownNodeNbr = ownNodeNbr;
		iondbBuf.productionRate = -1;	/*	Unknown.	*/
		iondbBuf.consumptionRate = -1;	/*	Unknown.	*/
		limit = (sdr_heap_size(ionsdr) / 100) * (100 - ION_SEQUESTERED);
		zco_set_max_heap_occupancy(ionsdr, limit);
		iondbBuf.occupancyCeiling = zco_get_max_file_occupancy(ionsdr);
		iondbBuf.occupancyCeiling += limit;
		iondbBuf.contacts = sdr_list_create(ionsdr);
		iondbBuf.ranges = sdr_list_create(ionsdr);
		iondbBuf.maxClockError = 0;
		iondbBuf.clockIsSynchronized = 1;
                memcpy(&iondbBuf.parmcopy, parms, sizeof(IonParms));
		iondbObject = sdr_malloc(ionsdr, sizeof(IonDB));
		if (iondbObject == 0)
		{
			sdr_cancel_xn(ionsdr);
			putErrmsg("No space for database.", NULL);
			return -1;
		}

		sdr_write(ionsdr, iondbObject, (char *) &iondbBuf,
				sizeof(IonDB));
		sdr_catlg(ionsdr, _iondbName(), 0, iondbObject);
		if (sdr_end_xn(ionsdr))
		{
			putErrmsg("Can't create ION database.", NULL);
			return -1;
		}

		break;

	default:		/*	Found DB in the SDR.		*/
		sdr_exit_xn(ionsdr);
	}

	oK(_iondbObject(&iondbObject));
	oK(_ionConstants());

	/*	Open ION shared-memory partition.			*/

	ionwmParms.wmKey = parms->wmKey;
	ionwmParms.wmSize = parms->wmSize;
	ionwmParms.wmAddress = parms->wmAddress;
	ionwmParms.wmName = ION_SM_NAME;
	if (_ionwm(&ionwmParms) == NULL)
	{
		putErrmsg("ION memory configuration failed.", NULL);
		return -1;
	}

	if (_ionvdb(&ionvdbName) == NULL)
	{
		putErrmsg("ION can't initialize vdb.", NULL);
		return -1;
	}

	zco_register_callback(notify);
	ionRedirectMemos();
#ifdef mingw
	DWORD	threadId;
	HANDLE	thread = CreateThread(NULL, 0, waitForSigterm, NULL, 0,
			&threadId);
	if (thread == NULL)
	{
		putErrmsg("Can't create sigterm thread.", utoa(GetLastError()));
	}
	else
	{
		CloseHandle(thread);
	}
#endif
	return 0;
}
示例#9
0
int trySendAcs(SdrAcsPendingCust *custodian,
               BpCtReason reasonCode, unsigned char succeeded,
               const CtebScratchpad *cteb)
{
    Object				signalLElt;
    Object				signalAddr;
    SdrAcsSignal        signal;
    BpEvent				timelineEvent;
    Object				newSerializedZco;
    unsigned long		newSerializedLength;
    int					result;
    Sdr					bpSdr = getIonsdr();

    /* To prevent deadlock, take bpSdr before acsSdr. */
    CHKERR(sdr_begin_xn(bpSdr));
    CHKERR(sdr_begin_xn(acsSdr));

    signalLElt = findSdrAcsSignal(custodian->signals, reasonCode, succeeded,
                                  &signalAddr);
    if (signalAddr == 0)
    {
        ACSLOG_ERROR("Can't find ACS signal");
        sdr_exit_xn(acsSdr);
        sdr_exit_xn(bpSdr);
        return -1;
    }
    sdr_peek(acsSdr, signal, signalAddr);


    newSerializedLength = serializeAcs(signalAddr, &newSerializedZco,
                                       signal.serializedZcoLength);
    if (newSerializedLength == 0)
    {
        ACSLOG_ERROR("Can't serialize new ACS (%lu)", signal.serializedZcoLength);
        sdr_cancel_xn(acsSdr);
        sdr_cancel_xn(bpSdr);
        return -1;
    }
    ACSLOG_DEBUG("Serialized a new ACS to %s that is %lu long (old: %lu)",
                 custodian->eid, newSerializedLength, signal.serializedZcoLength);


    /* If serializeAcs() (which serializes an ACS that covers all the "old"
     * custody IDs as well as 1 "new" custody ID that we're trying to append)
     * returned an ACS that's larger than the custodian' preferred size, then:
     *  1) Send the old ACS (the biggest ACS that's smaller than custodian's
     *     preferred size), covering all the old custody IDs but not the new
     *     one.
     *  2) Make a new ACS that includes only the new custody ID.
     */
    if (custodian->acsSize > 0 && newSerializedLength >= custodian->acsSize)
    {
        if(signal.serializedZco == 0)
        {
            /* We don't have an old unserialized ACS to send.  This means the
             * first custody signal appended to this ACS exceeded the acsSize
             * parameter.  The best we can do is send this ACS even though it's
             * bigger than the recommended acsSize. */
            ACSLOG_WARN("Appending first CS to %s was bigger than %lu",
                        custodian->eid, custodian->acsSize);
            signal.serializedZcoLength = newSerializedLength;
            signal.serializedZco = newSerializedZco;
            sdr_poke(acsSdr, signalAddr, signal);
            sendAcs(signalLElt);
            if(sdr_end_xn(acsSdr) < 0)
            {
                ACSLOG_ERROR("Can't serialize ACS bundle.");
                sdr_cancel_xn(bpSdr);
                return -1;
            }
            if (sdr_end_xn(bpSdr) < 0)
            {
                ACSLOG_ERROR("Can't send ACS bundle.");
                return -1;
            }
            return 0;
        }

        /* Calling this invalidates our signalLElt and signalAddr pointers, so
         * we must re-find the signal before using them again. */
        sendAcs(signalLElt);

        /* Add the one that was uncovered by the serialized payload back in */
        result = appendToSdrAcsSignals(custodian->signals,
                                       signal.pendingCustAddr, reasonCode, succeeded,
                                       cteb);
        switch (result)
        {
        case 0:
            /* Success; continue processing. */
            break;
        default:
            ACSLOG_ERROR("Can't carry size-limited ID to new ACS");
            sdr_cancel_xn(acsSdr);
            sdr_cancel_xn(bpSdr);
            return -1;
        }

        /* Find the uncovered one that we just added. */
        signalLElt = findSdrAcsSignal(custodian->signals, reasonCode,
                                      succeeded, &signalAddr);
        if (signalAddr == 0)
        {
            ACSLOG_ERROR("Can't find ACS signal");
            sdr_cancel_xn(acsSdr);
            sdr_cancel_xn(bpSdr);
            return -1;
        }
        sdr_peek(acsSdr, signal, signalAddr);

        /* Serialize the new one */
        newSerializedLength = serializeAcs(signalAddr, &newSerializedZco, 0);
        if (newSerializedLength <= 0)
        {
            ACSLOG_ERROR("Can't serialize new ACS (%lu)", newSerializedLength);
            sdr_cancel_xn(acsSdr);
            sdr_cancel_xn(bpSdr);
            return -1;
        }
    } else {
        if (signal.serializedZco != 0)
        {
            /* Free the old payload zco. */
            zco_destroy(bpSdr, signal.serializedZco);
        }
    }

    /* Store the new ZCO */
    signal.serializedZco = newSerializedZco;
    signal.serializedZcoLength = newSerializedLength;

    /* If there is not an ACS generation countdown timer, create one. */
    if(signal.acsDue == 0)
    {
        timelineEvent.type = csDue;
        if(custodian->acsDelay == 0) {
            timelineEvent.time = getUTCTime() + DEFAULT_ACS_DELAY;
        } else {
            timelineEvent.time = getUTCTime() + custodian->acsDelay;
        }
        timelineEvent.ref  = signalLElt;
        signal.acsDue = insertBpTimelineEvent(&timelineEvent);
        if (signal.acsDue == 0)
        {
            ACSLOG_ERROR("Can't add timeline event to generate ACS");
            sdr_cancel_xn(acsSdr);
            sdr_cancel_xn(bpSdr);
            return -1;
        }
    }
    sdr_poke(acsSdr, signalAddr, signal);
    if(sdr_end_xn(acsSdr) < 0)
    {
        ACSLOG_ERROR("Can't track ACS");
        sdr_cancel_xn(bpSdr);
        return -1;
    }
    if (sdr_end_xn(bpSdr) < 0)
    {
        ACSLOG_ERROR("Can't add timeline event to generate ACS");
        return -1;
    }
    return 0;
}
示例#10
0
文件: brsscla.c 项目: b/ION
static int	reforwardStrandedBundles(int nodeNbr)
{
	Sdr	sdr = getIonsdr();
	BpDB	*bpConstants = getBpConstants();
	Object	elt;
	Object	eventObj;
		OBJ_POINTER(BpEvent, event);
		OBJ_POINTER(Bundle, bundle);

	sdr_begin_xn(sdr);
	for (elt = sdr_list_first(sdr, bpConstants->timeline); elt;
			elt = sdr_list_next(sdr, elt))
	{
		eventObj = sdr_list_data(sdr, elt);
		GET_OBJ_POINTER(sdr, BpEvent, event, eventObj);
		if (event->type != expiredTTL)
		{
			continue;
		}

		/*	Have got a bundle that still exists.		*/

		GET_OBJ_POINTER(sdr, Bundle, bundle, event->ref);
		if (bundle->dlvQueueElt || bundle->fragmentElt
		|| bundle->fwdQueueElt || bundle->overdueElt
		|| bundle->ctDueElt || bundle->xmitsNeeded > 0)
		{
			/*	No need to reforward.			*/

			continue;
		}

		/*	A stranded bundle, awaiting custody acceptance.
		 *	Might be for a neighbor other than the one
		 *	that just reconnected, but in that case the
		 *	bundle will be reforwarded and requeued and
		 *	go into the bit bucket again; no harm.  Note,
		 *	though, that this means that a BRS server
		 *	would be a bad candidate for gateway into a
		 *	space subnet: due to long OWLTs, there might
		 *	be a lot of bundles sent via LTP that are
		 *	awaiting custody acceptance, so reconnection
		 *	of a BRS client might trigger retransmission
		 *	of a lot of bundles on the space link in
		 *	addition to the ones to be issued via brss.	*/

		if (bpReforwardBundle(event->ref) < 0)
		{
			sdr_cancel_xn(sdr);
			putErrmsg("brss reforward failed.", NULL);
			return -1;
		}
	}

	if (sdr_end_xn(sdr) < 0)
	{
		putErrmsg("brss reforwarding failed.", NULL);
		return -1;
	}

	return 0;
}
示例#11
0
/*
 * This function writes an item and its associated descriptor into the SDR,
 * allocating space for each, and adding the SDR descriptor pointer to a
 * given SDR list.
 *
 * item    : The serialized item to store in the SDR.
 * item_len: The size of the serialized item.
 * *itemObj: The SDR pointer to the serialized item in the SDR.
 * desc    : The item descriptor being written to the SDR.
 * desc_len: The size of the item descriptor.
 * *descObj: The SDR pointer to the item's descriptor object in the SDR.
 * list    : The SDR list holding the item descriptor (at *descrObj).
 */
int  db_persist(uint8_t  *item,
					  uint32_t  item_len,
					  Object   *itemObj,
					  void     *desc,
					  uint32_t  desc_len,
					  Object   *descObj,
					  Object    list)
{

   Sdr sdr = getIonsdr();

   CHKERR(sdr_begin_xn(sdr));


   /* Step 1: Allocate a descriptor object for this item in the SDR. */
   if((*descObj = sdr_malloc(sdr, desc_len)) == 0)
   {
	   sdr_cancel_xn(sdr);

	   AMP_DEBUG_ERR("db_persist",
			   	       "Can't allocate descriptor of size %d.",
			   	       desc_len);
	   return -1;
   }


   /* Step 2: Allocate space for the serialized rule in the SDR. */
   if((*itemObj = sdr_malloc(sdr, item_len)) == 0)
   {
	   sdr_free(sdr, *descObj);

	   sdr_cancel_xn(sdr);
	   *descObj = 0;
	   AMP_DEBUG_ERR("db_persist",
			   	   	   "Unable to allocate Item in SDR. Size %d.",
			           item_len);
	   return -1;
   }

   /* Step 3: Write the item to the SDR. */
   sdr_write(sdr, *itemObj, (char *) item, item_len);

   /* Step 4: Write the item descriptor to the SDR. */
   sdr_write(sdr, *descObj, (char *) desc, desc_len);

   /* Step 5: Save the descriptor in the AgentDB active rules list. */
   if (sdr_list_insert_last(sdr, list, *descObj) == 0)
   {
      sdr_free(sdr, *itemObj);
      sdr_free(sdr, *descObj);

      sdr_cancel_xn(sdr);

      *itemObj = 0;
      *descObj = 0;
      AMP_DEBUG_ERR("db_persist",
				        "Unable to insert item Descr. in SDR.", NULL);
      return -1;
   }

	if(sdr_end_xn(sdr))
	{
		AMP_DEBUG_ERR("db_persist", "Can't create Agent database.", NULL);
		return -1;
	}

   return 1;
}
示例#12
0
文件: rfx.c 项目: michirod/cgr-jni
PsmAddress	rfx_insert_contact(time_t fromTime, time_t toTime,
			uvast fromNode, uvast toNode, unsigned int xmitRate,
			float prob)
{
	Sdr		sdr = getIonsdr();
	PsmPartition	ionwm = getIonwm();
	IonVdb 		*vdb = getIonVdb();
	IonCXref	arg;
	PsmAddress	cxelt;
	PsmAddress	nextElt;
	PsmAddress	cxaddr;
	IonCXref	*cxref;
	PsmAddress	prevElt;
	char		contactIdString[128];
	IonContact	contact;
	Object		iondbObj;
	IonDB		iondb;
	Object		obj;
	Object		elt;

	CHKZERO(fromTime);
	CHKZERO(toTime > fromTime);
	CHKZERO(fromNode);
	CHKZERO(toNode);
	CHKZERO(prob > 0.0 && prob <= 1.0);
	CHKZERO(sdr_begin_xn(sdr));

	/*	Make sure contact doesn't overlap with any pre-existing
	 *	contacts.						*/

	memset((char *) &arg, 0, sizeof(IonCXref));
	arg.fromNode = fromNode;
	arg.toNode = toNode;
	arg.fromTime = fromTime;
	arg.toTime = toTime;
	arg.xmitRate = xmitRate;
	arg.routingObject = 0;
	cxelt = sm_rbt_search(ionwm, vdb->contactIndex, rfx_order_contacts, &arg, &nextElt);
	//cxelt = 0;
	if (cxelt)	/*	Contact is in database already.		*/
	{
		cxaddr = sm_rbt_data(ionwm, cxelt);
		cxref = (IonCXref *) psp(ionwm, cxaddr);
		if (cxref->xmitRate == xmitRate)
		{
			sdr_exit_xn(sdr);
			return cxaddr;
		}

		isprintf(contactIdString, sizeof contactIdString,
				"at %lu, %llu->%llu", fromTime, fromNode, toNode);
		writeMemoNote("[?] Contact data rate not revised",
				contactIdString);
		sdr_exit_xn(sdr);
		return 0;
	}
	else	/*	Check for overlap, which is not allowed.	*/
	{
		if (nextElt)
		{
			prevElt = sm_rbt_prev(ionwm, nextElt);
			cxref = (IonCXref *)
				psp(ionwm, sm_rbt_data(ionwm, nextElt));
			if (fromNode == cxref->fromNode
			&& toNode == cxref->toNode
			&& toTime > cxref->fromTime)
			{
				writeMemoNote("[?] Overlapping contact",
						utoa(fromNode));
				sdr_exit_xn(sdr);
				return 0;
			}
		}
		else
		{
			prevElt = sm_rbt_last(ionwm, vdb->contactIndex);
		}

		if (prevElt)
		{
			cxref = (IonCXref *)
				psp(ionwm, sm_rbt_data(ionwm, prevElt));
			if (fromNode == cxref->fromNode
			&& toNode == cxref->toNode
			&& fromTime < cxref->toTime)
			{
				writeMemoNote("[?] Overlapping contact",
						utoa(fromNode));
				sdr_exit_xn(sdr);
				return 0;
			}
		}
	}

	/*	Contact isn't already in database; okay to add.		*/

	cxaddr = 0;
	contact.fromTime = fromTime;
	contact.toTime = toTime;
	contact.fromNode = fromNode;
	contact.toNode = toNode;
	contact.xmitRate = xmitRate;
	contact.prob = prob;
	obj = sdr_malloc(sdr, sizeof(IonContact));
	if (obj)
	{
		sdr_write(sdr, obj, (char *) &contact, sizeof(IonContact));
		iondbObj = getIonDbObject();
		sdr_read(sdr, (char *) &iondb, iondbObj, sizeof(IonDB));
 		elt = sdr_list_insert_last(sdr, iondb.contacts, obj);
		if (elt)
		{
			arg.contactElt = elt;
			cxaddr = insertCXref(&arg);
			if (cxaddr == 0)
			{
				sdr_cancel_xn(sdr);
			}
		}
	}

	if (sdr_end_xn(sdr) < 0)
	{
		putErrmsg("Can't insert contact.", NULL);
		return 0;
	}

	return cxaddr;
}
示例#13
0
文件: rfx.c 项目: michirod/cgr-jni
Object	rfx_insert_range(time_t fromTime, time_t toTime, uvast fromNode,
		uvast toNode, unsigned int owlt)
{
	Sdr		sdr = getIonsdr();
	PsmPartition	ionwm = getIonwm();
	IonVdb		*vdb = getIonVdb();
	IonRXref	arg1;
	PsmAddress	rxelt;
	PsmAddress	nextElt;
	PsmAddress	rxaddr;
	IonRXref	*rxref;
	IonEvent	arg2;
	PsmAddress	prevElt;
	char		rangeIdString[128];
	IonRange	range;
	Object		iondbObj;
	IonDB		iondb;
	Object		obj;
	Object		elt;

	/*	Note that ranges are normally assumed to be symmetrical,
	 *	i.e., the signal propagation time from B to A is normally
	 *	assumed to be the same as the signal propagation time
	 *	from A to B.  For this reason, normally only the A->B
	 *	range (where A is a node number that is less than node
	 *	number B) need be entered; when ranges are applied to
	 *	the IonNeighbor objects in the ION database, the A->B
	 *	range is stored as the OWLT for transmissions from A to
	 *	B and also as the OWLT for transmissions from B to A.
	 *
	 *	However, it is possible to insert asymmetric ranges, as
	 *	would apply when the forward and return traffic between
	 *	some pair of nodes travels by different transmission
	 *	paths that introduce different latencies.  When this is
	 *	the case, both the A->B and B->A ranges must be entered.
	 *	The A->B range is initially processed as a symmetric
	 *	range as described above, but when the B->A range is
	 *	subsequently noted it overrides the default OWLT for
	 *	transmissions from B to A.				*/

	CHKZERO(fromTime);
	CHKZERO(toTime > fromTime);
	CHKZERO(fromNode);
	CHKZERO(toNode);
	CHKZERO(sdr_begin_xn(sdr));

	/*	Make sure range doesn't overlap with any pre-existing
	 *	ranges.							*/

	memset((char *) &arg1, 0, sizeof(IonRXref));
	arg1.fromNode = fromNode;
	arg1.toNode = toNode;
	arg1.fromTime = fromTime;
	arg1.toTime = toTime;
	arg1.owlt = owlt;
	rxelt = sm_rbt_search(ionwm, vdb->rangeIndex, rfx_order_ranges,
			&arg1, &nextElt);
	if (rxelt)	/*	Range is in database already.		*/
	{
		rxaddr = sm_rbt_data(ionwm, rxelt);
		rxref = (IonRXref *) psp(ionwm, rxaddr);
		if (rxref->rangeElt == 0)	/*	Imputed.	*/
		{
			/*	The existing range for the same nodes
			 *	and time is merely an imputed range,
			 *	which is being overridden by a non-
			 *	canonical range assertion indicating
			 *	an override of the normal symmetry in
			 *	the owlt between nodes.  Must delete
			 *	that imputed range, together with the
			 *	associated events, after which there
			 *	is no duplication.			*/

			sm_rbt_delete(ionwm, vdb->rangeIndex, rfx_order_ranges,
					&arg1, rfx_erase_data, NULL);
			arg2.ref = rxaddr;
			arg2.time = rxref->fromTime;
			arg2.type = IonStartImputedRange;
			sm_rbt_delete(ionwm, vdb->timeline, rfx_order_events,
					&arg2, rfx_erase_data, NULL);
			arg2.time = rxref->toTime;
			arg2.type = IonStopImputedRange;
			sm_rbt_delete(ionwm, vdb->timeline, rfx_order_events,
					&arg2, rfx_erase_data, NULL);
		}
		else	/*	Overriding an asserted range.		*/
		{
			/*	This is an attempt to replace an
			 *	existing asserted range with another
			 *	asserted range, which is prohibited.	*/

			if (rxref->owlt == owlt)
			{
				sdr_exit_xn(sdr);
				return rxaddr;	/*	Idempotent.	*/
			}

			isprintf(rangeIdString, sizeof rangeIdString,
					"from %lu, %llu->%llu", fromTime,
					fromNode, toNode);
			writeMemoNote("[?] Range OWLT not revised",
					rangeIdString);
			sdr_exit_xn(sdr);
			return 0;
		}
	}

	/*	Check for overlap, which is not allowed.		*/

	if (nextElt)
	{
		prevElt = sm_rbt_prev(ionwm, nextElt);
		rxref = (IonRXref *)
			psp(ionwm, sm_rbt_data(ionwm, nextElt));
		if (fromNode == rxref->fromNode
		&& toNode == rxref->toNode
		&& toTime > rxref->fromTime)
		{
			writeMemoNote("[?] Overlapping range",
					utoa(fromNode));
			sdr_exit_xn(sdr);
			return 0;
		}
	}
	else
	{
		prevElt = sm_rbt_last(ionwm, vdb->rangeIndex);
	}

	if (prevElt)
	{
		rxref = (IonRXref *)
			psp(ionwm, sm_rbt_data(ionwm, prevElt));
		if (fromNode == rxref->fromNode
		&& toNode == rxref->toNode
		&& fromTime < rxref->toTime)
		{
			writeMemoNote("[?] Overlapping range",
					utoa(fromNode));
			sdr_exit_xn(sdr);
			return 0;
		}
	}

	/*	Range isn't already in database; okay to add.		*/

	rxaddr = 0;
	range.fromTime = fromTime;
	range.toTime = toTime;
	range.fromNode = fromNode;
	range.toNode = toNode;
	range.owlt = owlt;
	obj = sdr_malloc(sdr, sizeof(IonRange));
	if (obj)
	{
		sdr_write(sdr, obj, (char *) &range, sizeof(IonRange));
		iondbObj = getIonDbObject();
		sdr_read(sdr, (char *) &iondb, iondbObj, sizeof(IonDB));
		elt = sdr_list_insert_last(sdr, iondb.ranges, obj);
		if (elt)
		{
			arg1.rangeElt = elt;
			rxaddr = insertRXref(&arg1);
			if (rxaddr == 0)
			{
				sdr_cancel_xn(sdr);
			}
		}
	}

	if (sdr_end_xn(sdr) < 0)
	{
		putErrmsg("Can't insert range.", NULL);
		return 0;
	}

	return rxaddr;
}
示例#14
0
文件: bpecho.c 项目: b/ION
int	bpecho(int a1, int a2, int a3, int a4, int a5,
		int a6, int a7, int a8, int a9, int a10)
{
	char	*ownEid = (char *) a1;
#else
int	main(int argc, char **argv)
{
	char	*ownEid = (argc > 1 ? argv[1] : NULL);
#endif
/*	Indication marks:	"." for BpPayloadPresent (1),
				"*" for BpReceptionTimedOut (2).
 				"!" for BpReceptionInterrupted (3).	*/
	static char	dlvmarks[] = "?.*!";
	BpSAP		sap;
	Sdr		sdr;
	int		running = 1;
	char		dataToSend[ADU_LEN] = "x";
	Object		bundleZco;
	Object		newBundle;
	Object		extent;
	BpDelivery	dlv;
	char		sourceEid[1024];

	if (ownEid == NULL)
	{
		PUTS("Usage: bpecho <own endpoint ID>");
		return 0;
	}

	if (bp_attach() < 0)
	{
		putErrmsg("Can't attach to BP.", NULL);
		return 0;
	}

	if (bp_open(ownEid, &sap) < 0)
	{
		putErrmsg("Can't open own endpoint.", NULL);
		return 0;
	}

	oK(_bpsap(&sap));
	sdr = bp_get_sdr();
	isignal(SIGINT, handleQuit);
	while (1)
	{
		/*	Wait for a bundle from the driver.		*/

		while (running)
		{
			if (bp_receive(sap, &dlv, BP_BLOCKING) < 0)
			{
				bp_close(sap);
				putErrmsg("bpecho bundle reception failed.",
						NULL);
				return 1;
			}

putchar(dlvmarks[dlv.result]);
fflush(stdout);
			if (dlv.result == BpReceptionInterrupted)
			{
				running = 0;
				continue;
			}

			if (dlv.result == BpPayloadPresent)
			{
				istrcpy(sourceEid, dlv.bundleSourceEid,
						sizeof sourceEid);
				bp_release_delivery(&dlv, 1);
				break;	/*	Out of reception loop.	*/
			}

			bp_release_delivery(&dlv, 1);
		}

		if (!running)	/*	Benchmark run terminated.	*/
		{
			break;		/*	Out of main loop.	*/
		}

		/*	Now send acknowledgment bundle.			*/

		sdr_begin_xn(sdr);
		extent = sdr_malloc(sdr, ADU_LEN);
		if (extent == 0)
		{
			sdr_cancel_xn(sdr);
			putErrmsg("No space for ZCO extent.", NULL);
			break;		/*	Out of main loop.	*/
		}

		sdr_write(sdr, extent, dataToSend, ADU_LEN);
		bundleZco = zco_create(sdr, ZcoSdrSource, extent, 0, ADU_LEN);
		if (sdr_end_xn(sdr) < 0 || bundleZco == 0)
		{
			putErrmsg("Can't create ZCO.", NULL);
			break;		/*	Out of main loop.	*/
		}

		if (bp_send(sap, BP_BLOCKING, sourceEid, NULL, 300,
				BP_STD_PRIORITY, NoCustodyRequested,
				0, 0, NULL, bundleZco, &newBundle) < 1)
		{
			putErrmsg("bpecho can't send echo bundle.", NULL);
			break;		/*	Out of main loop.	*/
		}
	}

	bp_close(sap);
	writeErrmsgMemos();
	bp_detach();
	return 0;
}
示例#15
0
文件: libbp.c 项目: b/ION
int	bp_receive(BpSAP sap, BpDelivery *dlvBuffer, int timeoutSeconds)
{
	Sdr		sdr = getIonsdr();
	VEndpoint	*vpoint;
			OBJ_POINTER(Endpoint, endpoint);
	Object		dlvElt;
	Object		bundleAddr;
	Bundle		bundle;
	TimerParms	timerParms;
	pthread_t	timerThread;
	int		result;
	char		*dictionary;

	CHKERR(sap && dlvBuffer);
	if (timeoutSeconds < BP_BLOCKING)
	{
		putErrmsg("Illegal timeout interval.", itoa(timeoutSeconds));
		return -1;
	}

	vpoint = sap->vpoint;
	sdr_begin_xn(sdr);
	if (vpoint->appPid != sm_TaskIdSelf())
	{
		sdr_exit_xn(sdr);
		putErrmsg("Can't receive: not owner of endpoint.",
				itoa(vpoint->appPid));
		return -1;
	}

	if (sm_SemEnded(vpoint->semaphore))
	{
		sdr_exit_xn(sdr);
		writeMemo("[?] Endpoint has been stopped.");

		/*	End task, but without error.			*/

		return -1;
	}

	/*	Get oldest bundle in delivery queue, if any; wait
	 *	for one if necessary.					*/

	GET_OBJ_POINTER(sdr, Endpoint, endpoint, sdr_list_data(sdr,
			vpoint->endpointElt));
	dlvElt = sdr_list_first(sdr, endpoint->deliveryQueue);
	if (dlvElt == 0)
	{
		sdr_exit_xn(sdr);
		if (timeoutSeconds == BP_POLL)
		{
			dlvBuffer->result = BpReceptionTimedOut;
			return 0;
		}

		/*	Wait for semaphore to be given, either by the
		 *	deliverBundle() function or by timer thread.	*/

		if (timeoutSeconds == BP_BLOCKING)
		{
			timerParms.interval = -1;
		}
		else	/*	This is a receive() with a deadline.	*/
		{
			timerParms.interval = timeoutSeconds;
			timerParms.semaphore = vpoint->semaphore;
			if (pthread_create(&timerThread, NULL, timerMain,
					&timerParms) < 0)
			{
				putSysErrmsg("Can't enable interval timer",
						NULL);
				return -1;
			}
		}

		/*	Take endpoint semaphore.			*/

		if (sm_SemTake(vpoint->semaphore) < 0)
		{
			putErrmsg("Can't take endpoint semaphore.", NULL);
			return -1;
		}

		if (sm_SemEnded(vpoint->semaphore))
		{
			writeMemo("[i] Endpoint has been stopped.");

			/*	End task, but without error.		*/

			return -1;
		}

		/*	Have taken the semaphore, one way or another.	*/

		sdr_begin_xn(sdr);
		dlvElt = sdr_list_first(sdr, endpoint->deliveryQueue);
		if (dlvElt == 0)	/*	Still nothing.		*/
		{
			/*	Either sm_SemTake() was interrupted
			 *	or else timer thread gave semaphore.	*/

			sdr_exit_xn(sdr);
			if (timerParms.interval == 0)
			{
				/*	Timer expired.			*/

				dlvBuffer->result = BpReceptionTimedOut;
				pthread_join(timerThread, NULL);
			}
			else	/*	Interrupted.			*/
			{
				dlvBuffer->result = BpReceptionInterrupted;
				if (timerParms.interval != -1)
				{
					pthread_cancel(timerThread);
					pthread_join(timerThread, NULL);
				}
			}

			return 0;
		}
		else		/*	Bundle was delivered.		*/
		{
			if (timerParms.interval != -1)
			{
				pthread_cancel(timerThread);
				pthread_join(timerThread, NULL);
			}
		}
	}

	/*	At this point, we have got a dlvElt and are in an SDR
	 *	transaction.						*/

	bundleAddr = sdr_list_data(sdr, dlvElt);
	sdr_stage(sdr, (char *) &bundle, bundleAddr, sizeof(Bundle));
	dictionary = retrieveDictionary(&bundle);
	if (dictionary == (char *) &bundle)
	{
		sdr_cancel_xn(sdr);
		putErrmsg("Can't retrieve dictionary.", NULL);
		return -1;
	}

	/*	Now fill in the data indication structure.		*/

	dlvBuffer->result = BpPayloadPresent;
	if (printEid(&bundle.id.source, dictionary,
			&dlvBuffer->bundleSourceEid) < 0)
	{
		sdr_cancel_xn(sdr);
		putErrmsg("Can't print source EID.", NULL);
		return -1;
	}

	dlvBuffer->bundleCreationTime.seconds = bundle.id.creationTime.seconds;
	dlvBuffer->bundleCreationTime.count = bundle.id.creationTime.count;
	dlvBuffer->adminRecord = bundle.bundleProcFlags & BDL_IS_ADMIN;
	dlvBuffer->adu = zco_add_reference(sdr, bundle.payload.content);
	dlvBuffer->ackRequested = bundle.bundleProcFlags & BDL_APP_ACK_REQUEST;

	/*	Now before returning we send delivery status report
	 *	if it is requested.					*/

	if (SRR_FLAGS(bundle.bundleProcFlags) & BP_DELIVERED_RPT)
	{
		bundle.statusRpt.flags |= BP_DELIVERED_RPT;
		getCurrentDtnTime(&bundle.statusRpt.deliveryTime);
	}

	if (bundle.statusRpt.flags)
	{
		result = sendStatusRpt(&bundle, dictionary);
		if (result < 0)
		{
			sdr_cancel_xn(sdr);
			putErrmsg("Can't send status report.", NULL);
			return -1;
		}
	}

	/*	Finally delete the delivery list element and, if
	 *	possible, destroy the bundle itself.			*/

	if (dictionary)
	{
		MRELEASE(dictionary);
	}

	sdr_list_delete(sdr, dlvElt, (SdrListDeleteFn) NULL, NULL);
	bundle.dlvQueueElt = 0;
	sdr_write(sdr, bundleAddr, (char *) &bundle, sizeof(Bundle));
	if (bpDestroyBundle(bundleAddr, 0) < 0)
	{
		sdr_cancel_xn(sdr);
		putErrmsg("Can't destroy bundle.", NULL);
		return -1;
	}

	if (sdr_end_xn(sdr) < 0)
	{
		putErrmsg("Failure in bundle reception.", NULL);
		return -1;
	}

	return 0;
}
示例#16
0
文件: ion.c 项目: b/ION
int	ionInitialize(IonParms *parms, unsigned long ownNodeNbr)
{
	char		wdname[256];
	Sdr		ionsdr;
	Object		iondbObject;
	IonDB		iondbBuf;
	sm_WmParms	ionwmParms;
	char		*ionvdbName = _ionvdbName();

	CHKERR(parms);
	CHKERR(ownNodeNbr);
	if (sdr_initialize(0, NULL, SM_NO_KEY, NULL) < 0)
	{
		putErrmsg("Can't initialize the SDR system.", NULL);
		return -1;
	}

	if (igetcwd(wdname, 256) == NULL)
	{
		putErrmsg("Can't get cwd name.", NULL);
		return -1;
	}

	if (checkNodeListParms(parms, wdname, ownNodeNbr) < 0)
	{
		putErrmsg("Failed checking node list parms.", NULL);
		return -1;
	}

	if (sdr_load_profile(parms->sdrName, parms->configFlags,
			parms->heapWords, parms->heapKey, parms->pathName) < 0)
	{
		putErrmsg("Unable to load SDR profile for ION.", NULL);
		return -1;
	}

	ionsdr = sdr_start_using(parms->sdrName);
	if (ionsdr == NULL)
	{
		putErrmsg("Can't start using SDR for ION.", NULL);
		return -1;
	}

	ionsdr = _ionsdr(&ionsdr);

	/*	Recover the ION database, creating it if necessary.	*/

	sdr_begin_xn(ionsdr);
	iondbObject = sdr_find(ionsdr, _iondbName(), NULL);
	switch (iondbObject)
	{
	case -1:		/*	SDR error.			*/
		sdr_cancel_xn(ionsdr);
		putErrmsg("Can't seek ION database in SDR.", NULL);
		return -1;

	case 0:			/*	Not found; must create new DB.	*/
		if (ownNodeNbr == 0)
		{
			sdr_cancel_xn(ionsdr);
			putErrmsg("Must supply non-zero node number.", NULL);
			return -1;
		}

		memset((char *) &iondbBuf, 0, sizeof(IonDB));
		memcpy(iondbBuf.workingDirectoryName, wdname, 256);
		iondbBuf.ownNodeNbr = ownNodeNbr;
		iondbBuf.occupancyCeiling = ((sdr_heap_size(ionsdr) / 100)
			 	* (100 - ION_SEQUESTERED));
		iondbBuf.receptionSpikeReserve = iondbBuf.occupancyCeiling / 16;
		if (iondbBuf.receptionSpikeReserve < MIN_SPIKE_RSRV)
		{
			iondbBuf.receptionSpikeReserve = MIN_SPIKE_RSRV;
		}

		iondbBuf.contacts = sdr_list_create(ionsdr);
		iondbBuf.ranges = sdr_list_create(ionsdr);
		iondbBuf.maxClockError = 0;
		iondbObject = sdr_malloc(ionsdr, sizeof(IonDB));
		if (iondbObject == 0)
		{
			sdr_cancel_xn(ionsdr);
			putErrmsg("No space for database.", NULL);
			return -1;
		}

		sdr_write(ionsdr, iondbObject, (char *) &iondbBuf,
				sizeof(IonDB));
		sdr_catlg(ionsdr, _iondbName(), 0, iondbObject);
		if (sdr_end_xn(ionsdr))
		{
			putErrmsg("Can't create ION database.", NULL);
			return -1;
		}

		break;

	default:		/*	Found DB in the SDR.		*/
		sdr_exit_xn(ionsdr);
	}

	oK(_iondbObject(&iondbObject));
	oK(_ionConstants());

	/*	Open ION shared-memory partition.			*/

	ionwmParms.wmKey = parms->wmKey;
	ionwmParms.wmSize = parms->wmSize;
	ionwmParms.wmAddress = parms->wmAddress;
	ionwmParms.wmName = ION_SM_NAME;
	if (_ionwm(&ionwmParms) == NULL)
	{
		putErrmsg("ION memory configuration failed.", NULL);
		return -1;
	}

	if (_ionvdb(&ionvdbName) == NULL)
	{
		putErrmsg("ION can't initialize vdb.", NULL);
		return -1;
	}

	ionRedirectMemos();
	return 0;
}
示例#17
0
static void	*receivePdus(void *parm)
{
    RxThreadParms	*parms = (RxThreadParms *) parm;
    char		ownEid[64];
    Sdr		sdr;
    BpDelivery	dlv;
    int		contentLength;
    ZcoReader	reader;
    unsigned char	*buffer;

    buffer = MTAKE(CFDP_MAX_PDU_SIZE);
    if (buffer == NULL)
    {
        putErrmsg("bputa receiver thread can't get buffer.", NULL);
        parms->running = 0;
        return NULL;
    }

    isprintf(ownEid, sizeof ownEid, "ipn:" UVAST_FIELDSPEC ".%u",
             getOwnNodeNbr(), CFDP_RECV_SVC_NBR);
    if (bp_open(ownEid, &(parms->rxSap)) < 0)
    {
        MRELEASE(buffer);
        putErrmsg("CFDP can't open own 'recv' endpoint.", ownEid);
        parms->running = 0;
        return NULL;
    }

    sdr = bp_get_sdr();
    writeMemo("[i] bputa input has started.");
    while (parms->running)
    {
        if (bp_receive(parms->rxSap, &dlv, BP_BLOCKING) < 0)
        {
            putErrmsg("bputa bundle reception failed.", NULL);
            parms->running = 0;
            continue;
        }

        switch (dlv.result)
        {
        case BpEndpointStopped:
            parms->running = 0;
            break;

        case BpPayloadPresent:
            contentLength = zco_source_data_length(sdr, dlv.adu);
            CHKNULL(sdr_begin_xn(sdr));
            zco_start_receiving(dlv.adu, &reader);
            if (zco_receive_source(sdr, &reader, contentLength,
                                   (char *) buffer) < 0)
            {
                sdr_cancel_xn(sdr);
                putErrmsg("bputa can't receive bundle ADU.",
                          itoa(contentLength));
                parms->running = 0;
                continue;
            }

            if (sdr_end_xn(sdr) < 0)
            {
                putErrmsg("bputa can't handle bundle delivery.",
                          NULL);
                parms->running = 0;
                continue;
            }

            if (cfdpHandleInboundPdu(buffer, contentLength) < 0)
            {
                putErrmsg("bputa can't handle inbound PDU.",
                          NULL);
                parms->running = 0;
            }

            break;

        default:
            break;
        }

        bp_release_delivery(&dlv, 1);

        /*	Make sure other tasks have a chance to run.	*/

        sm_TaskYield();
    }

    bp_close(parms->rxSap);
    MRELEASE(buffer);
    writeMemo("[i] bputa input has stopped.");
    return NULL;
}
示例#18
0
int sendAcs(Object signalLElt)
{
    BpExtendedCOS		ecos = { 0, 0, 255 };
    Object			signalAddr;
    Object			acsBundleObj;	/* Unused write-out of bpSend */
    SdrAcsSignal        	signal;
    SdrAcsPendingCust	pendingCust;
    int			result;
    Sdr			bpSdr = getIonsdr();

    assert(signalLElt != 0);

    if ((acsSdr = getAcssdr()) == NULL)
    {
        putErrmsg("Can't send ACS, SDR not available.", NULL);
        return -1;
    }

    /* To prevent deadlock, we take the BP SDR before the ACS SDR. */
    CHKERR(sdr_begin_xn(bpSdr));
    CHKERR(sdr_begin_xn(acsSdr));

    signalAddr = sdr_list_data(acsSdr, signalLElt);
    if (signalAddr == 0) {
        ACSLOG_ERROR("Can't derefence ACS signal to send it.");
        sdr_cancel_xn(acsSdr);
        sdr_cancel_xn(bpSdr);
        return -1;
    }

    sdr_peek(acsSdr, signal, signalAddr);
    sdr_peek(acsSdr, pendingCust, signal.pendingCustAddr);

    /* Remove ref to this serialized ZCO from signal; also remove the bundle
     * IDs covered by this serialized ZCO. */
    result = bpSend(NULL, pendingCust.eid, NULL, ACS_TTL,
                    BP_EXPEDITED_PRIORITY, NoCustodyRequested, 0, 0, &ecos,
                    signal.serializedZco, &acsBundleObj, BP_CUSTODY_SIGNAL);
    switch (result)
    {
    /* All return codes from bpSend() still cause us to continue processing
     * to free this ACS.  If it was sent successfully, good.  If it wasn't,
     * that's due to a system failure or problem with this ACS, so the best
     * we can do is delete it from our node without sending. */
    case -1:
        ACSLOG_ERROR("Can't send custody transfer signal.");
        zco_destroy(bpSdr, signal.serializedZco);
        break;

    case 0:
        ACSLOG_ERROR("Custody transfer signal not transmitted.");
        zco_destroy(bpSdr, signal.serializedZco);
        break;

    default:
        /* bpSend() gave the serializedZco to a forwarder, so don't
         * zco_destroy(). */
        break;
    }

    if (signal.acsDue != 0)
    {
        destroyBpTimelineEvent(signal.acsDue);
    }

    signal.acsDue = 0;
    signal.serializedZco = 0;
    sdr_poke(acsSdr, signalAddr, signal);

    releaseSdrAcsSignal(signalLElt);

    if (sdr_end_xn(acsSdr) < 0)
    {
        ACSLOG_ERROR("Couldn't mark a serialized ACS as sent.");
        sdr_cancel_xn(bpSdr);
        return -1;
    }

    if(sdr_end_xn(bpSdr) < 0)
    {
        return -1;
    }

    return result > 0 ? 0 : -1;
}
示例#19
0
文件: brsscla.c 项目: brnrc/ion-dtn
static void	*sendBundles(void *parm)
{
	/*	Main loop for single bundle transmission thread
	 *	serving all BRS sockets.				*/

	SenderThreadParms	*parms = (SenderThreadParms *) parm;
	char			*procName = "brsscla";
	unsigned char		*buffer;
	Outduct			outduct;
	Sdr			sdr;
	Outflow			outflows[3];
	int			i;
	Object			bundleZco;
	BpExtendedCOS		extendedCOS;
	char			destDuctName[MAX_CL_DUCT_NAME_LEN + 1];
	unsigned int		bundleLength;
	int			ductNbr;
	int			bytesSent;
	Object			bundleAddr;
	Bundle			bundle;

	snooze(1);	/*	Let main thread become interruptable.	*/
	buffer = MTAKE(TCPCLA_BUFSZ);
	if (buffer == NULL)
	{
		putErrmsg("No memory for TCP buffer in brsscla.", NULL);
		ionKillMainThread(procName);
		return terminateSenderThread(parms);
	}

	sdr = getIonsdr();
	CHKNULL(sdr_begin_xn(sdr));
	sdr_read(sdr, (char *) &outduct, sdr_list_data(sdr,
			parms->vduct->outductElt), sizeof(Outduct));
	sdr_exit_xn(sdr);
	memset((char *) outflows, 0, sizeof outflows);
	outflows[0].outboundBundles = outduct.bulkQueue;
	outflows[1].outboundBundles = outduct.stdQueue;
	outflows[2].outboundBundles = outduct.urgentQueue;
	for (i = 0; i < 3; i++)
	{
		outflows[i].svcFactor = 1 << i;
	}

	/*	Can now begin transmitting to clients.			*/

	while (!(sm_SemEnded(parms->vduct->semaphore)))
	{
		if (bpDequeue(parms->vduct, outflows, &bundleZco,
				&extendedCOS, destDuctName, 0, -1) < 0)
		{
			break;
		}

		if (bundleZco == 0)		/*	Interrupted.	*/
		{
			continue;
		}

		CHKNULL(sdr_begin_xn(sdr));
		bundleLength = zco_length(sdr, bundleZco);
		sdr_exit_xn(sdr);
		ductNbr = atoi(destDuctName);
		if (ductNbr >= parms->baseDuctNbr
		&& ductNbr <= parms->lastDuctNbr
		&& parms->brsSockets[(i = ductNbr - parms->baseDuctNbr)] != -1)
		{
			bytesSent = sendBundleByTCP(NULL, parms->brsSockets + i,
					bundleLength, bundleZco, buffer);

			/*	Note that TCP I/O errors never block
			 *	the brsscla induct's output functions;
			 *	those functions never connect to remote
			 *	sockets and never behave like a TCP
			 *	outduct, so the _tcpOutductId table is
			 *	never populated.			*/

			if (bytesSent < 0)
			{
				putErrmsg("Can't send bundle.", NULL);
				break;
			}
		}
		else	/*	Can't send it; try again later?		*/
		{
			bytesSent = 0;
		}

		if (bytesSent < bundleLength)
		{
			/*	Couldn't send the bundle, so put it
			 *	in limbo so we can try again later
			 *	-- except that if bundle has already
			 *	been destroyed then just lose the ADU.	*/

			CHKNULL(sdr_begin_xn(sdr));
			if (retrieveSerializedBundle(bundleZco, &bundleAddr))
			{
				putErrmsg("Can't locate unsent bundle.", NULL);
				sdr_cancel_xn(sdr);
				break;
			}

			if (bundleAddr == 0)
			{
				/*	Bundle not found, so we can't
				 *	put it in limbo for another
				 *	attempt later; discard the ADU.	*/

				zco_destroy(sdr, bundleZco);
			}
			else
			{
				sdr_stage(sdr, (char *) &bundle, bundleAddr,
						sizeof(Bundle));
				if (bundle.extendedCOS.flags
						& BP_MINIMUM_LATENCY)
				{
					/*	We never put critical
					 *	bundles into limbo.	*/

					zco_destroy(sdr, bundleZco);
				}
				else
				{
					if (enqueueToLimbo(&bundle, bundleAddr)
							< 0)
					{
						putErrmsg("Can't save bundle.",
								NULL);
						sdr_cancel_xn(sdr);
						break;
					}
				}
			}

			if (sdr_end_xn(sdr) < 0)
			{
				putErrmsg("Failed handling brss xmit.", NULL);
				break;
			}
		}

		/*	Make sure other tasks have a chance to run.	*/

		sm_TaskYield();
	}

	ionKillMainThread(procName);
	writeMemo("[i] brsscla outduct has ended.");
	MRELEASE(buffer);
	return terminateSenderThread(parms);
}
示例#20
0
int acsInitialize(long heapWords, int logLevel)
{
    AcsDB	acsdbBuf;
    unsigned long zero = 0;     /* sdr_stow() wants this */

    if (heapWords == 0)
    {
        /* Caller wants us to supply a default. */
        heapWords = ACS_SDR_DEFAULT_HEAPWORDS;
    }

    if (ionAttach() < 0)
    {
        putErrmsg("Can't attach to ION.", NULL);
        return -1;
    }

    {
        Sdr		sdr = getIonsdr();
        IonDB        iondb;
        char         *pathname = iondb.parmcopy.pathName;

        CHKERR(sdr_begin_xn(sdr));
        sdr_read(sdr, (char *) &iondb, getIonDbObject(), sizeof(IonDB));
        sdr_exit_xn(sdr);

#if 0
        {
            char text[100];

            sprintf( text, "ION parms pathname : %s", pathname );

            writeMemo( text );
        }
#endif

        if (sdr_load_profile(acssdrName, SDR_IN_DRAM, heapWords,
                             SM_NO_KEY, pathname, NULL) < 0)
        {
            putErrmsg("Unable to load SDR profile for ACS.", NULL);
            return -1;
        } else {
            writeMemo("ACS SDR profile loaded.");
        }
    }

    acsSdr = sdr_start_using(acssdrName);
    if (acsSdr == NULL)
    {
        putErrmsg("Can't start using SDR for ACS.", NULL);
        return -1;
    }


    if (getAcssdr() < 0)
    {
        putErrmsg("ACS can't find ACS SDR.", NULL);
        return -1;
    }

    CHKERR(sdr_begin_xn(acsSdr));
    acsdbObject = sdr_find(acsSdr, acsDbName, NULL);
    switch (acsdbObject)
    {
    case -1:		/*	SDR error.			*/
        sdr_cancel_xn(acsSdr);
        putErrmsg("Can't seek ACS database in SDR.", NULL);
        return -1;

    case 0:			/*	Not found must create new DB.	*/
        memset((char *) &acsdbBuf, 0, sizeof(AcsDB));
        acsdbBuf.pendingCusts = sdr_list_create(acsSdr);
        acsdbBuf.logLevel = logLevel;
        acsdbBuf.cidHash = sdr_hash_create(acsSdr, sizeof(AcsCustodyId),
                                           ACS_CIDHASH_ROWCOUNT, 1);
        acsdbBuf.bidHash = sdr_hash_create(acsSdr, sizeof(AcsBundleId),
                                           ACS_BIDHASH_ROWCOUNT, 1);
        acsdbBuf.id = sdr_stow(acsSdr, zero);
        acsdbObject = sdr_malloc(acsSdr, sizeof(AcsDB));
        if (acsdbObject == 0)
        {
            sdr_cancel_xn(acsSdr);
            putErrmsg("No space for ACS database.", NULL);
            return -1;
        }

        sdr_write(acsSdr, acsdbObject, (char *) &acsdbBuf, sizeof(AcsDB));
        sdr_catlg(acsSdr, acsDbName, 0, acsdbObject);
        if (sdr_end_xn(acsSdr))
        {
            putErrmsg("Can't create ACS database.", NULL);
            return -1;
        }

        break;

    default:
        sdr_exit_xn(acsSdr);
    }

    acsConstants = &acsConstantsBuf;
    CHKERR(sdr_begin_xn(acsSdr));
    sdr_read(acsSdr, (char *) acsConstants, acsdbObject, sizeof(AcsDB));
    sdr_exit_xn(acsSdr);
    return 0;
}
示例#21
0
文件: dtpcd.c 项目: brnrc/ion-dtn
static void	*getBundles(void *parm)
{
	RxThreadParms		*parms = (RxThreadParms *) parm;
	char			ownEid[64];
	Sdr			sdr = getIonsdr();
	BpDelivery		dlv;
	uvast			profNum;
	Scalar			seqNum;
	char			type;
	unsigned int		aduLength;
	int			bytesRemaining;
	ZcoReader		reader;
	unsigned char		*buffer;
	int			bytesToRead;
	int			sdnvLength;
	unsigned char		*cursor;

	isprintf(ownEid, sizeof ownEid, "ipn:" UVAST_FIELDSPEC ".%d",
			getOwnNodeNbr(), DTPC_RECV_SVC_NBR);
	if (bp_open(ownEid, &(parms->rxSap)) < 0)
	{
		putErrmsg("DTPC can't open own 'recv' endpoint.", ownEid);
		parms->running = 0;
		return NULL;
	}

	writeMemo("[i] dtpcd receiver thread has started.");
	while (parms->running)
	{
		if (bp_receive(parms->rxSap, &dlv, BP_BLOCKING) < 0)
		{
			putErrmsg("dtpcd bundle reception failed.", NULL);
			parms->running = 0;
			continue;
		}

		switch (dlv.result)
		{
		case BpEndpointStopped:
			parms->running = 0;
			break;

		case BpPayloadPresent:
			CHKNULL(sdr_begin_xn(sdr));

			/* Since the max length of a Sdnv is 10 bytes,
			 * read 21 bytes to be sure that the Profile
			 * and Sequence number Sdnvs plus the type
			 * were read.					*/

			aduLength = zco_source_data_length(sdr, dlv.adu);
			bytesRemaining = aduLength;
			if (aduLength < 21)	/* Just in case we receive
						 * a very small adu.	*/
			{			
				bytesToRead = aduLength;
			}
			else
			{
				bytesToRead = 21;
			}

			buffer = MTAKE(bytesToRead);
			if (buffer == NULL)
			{
				putErrmsg("Out of memory.",NULL);
				return NULL;
			}

			cursor = buffer;
			zco_start_receiving(dlv.adu, &reader);
			if (zco_receive_headers(sdr, &reader, bytesToRead,
					(char *) buffer) < 0)
			{
				putErrmsg("dtpcd can't receive ADU header.",
						itoa(bytesToRead));
				sdr_cancel_xn(sdr);
				MRELEASE(buffer);
				parms->running = 0;
				continue;
			}

			type = *cursor;		/* Get the type byte.	*/
			cursor++;
			bytesRemaining--;
			sdnvLength = decodeSdnv(&profNum, cursor);
			cursor += sdnvLength;
			bytesRemaining -= sdnvLength;
			sdnvLength = sdnvToScalar(&seqNum, cursor);
			cursor += sdnvLength;
			bytesRemaining -= sdnvLength;

			/*	Mark remaining bytes as source data.	*/

			zco_delimit_source(sdr, dlv.adu, cursor - buffer,
					bytesRemaining);
			zco_strip(sdr, dlv.adu);
			MRELEASE(buffer);
			if (sdr_end_xn(sdr) < 0)
			{
				putErrmsg("dtpcd can't handle bundle delivery.",
						NULL);
				parms->running = 0;
				continue;
			}

			switch (type)
			{
			case 0x00:	/*	Received an adu.	*/
				switch (handleInAdu(sdr, &dlv, profNum, seqNum))
				{
				case -1:
					putErrmsg("dtpcd can't handle inbound \
adu.", NULL);
					parms->running = 0;
					continue;

				case 1:
					if (parseInAdus(sdr) < 0)
					{
						putErrmsg("dtpcd can't parse \
							inbound adus.", NULL);
						parms->running = 0;
						continue;
					}

				case 0: 
					/* 	Intentional fall-through to 
					 *	next case. 		*/				
				default:
					if (dlv.ackRequested)
					{
						if (sendAck(parms->txSap,
								profNum, seqNum,
								&dlv) < 0)
						{
							putErrmsg("dtpcd can't \
send ack.", NULL);
							parms->running = 0;
							continue;
						}
					} 
					break;
				}

				break;

			case 0x01:	/*	Received an ACK.	*/
				if (handleAck(sdr, &dlv, profNum, seqNum) < 0)
				{
					putErrmsg("dtpcd can't handle ACK.",
							NULL);
					parms->running = 0;
					continue;
				}

				break;
			default:
				writeMemo("[?] Invalid item type. Corrupted \
item?");
				break;
			}

		default:
			break;
		}