bool sign_recoverable(recoverable_signature& out, const ec_secret& secret, const hash_digest& hash) { int recovery_id; const auto context = signing.context(); secp256k1_ecdsa_recoverable_signature signature; const auto result = secp256k1_ecdsa_sign_recoverable(context, &signature, hash.data(), secret.data(), secp256k1_nonce_function_rfc6979, nullptr) == 1 && secp256k1_ecdsa_recoverable_signature_serialize_compact(context, out.signature.data(), &recovery_id, &signature) == 1; BITCOIN_ASSERT(recovery_id >= 0 && recovery_id <= 3); out.recovery_id = static_cast<uint8_t>(recovery_id); return result; }
void test_exhaustive_recovery_sign(const secp256k1_context *ctx, const secp256k1_ge *group, int order) { int i, j, k; /* Loop */ for (i = 1; i < order; i++) { /* message */ for (j = 1; j < order; j++) { /* key */ for (k = 1; k < order; k++) { /* nonce */ const int starting_k = k; secp256k1_fe r_dot_y_normalized; secp256k1_ecdsa_recoverable_signature rsig; secp256k1_ecdsa_signature sig; secp256k1_scalar sk, msg, r, s, expected_r; unsigned char sk32[32], msg32[32]; int expected_recid; int recid; secp256k1_scalar_set_int(&msg, i); secp256k1_scalar_set_int(&sk, j); secp256k1_scalar_get_b32(sk32, &sk); secp256k1_scalar_get_b32(msg32, &msg); secp256k1_ecdsa_sign_recoverable(ctx, &rsig, msg32, sk32, secp256k1_nonce_function_smallint, &k); /* Check directly */ secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, &recid, &rsig); r_from_k(&expected_r, group, k); CHECK(r == expected_r); CHECK((k * s) % order == (i + r * j) % order || (k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order); /* In computing the recid, there is an overflow condition that is disabled in * scalar_low_impl.h `secp256k1_scalar_set_b32` because almost every r.y value * will exceed the group order, and our signing code always holds out for r * values that don't overflow, so with a proper overflow check the tests would * loop indefinitely. */ r_dot_y_normalized = group[k].y; secp256k1_fe_normalize(&r_dot_y_normalized); /* Also the recovery id is flipped depending if we hit the low-s branch */ if ((k * s) % order == (i + r * j) % order) { expected_recid = secp256k1_fe_is_odd(&r_dot_y_normalized) ? 1 : 0; } else { expected_recid = secp256k1_fe_is_odd(&r_dot_y_normalized) ? 0 : 1; } CHECK(recid == expected_recid); /* Convert to a standard sig then check */ secp256k1_ecdsa_recoverable_signature_convert(ctx, &sig, &rsig); secp256k1_ecdsa_signature_load(ctx, &r, &s, &sig); /* Note that we compute expected_r *after* signing -- this is important * because our nonce-computing function function might change k during * signing. */ r_from_k(&expected_r, group, k); CHECK(r == expected_r); CHECK((k * s) % order == (i + r * j) % order || (k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order); /* Overflow means we've tried every possible nonce */ if (k < starting_k) { break; } } } } }