示例#1
0
int run_scenario(const char *scenario, mbedtls_ssl_context *ssl) {
  int ret;
  int repeat = 1;
  const char *p = scenario;
  const char *start;
  char packet[10000];

  plog("Running scenario: '%s'", scenario);

  if (strncmp("repeat=", p, 7) == 0) {
    char *comma = strchr(p, ',');
    if (comma) {
      int packet_len = comma - p;
      memcpy(packet, p, packet_len);
      packet[packet_len] = '\0';
      repeat = atoi(packet + 7);
      p = comma + 1;
    }
  }

  start = p;

  for (; repeat > 0; repeat--) {
    plog("Scenario: %d repeats left", repeat);
    p = start;
    while (p) {
      char *comma = strchr(p, ',');
      if (comma) {
        int packet_len = comma - p;
        memcpy(packet, p, packet_len);
        packet[packet_len] = '\0';
        p = comma + 1;
      } else {
        strncpy(packet, p, sizeof(packet));
        p = NULL;
      }
      if (strncmp("sleep=", packet, 6) == 0) {
        long sleepms = atol(packet + 6);
        plog("Scenario: sleeping %ld milliseconds", sleepms);
        mbedtls_net_usleep(sleepms * 1000);
      } else {
        ret = send_one_packet(packet, ssl);
        if (ret != 0) {
          return ret;
        }
      }
    }
  }
  plog("Scenario successful!");
  return 0;
}
示例#2
0
文件: main.cpp 项目: csioza/Dcore
int main (int argc, char *argv[])
{
    LOG_NOTE("============Start============");
    DBHUB->Init();
    ACCOUNTHUB->Init();
    network_start("../../bin/gate/netcfg.xml");
    static char * p = (char *)malloc(MAX_PACKET_SIZE);
    // 注册 
    p_near_register rpack;
    rpack.type = 1;
    rpack.index = server_index;
    get_client_ip_port(rpack.ip,rpack.port);
    send_one_packet((char*)&rpack);
    LOG_NOTE("============Loaded============");
    //
    u64 lastTime = 0;
    u64 elapse = 0;
    while (1)
    {
        packet * pack = proccess_packet(p);
        if (pack) dispatch_packet(pack);
        //=====================================
        //elapse += TIME->Elapse(lastTime);
        //if(elapse > 200)
        //{
        //    p_area_time pTime;
        //    TIME->SysNow();
        //    pTime.gid   = 1;
        //    pTime.guid  = 2;
        //    pTime.hour  = TIME->SysHour();
        //    pTime.min   = TIME->SysMin();
        //    pTime.sec   = TIME->SysSec();
        //    pTime.ms    = TIME->SysMs();
        //    send_one_packet((char *)&pTime);
        //    elapse = 0;
        //    LOG_INFO("gid:%d. sendTime[%d.%3d]",pTime.gid,pTime.sec,pTime.ms);
        //}
        sleep(1);
    }
    //
    network_close();
    getchar();
    return EXIT_SUCCESS;
}
示例#3
0
文件: nullrdc.c 项目: 21moons/contiki
/*---------------------------------------------------------------------------*/
static void
send_list(mac_callback_t sent, void *ptr, struct rdc_buf_list *buf_list)
{
  while(buf_list != NULL) {
    /* We backup the next pointer, as it may be nullified by
     * mac_call_sent_callback() */
    struct rdc_buf_list *next = buf_list->next;
    int last_sent_ok;

    queuebuf_to_packetbuf(buf_list->buf);
    last_sent_ok = send_one_packet(sent, ptr);

    /* If packet transmission was not successful, we should back off and let
     * upper layers retransmit, rather than potentially sending out-of-order
     * packet fragments. */
    if(!last_sent_ok) {
      return;
    }
    buf_list = next;
  }
}
示例#4
0
int main(int argc, char **argv)
{
	int		c;
	char		const *radius_dir = RADDBDIR;
	char		const *dict_dir = DICTDIR;
	char		filesecret[256];
	FILE		*fp;
	int		do_summary = false;
	int		persec = 0;
	int		parallel = 1;
	rc_request_t	*this;
	int		force_af = AF_UNSPEC;

	/*
	 *	It's easier having two sets of flags to set the
	 *	verbosity of library calls and the verbosity of
	 *	radclient.
	 */
	fr_debug_lvl = 0;
	fr_log_fp = stdout;

#ifndef NDEBUG
	if (fr_fault_setup(getenv("PANIC_ACTION"), argv[0]) < 0) {
		fr_perror("radclient");
		exit(EXIT_FAILURE);
	}
#endif

	talloc_set_log_stderr();

	filename_tree = rbtree_create(NULL, filename_cmp, NULL, 0);
	if (!filename_tree) {
	oom:
		ERROR("Out of memory");
		exit(1);
	}

	while ((c = getopt(argc, argv, "46c:d:D:f:Fhi:n:p:qr:sS:t:vx"
#ifdef WITH_TCP
		"P:"
#endif
			   )) != EOF) switch (c) {
		case '4':
			force_af = AF_INET;
			break;

		case '6':
			force_af = AF_INET6;
			break;

		case 'c':
			if (!isdigit((int) *optarg))
				usage();
			resend_count = atoi(optarg);
			break;

		case 'D':
			dict_dir = optarg;
			break;

		case 'd':
			radius_dir = optarg;
			break;

		case 'f':
		{
			char const *p;
			rc_file_pair_t *files;

			files = talloc(talloc_autofree_context(), rc_file_pair_t);
			if (!files) goto oom;

			p = strchr(optarg, ':');
			if (p) {
				files->packets = talloc_strndup(files, optarg, p - optarg);
				if (!files->packets) goto oom;
				files->filters = p + 1;
			} else {
				files->packets = optarg;
				files->filters = NULL;
			}
			rbtree_insert(filename_tree, (void *) files);
		}
			break;

		case 'F':
			print_filename = true;
			break;

		case 'i':	/* currently broken */
			if (!isdigit((int) *optarg))
				usage();
			last_used_id = atoi(optarg);
			if ((last_used_id < 0) || (last_used_id > 255)) {
				usage();
			}
			break;

		case 'n':
			persec = atoi(optarg);
			if (persec <= 0) usage();
			break;

			/*
			 *	Note that sending MANY requests in
			 *	parallel can over-run the kernel
			 *	queues, and Linux will happily discard
			 *	packets.  So even if the server responds,
			 *	the client may not see the reply.
			 */
		case 'p':
			parallel = atoi(optarg);
			if (parallel <= 0) usage();
			break;

#ifdef WITH_TCP
		case 'P':
			proto = optarg;
			if (strcmp(proto, "tcp") != 0) {
				if (strcmp(proto, "udp") == 0) {
					proto = NULL;
				} else {
					usage();
				}
			} else {
				ipproto = IPPROTO_TCP;
			}
			break;

#endif

		case 'q':
			do_output = false;
			fr_log_fp = NULL; /* no output from you, either! */
			break;

		case 'r':
			if (!isdigit((int) *optarg)) usage();
			retries = atoi(optarg);
			if ((retries == 0) || (retries > 1000)) usage();
			break;

		case 's':
			do_summary = true;
			break;

		case 'S':
		{
			char *p;
			fp = fopen(optarg, "r");
			if (!fp) {
			       ERROR("Error opening %s: %s", optarg, fr_syserror(errno));
			       exit(1);
			}
			if (fgets(filesecret, sizeof(filesecret), fp) == NULL) {
			       ERROR("Error reading %s: %s", optarg, fr_syserror(errno));
			       exit(1);
			}
			fclose(fp);

			/* truncate newline */
			p = filesecret + strlen(filesecret) - 1;
			while ((p >= filesecret) &&
			      (*p < ' ')) {
			       *p = '\0';
			       --p;
			}

			if (strlen(filesecret) < 2) {
			       ERROR("Secret in %s is too short", optarg);
			       exit(1);
			}
			secret = filesecret;
		}
		       break;

		case 't':
			if (!isdigit((int) *optarg))
				usage();
			timeout = atof(optarg);
			break;

		case 'v':
			fr_debug_lvl = 1;
			DEBUG("%s", radclient_version);
			exit(0);

		case 'x':
			fr_debug_lvl++;
			break;

		case 'h':
		default:
			usage();
	}
	argc -= (optind - 1);
	argv += (optind - 1);

	if ((argc < 3)  || ((secret == NULL) && (argc < 4))) {
		ERROR("Insufficient arguments");
		usage();
	}
	/*
	 *	Mismatch between the binary and the libraries it depends on
	 */
	if (fr_check_lib_magic(RADIUSD_MAGIC_NUMBER) < 0) {
		fr_perror("radclient");
		return 1;
	}

	if (dict_init(dict_dir, RADIUS_DICTIONARY) < 0) {
		fr_perror("radclient");
		return 1;
	}

	if (dict_read(radius_dir, RADIUS_DICTIONARY) == -1) {
		fr_perror("radclient");
		return 1;
	}
	fr_strerror();	/* Clear the error buffer */

	/*
	 *	Get the request type
	 */
	if (!isdigit((int) argv[2][0])) {
		packet_code = fr_str2int(request_types, argv[2], -2);
		if (packet_code == -2) {
			ERROR("Unrecognised request type \"%s\"", argv[2]);
			usage();
		}
	} else {
		packet_code = atoi(argv[2]);
	}

	/*
	 *	Resolve hostname.
	 */
	if (strcmp(argv[1], "-") != 0) {
		if (fr_pton_port(&server_ipaddr, &server_port, argv[1], -1, force_af, true) < 0) {
			ERROR("%s", fr_strerror());
			exit(1);
		}

		/*
		 *	Work backwards from the port to determine the packet type
		 */
		if (packet_code == PW_CODE_UNDEFINED) packet_code = radclient_get_code(server_port);
	}
	radclient_get_port(packet_code, &server_port);

	/*
	 *	Add the secret.
	 */
	if (argv[3]) secret = argv[3];

	/*
	 *	If no '-f' is specified, we're reading from stdin.
	 */
	if (rbtree_num_elements(filename_tree) == 0) {
		rc_file_pair_t *files;

		files = talloc_zero(talloc_autofree_context(), rc_file_pair_t);
		files->packets = "-";
		if (!radclient_init(files, files)) {
			exit(1);
		}
	}

	/*
	 *	Walk over the list of filenames, creating the requests.
	 */
	if (rbtree_walk(filename_tree, RBTREE_IN_ORDER, filename_walk, NULL) != 0) {
		ERROR("Failed parsing input files");
		exit(1);
	}

	/*
	 *	No packets read.  Die.
	 */
	if (!request_head) {
		ERROR("Nothing to send");
		exit(1);
	}

	/*
	 *	Bind to the first specified IP address and port.
	 *	This means we ignore later ones.
	 */
	if (request_head->packet->src_ipaddr.af == AF_UNSPEC) {
		memset(&client_ipaddr, 0, sizeof(client_ipaddr));
		client_ipaddr.af = server_ipaddr.af;
	} else {
		client_ipaddr = request_head->packet->src_ipaddr;
	}

	client_port = request_head->packet->src_port;

#ifdef WITH_TCP
	if (proto) {
		sockfd = fr_socket_client_tcp(NULL, &server_ipaddr, server_port, false);
	} else
#endif
	sockfd = fr_socket(&client_ipaddr, client_port);
	if (sockfd < 0) {
		ERROR("Error opening socket");
		exit(1);
	}

	pl = fr_packet_list_create(1);
	if (!pl) {
		ERROR("Out of memory");
		exit(1);
	}

	if (!fr_packet_list_socket_add(pl, sockfd, ipproto, &server_ipaddr,
				       server_port, NULL)) {
		ERROR("Out of memory");
		exit(1);
	}

	/*
	 *	Walk over the list of packets, sanity checking
	 *	everything.
	 */
	for (this = request_head; this != NULL; this = this->next) {
		this->packet->src_ipaddr = client_ipaddr;
		this->packet->src_port = client_port;
		if (radclient_sane(this) != 0) {
			exit(1);
		}
	}

	/*
	 *	Walk over the packets to send, until
	 *	we're all done.
	 *
	 *	FIXME: This currently busy-loops until it receives
	 *	all of the packets.  It should really have some sort of
	 *	send packet, get time to wait, select for time, etc.
	 *	loop.
	 */
	do {
		int n = parallel;
		rc_request_t *next;
		char const *filename = NULL;

		done = true;
		sleep_time = -1;

		/*
		 *	Walk over the packets, sending them.
		 */

		for (this = request_head; this != NULL; this = next) {
			next = this->next;

			/*
			 *	If there's a packet to receive,
			 *	receive it, but don't wait for a
			 *	packet.
			 */
			recv_one_packet(0);

			/*
			 *	This packet is done.  Delete it.
			 */
			if (this->done) {
				talloc_free(this);
				continue;
			}

			/*
			 *	Packets from multiple '-f' are sent
			 *	in parallel.
			 *
			 *	Packets from one file are sent in
			 *	series, unless '-p' is specified, in
			 *	which case N packets from each file
			 *	are sent in parallel.
			 */
			if (this->files->packets != filename) {
				filename = this->files->packets;
				n = parallel;
			}

			if (n > 0) {
				n--;

				/*
				 *	Send the current packet.
				 */
				if (send_one_packet(this) < 0) {
					talloc_free(this);
					break;
				}

				/*
				 *	Wait a little before sending
				 *	the next packet, if told to.
				 */
				if (persec) {
					struct timeval tv;

					/*
					 *	Don't sleep elsewhere.
					 */
					sleep_time = 0;

					if (persec == 1) {
						tv.tv_sec = 1;
						tv.tv_usec = 0;
					} else {
						tv.tv_sec = 0;
						tv.tv_usec = 1000000/persec;
					}

					/*
					 *	Sleep for milliseconds,
					 *	portably.
					 *
					 *	If we get an error or
					 *	a signal, treat it like
					 *	a normal timeout.
					 */
					select(0, NULL, NULL, NULL, &tv);
				}

				/*
				 *	If we haven't sent this packet
				 *	often enough, we're not done,
				 *	and we shouldn't sleep.
				 */
				if (this->resend < resend_count) {
					done = false;
					sleep_time = 0;
				}
			} else { /* haven't sent this packet, we're not done */
				assert(this->done == false);
				assert(this->reply == NULL);
				done = false;
			}
		}

		/*
		 *	Still have outstanding requests.
		 */
		if (fr_packet_list_num_elements(pl) > 0) {
			done = false;
		} else {
			sleep_time = 0;
		}

		/*
		 *	Nothing to do until we receive a request, so
		 *	sleep until then.  Once we receive one packet,
		 *	we go back, and walk through the whole list again,
		 *	sending more packets (if necessary), and updating
		 *	the sleep time.
		 */
		if (!done && (sleep_time > 0)) {
			recv_one_packet(sleep_time);
		}
	} while (!done);

	rbtree_free(filename_tree);
	fr_packet_list_free(pl);
	while (request_head) TALLOC_FREE(request_head);
	dict_free();

	if (do_summary) {
		DEBUG("Packet summary:\n"
		      "\tAccepted      : %" PRIu64 "\n"
		      "\tRejected      : %" PRIu64 "\n"
		      "\tLost          : %" PRIu64 "\n"
		      "\tPassed filter : %" PRIu64 "\n"
		      "\tFailed filter : %" PRIu64,
		      stats.accepted,
		      stats.rejected,
		      stats.lost,
		      stats.passed,
		      stats.failed
		);
	}

	if ((stats.lost > 0) || (stats.failed > 0)) {
		exit(1);
	}
	exit(0);
}
    /*******************************************************************
     * Send:
     * The entry point for the fast-path send calls.
     * Dispatch into combinations of single packet send calls.
     ******************************************************************/
    UHD_INLINE size_t send(
        const uhd::tx_streamer::buffs_type &buffs,
        const size_t nsamps_per_buff,
        const uhd::tx_metadata_t &metadata,
        const double timeout
    ){
        //translate the metadata to vrt if packet info
        vrt::if_packet_info_t if_packet_info;
        if_packet_info.packet_type = vrt::if_packet_info_t::PACKET_TYPE_DATA;
        //if_packet_info.has_sid = false; //set per channel
        if_packet_info.has_cid = false;
        if_packet_info.has_tlr = _has_tlr;
        if_packet_info.has_tsi = false;
        if_packet_info.has_tsf = metadata.has_time_spec;
        if_packet_info.tsf     = metadata.time_spec.to_ticks(_tick_rate);
        if_packet_info.sob     = metadata.start_of_burst;
        if_packet_info.eob     = metadata.end_of_burst;

        /*
         * Metadata is cached when we get a send requesting a start of burst with no samples.
         * It is applied here on the next call to send() that actually has samples to send.
         */
        if (_cached_metadata && nsamps_per_buff != 0)
        {
            // If the new metada has a time_spec, do not use the cached time_spec.
            if (!metadata.has_time_spec)
            {
                if_packet_info.has_tsf = _metadata_cache.has_time_spec;
                if_packet_info.tsf     = _metadata_cache.time_spec.to_ticks(_tick_rate);
            }
            if_packet_info.sob     = _metadata_cache.start_of_burst;
            if_packet_info.eob     = _metadata_cache.end_of_burst;
            _cached_metadata = false;
        }

        if (nsamps_per_buff <= _max_samples_per_packet){

            //TODO remove this code when sample counts of zero are supported by hardware
            #ifndef SSPH_DONT_PAD_TO_ONE
                static const boost::uint64_t zero = 0;
                _zero_buffs.resize(buffs.size(), &zero);

                if (nsamps_per_buff == 0)
                {
                    // if this is a start of a burst and there are no samples
                    if (metadata.start_of_burst)
                    {
                        // cache metadata and apply on the next send()
                        _metadata_cache = metadata;
                        _cached_metadata = true;
                        return 0;
                    } else {
                        // send requests with no samples are handled here (such as end of burst)
                        return send_one_packet(_zero_buffs, 1, if_packet_info, timeout) & 0x0;
                    }
                }
            #endif

			size_t nsamps_sent = send_one_packet(buffs, nsamps_per_buff, if_packet_info, timeout);
#ifdef UHD_TXRX_DEBUG_PRINTS
			dbg_print_send(nsamps_per_buff, nsamps_sent, metadata, timeout);
#endif
			return nsamps_sent;        }
        size_t total_num_samps_sent = 0;

        //false until final fragment
        if_packet_info.eob = false;

        const size_t num_fragments = (nsamps_per_buff-1)/_max_samples_per_packet;
        const size_t final_length = ((nsamps_per_buff-1)%_max_samples_per_packet)+1;

        //loop through the following fragment indexes
        for (size_t i = 0; i < num_fragments; i++){

            //send a fragment with the helper function
            const size_t num_samps_sent = send_one_packet(
                buffs, _max_samples_per_packet,
                if_packet_info, timeout,
                total_num_samps_sent*_bytes_per_cpu_item
            );
            total_num_samps_sent += num_samps_sent;
            if (num_samps_sent == 0) return total_num_samps_sent;

            //setup metadata for the next fragment
            const time_spec_t time_spec = metadata.time_spec + time_spec_t::from_ticks(total_num_samps_sent, _samp_rate);
            if_packet_info.tsf = time_spec.to_ticks(_tick_rate);
            if_packet_info.sob = false;

        }

        //send the final fragment with the helper function
        if_packet_info.eob = metadata.end_of_burst;
		size_t nsamps_sent = total_num_samps_sent
				+ send_one_packet(buffs, final_length, if_packet_info, timeout,
					total_num_samps_sent * _bytes_per_cpu_item);
#ifdef UHD_TXRX_DEBUG_PRINTS
		dbg_print_send(nsamps_per_buff, nsamps_sent, metadata, timeout);

#endif
		return nsamps_sent;
    }
示例#6
0
/*---------------------------------------------------------------------------*/
static uint8_t
send_packet(struct net_buf *buf, mac_callback_t sent, void *ptr)
{
  return send_one_packet(buf, sent, ptr);
}
示例#7
0
int main(int argc, char **argv)
{
	char *p;
	int c;
	const char *radius_dir = RADDBDIR;
	char filesecret[256];
	FILE *fp;
	int do_summary = 0;
	int persec = 0;
	int parallel = 1;
	radclient_t	*this;
	int force_af = AF_UNSPEC;

	fr_debug_flag = 0;

	filename_tree = rbtree_create(filename_cmp, NULL, 0);
	if (!filename_tree) {
		fprintf(stderr, "radclient: Out of memory\n");
		exit(1);
	}

	while ((c = getopt(argc, argv, "46c:d:f:Fhi:n:p:qr:sS:t:vx"
#ifdef WITH_TCP
			   "P:"
#endif
			   )) != EOF) switch(c) {
		case '4':
			force_af = AF_INET;
			break;
		case '6':
			force_af = AF_INET6;
			break;
		case 'c':
			if (!isdigit((int) *optarg))
				usage();
			resend_count = atoi(optarg);
			break;
		case 'd':
			radius_dir = optarg;
			break;
		case 'f':
			rbtree_insert(filename_tree, optarg);
			break;
		case 'F':
			print_filename = 1;
			break;
		case 'i':	/* currently broken */
			if (!isdigit((int) *optarg))
				usage();
			last_used_id = atoi(optarg);
			if ((last_used_id < 0) || (last_used_id > 255)) {
				usage();
			}
			break;

		case 'n':
			persec = atoi(optarg);
			if (persec <= 0) usage();
			break;

			/*
			 *	Note that sending MANY requests in
			 *	parallel can over-run the kernel
			 *	queues, and Linux will happily discard
			 *	packets.  So even if the server responds,
			 *	the client may not see the response.
			 */
		case 'p':
			parallel = atoi(optarg);
			if (parallel <= 0) usage();
			break;

#ifdef WITH_TCP
		case 'P':
			proto = optarg;
			if (strcmp(proto, "tcp") != 0) {
				if (strcmp(proto, "udp") == 0) {
					proto = NULL;
				} else {
					usage();
				}
			} else {
				ipproto = IPPROTO_TCP;
			}
			break;

#endif

		case 'q':
			do_output = 0;
			fr_log_fp = NULL; /* no output from you, either! */
			break;
		case 'r':
			if (!isdigit((int) *optarg))
				usage();
			retries = atoi(optarg);
			if ((retries == 0) || (retries > 1000)) usage();
			break;
		case 's':
			do_summary = 1;
			break;
               case 'S':
		       fp = fopen(optarg, "r");
                       if (!fp) {
                               fprintf(stderr, "radclient: Error opening %s: %s\n",
                                       optarg, strerror(errno));
                               exit(1);
                       }
                       if (fgets(filesecret, sizeof(filesecret), fp) == NULL) {
                               fprintf(stderr, "radclient: Error reading %s: %s\n",
                                       optarg, strerror(errno));
                               exit(1);
                       }
		       fclose(fp);

                       /* truncate newline */
		       p = filesecret + strlen(filesecret) - 1;
		       while ((p >= filesecret) &&
			      (*p < ' ')) {
			       *p = '\0';
			       --p;
		       }

                       if (strlen(filesecret) < 2) {
                               fprintf(stderr, "radclient: Secret in %s is too short\n", optarg);
                               exit(1);
                       }
                       secret = filesecret;
		       break;
		case 't':
			if (!isdigit((int) *optarg))
				usage();
			timeout = atof(optarg);
			break;
		case 'v':
			printf("%s", radclient_version);
			exit(0);
			break;
		case 'x':
			fr_debug_flag++;
			fr_log_fp = stdout;
			break;
		case 'h':
		default:
			usage();
			break;
	}
	argc -= (optind - 1);
	argv += (optind - 1);

	if ((argc < 3)  ||
	    ((secret == NULL) && (argc < 4))) {
		usage();
	}

	if (dict_init(radius_dir, RADIUS_DICTIONARY) < 0) {
		fr_perror("radclient");
		return 1;
	}

	/*
	 *	Resolve hostname.
	 */
	if (force_af == AF_UNSPEC) force_af = AF_INET;
	server_ipaddr.af = force_af;
	if (strcmp(argv[1], "-") != 0) {
		const char *hostname = argv[1];
		const char *portname = argv[1];
		char buffer[256];

		if (*argv[1] == '[') { /* IPv6 URL encoded */
			p = strchr(argv[1], ']');
			if ((size_t) (p - argv[1]) >= sizeof(buffer)) {
				usage();
			}

			memcpy(buffer, argv[1] + 1, p - argv[1] - 1);
			buffer[p - argv[1] - 1] = '\0';

			hostname = buffer;
			portname = p + 1;

		}
		p = strchr(portname, ':');
		if (p && (strchr(p + 1, ':') == NULL)) {
			*p = '\0';
			portname = p + 1;
		} else {
			portname = NULL;
		}

		if (ip_hton(hostname, force_af, &server_ipaddr) < 0) {
			fprintf(stderr, "radclient: Failed to find IP address for host %s: %s\n", hostname, strerror(errno));
			exit(1);
		}

		/*
		 *	Strip port from hostname if needed.
		 */
		if (portname) server_port = atoi(portname);
	}

	/*
	 *	See what kind of request we want to send.
	 */
	if (strcmp(argv[2], "auth") == 0) {
		if (server_port == 0) server_port = getport("radius");
		if (server_port == 0) server_port = PW_AUTH_UDP_PORT;
		packet_code = PW_AUTHENTICATION_REQUEST;

	} else if (strcmp(argv[2], "challenge") == 0) {
		if (server_port == 0) server_port = getport("radius");
		if (server_port == 0) server_port = PW_AUTH_UDP_PORT;
		packet_code = PW_ACCESS_CHALLENGE;

	} else if (strcmp(argv[2], "acct") == 0) {
		if (server_port == 0) server_port = getport("radacct");
		if (server_port == 0) server_port = PW_ACCT_UDP_PORT;
		packet_code = PW_ACCOUNTING_REQUEST;
		do_summary = 0;

	} else if (strcmp(argv[2], "status") == 0) {
		if (server_port == 0) server_port = getport("radius");
		if (server_port == 0) server_port = PW_AUTH_UDP_PORT;
		packet_code = PW_STATUS_SERVER;

	} else if (strcmp(argv[2], "disconnect") == 0) {
		if (server_port == 0) server_port = PW_COA_UDP_PORT;
		packet_code = PW_DISCONNECT_REQUEST;

	} else if (strcmp(argv[2], "coa") == 0) {
		if (server_port == 0) server_port = PW_COA_UDP_PORT;
		packet_code = PW_COA_REQUEST;

	} else if (strcmp(argv[2], "auto") == 0) {
		packet_code = -1;

	} else if (isdigit((int) argv[2][0])) {
		if (server_port == 0) server_port = getport("radius");
		if (server_port == 0) server_port = PW_AUTH_UDP_PORT;
		packet_code = atoi(argv[2]);
	} else {
		usage();
	}

	/*
	 *	Add the secret.
	 */
	if (argv[3]) secret = argv[3];

	/*
	 *	If no '-f' is specified, we're reading from stdin.
	 */
	if (rbtree_num_elements(filename_tree) == 0) {
		if (!radclient_init("-")) exit(1);
	}

	/*
	 *	Walk over the list of filenames, creating the requests.
	 */
	if (rbtree_walk(filename_tree, InOrder, filename_walk, NULL) != 0) {
		exit(1);
	}

	/*
	 *	No packets read.  Die.
	 */
	if (!radclient_head) {
		fprintf(stderr, "radclient: Nothing to send.\n");
		exit(1);
	}

	/*
	 *	Bind to the first specified IP address and port.
	 *	This means we ignore later ones.
	 */
	if (radclient_head->request->src_ipaddr.af == AF_UNSPEC) {
		memset(&client_ipaddr, 0, sizeof(client_ipaddr));
		client_ipaddr.af = server_ipaddr.af;
		client_port = 0;
	} else {
		client_ipaddr = radclient_head->request->src_ipaddr;
		client_port = radclient_head->request->src_port;
	}
#ifdef WITH_TCP
	if (proto) {
		sockfd = fr_tcp_client_socket(NULL, &server_ipaddr, server_port);
	} else
#endif
	sockfd = fr_socket(&client_ipaddr, client_port);
	if (sockfd < 0) {
		fprintf(stderr, "radclient: socket: %s\n", fr_strerror());
		exit(1);
	}

	pl = fr_packet_list_create(1);
	if (!pl) {
		fprintf(stderr, "radclient: Out of memory\n");
		exit(1);
	}

	if (!fr_packet_list_socket_add(pl, sockfd, ipproto, &server_ipaddr,
				       server_port, NULL)) {
		fprintf(stderr, "radclient: Out of memory\n");
		exit(1);
	}

	/*
	 *	Walk over the list of packets, sanity checking
	 *	everything.
	 */
	for (this = radclient_head; this != NULL; this = this->next) {
		this->request->src_ipaddr = client_ipaddr;
		this->request->src_port = client_port;
		if (radclient_sane(this) != 0) {
			exit(1);
		}
	}

	/*
	 *	Walk over the packets to send, until
	 *	we're all done.
	 *
	 *	FIXME: This currently busy-loops until it receives
	 *	all of the packets.  It should really have some sort of
	 *	send packet, get time to wait, select for time, etc.
	 *	loop.
	 */
	do {
		int n = parallel;
		radclient_t *next;
		const char *filename = NULL;

		done = 1;
		sleep_time = -1;

		/*
		 *	Walk over the packets, sending them.
		 */

		for (this = radclient_head; this != NULL; this = next) {
			next = this->next;

			/*
			 *	If there's a packet to receive,
			 *	receive it, but don't wait for a
			 *	packet.
			 */
			recv_one_packet(0);

			/*
			 *	This packet is done.  Delete it.
			 */
			if (this->done) {
				radclient_free(this);
				continue;
			}

			/*
			 *	Packets from multiple '-f' are sent
			 *	in parallel.
			 *
			 *	Packets from one file are sent in
			 *	series, unless '-p' is specified, in
			 *	which case N packets from each file
			 *	are sent in parallel.
			 */
			if (this->filename != filename) {
				filename = this->filename;
				n = parallel;
			}

			if (n > 0) {
				n--;

				/*
				 *	Send the current packet.
				 */
				send_one_packet(this);

				/*
				 *	Wait a little before sending
				 *	the next packet, if told to.
				 */
				if (persec) {
					struct timeval tv;

					/*
					 *	Don't sleep elsewhere.
					 */
					sleep_time = 0;

					if (persec == 1) {
						tv.tv_sec = 1;
						tv.tv_usec = 0;
					} else {
						tv.tv_sec = 0;
						tv.tv_usec = 1000000/persec;
					}

					/*
					 *	Sleep for milliseconds,
					 *	portably.
					 *
					 *	If we get an error or
					 *	a signal, treat it like
					 *	a normal timeout.
					 */
					select(0, NULL, NULL, NULL, &tv);
				}

				/*
				 *	If we haven't sent this packet
				 *	often enough, we're not done,
				 *	and we shouldn't sleep.
				 */
				if (this->resend < resend_count) {
					done = 0;
					sleep_time = 0;
				}
			} else { /* haven't sent this packet, we're not done */
				assert(this->done == 0);
				assert(this->reply == NULL);
				done = 0;
			}
		}

		/*
		 *	Still have outstanding requests.
		 */
		if (fr_packet_list_num_elements(pl) > 0) {
			done = 0;
		} else {
			sleep_time = 0;
		}

		/*
		 *	Nothing to do until we receive a request, so
		 *	sleep until then.  Once we receive one packet,
		 *	we go back, and walk through the whole list again,
		 *	sending more packets (if necessary), and updating
		 *	the sleep time.
		 */
		if (!done && (sleep_time > 0)) {
			recv_one_packet(sleep_time);
		}
	} while (!done);

	rbtree_free(filename_tree);
	fr_packet_list_free(pl);
	while (radclient_head) radclient_free(radclient_head);
	dict_free();

	if (do_summary) {
		printf("\n\t   Total approved auths:  %d\n", totalapp);
		printf("\t     Total denied auths:  %d\n", totaldeny);
		printf("\t       Total lost auths:  %d\n", totallost);
	}

	if (success) return 0;

	return 1;
}
示例#8
0
/*---------------------------------------------------------------------------*/
static void send_packet(mac_callback_t sent, void *ptr)
{
  send_one_packet(sent, ptr);
}
    /*******************************************************************
     * Send:
     * The entry point for the fast-path send calls.
     * Dispatch into combinations of single packet send calls.
     ******************************************************************/
    UHD_INLINE size_t send(
        const uhd::tx_streamer::buffs_type &buffs,
        const size_t nsamps_per_buff,
        const uhd::tx_metadata_t &metadata,
        const double timeout
    ){
        //translate the metadata to vrt if packet info
        vrt::if_packet_info_t if_packet_info;
        if_packet_info.has_sid = false;
        if_packet_info.has_cid = false;
        if_packet_info.has_tlr = false;
        if_packet_info.has_tsi = metadata.has_time_spec;
        if_packet_info.has_tsf = metadata.has_time_spec;
        if_packet_info.tsi     = boost::uint32_t(metadata.time_spec.get_full_secs());
        if_packet_info.tsf     = boost::uint64_t(metadata.time_spec.get_tick_count(_tick_rate));
        if_packet_info.sob     = metadata.start_of_burst;
        if_packet_info.eob     = metadata.end_of_burst;

        if (nsamps_per_buff <= _max_samples_per_packet){

            //TODO remove this code when sample counts of zero are supported by hardware
            #ifndef SSPH_DONT_PAD_TO_ONE
            if (nsamps_per_buff == 0) return send_one_packet(
                _zero_buffs, 1, if_packet_info, timeout
            ) & 0x0;
            #endif

            return send_one_packet(buffs, nsamps_per_buff, if_packet_info, timeout);
        }
        size_t total_num_samps_sent = 0;

        //false until final fragment
        if_packet_info.eob = false;

        const size_t num_fragments = (nsamps_per_buff-1)/_max_samples_per_packet;
        const size_t final_length = ((nsamps_per_buff-1)%_max_samples_per_packet)+1;

        //loop through the following fragment indexes
        for (size_t i = 0; i < num_fragments; i++){

            //send a fragment with the helper function
            const size_t num_samps_sent = send_one_packet(
                buffs, _max_samples_per_packet,
                if_packet_info, timeout,
                total_num_samps_sent*_bytes_per_cpu_item
            );
            total_num_samps_sent += num_samps_sent;
            if (num_samps_sent == 0) return total_num_samps_sent;

            //setup metadata for the next fragment
            const time_spec_t time_spec = metadata.time_spec + time_spec_t(0, total_num_samps_sent, _samp_rate);
            if_packet_info.tsi = boost::uint32_t(time_spec.get_full_secs());
            if_packet_info.tsf = boost::uint64_t(time_spec.get_tick_count(_tick_rate));
            if_packet_info.sob = false;

        }

        //send the final fragment with the helper function
        if_packet_info.eob = metadata.end_of_burst;
        return total_num_samps_sent + send_one_packet(
            buffs, final_length,
            if_packet_info, timeout,
            total_num_samps_sent*_bytes_per_cpu_item
        );
    }
示例#10
0
int radius_auth(char *username, char *password, char *radius_server_ip_address, unsigned short int radius_server_port, char * radius_server_secret)
{
	/*
	printf("radius server = %s, port = %d\n", radius_server_ip_address, radius_server_port);
	printf("radius secret = %s\n", radius_server_secret);
	*/
	const char *radius_dir = RADDBDIR;
    int persec = 0;
    int parallel = 1;
    radclient_t	*this;

    librad_debug = 0;

    if (dict_init(radius_dir, RADIUS_DICTIONARY) < 0)
    {
        librad_perror("radclient");
        return 1;
    }

    /*
     *	Strip port from hostname if needed.
     */
	server_port = radius_server_port;

    packet_code = PW_AUTHENTICATION_REQUEST;

    /*
     *	Grab the socket.
     */
    if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
    {
        perror("radclient: socket: ");
        exit(1);
    }
    memset(radius_id, 0, sizeof(radius_id));

    /*
     *	Resolve hostname.
     */
    server_ipaddr = ip_getaddr(radius_server_ip_address);

    /*
     *	Add the secret.
     */
    secret = radius_server_secret;

    /*
     *	If no '-f' is specified, we're reading from stdin.
     */

    if (last_used_id < 0) last_used_id = getpid() & 0xff;

    /*
     *	Walk over the packets to send, until
     *	we're all done.
     *
     *	FIXME: This currently busy-loops until it receives
     *	all of the packets.  It should really have some sort of
     *	send packet, get time to wait, select for time, etc.
     *	loop.
     */
    int n = parallel;
    const char *filename = NULL;

    done = 1;
    sleep_time = -1;

    /*
     *	Walk over the packets, sending them.
     */

    /* Send username and password to radius server */
    char auth_context[128];
    memset( auth_context, 0x00, sizeof(auth_context) );

    sprintf(auth_context,"User-Name = %s, User-Password = %s", username, password);
    /* Send username and password to radius server */

    this = radclient_init(auth_context);

    if (radclient_sane(this) != 0)
    {
        exit(1);
    }
    /*
     *	If there's a packet to receive,
     *	receive it, but don't wait for a
     *	packet.
     */
    recv_one_packet(0);

    /*
     *	This packet is done.  Delete it.
     */
    /*
     *	Packets from multiple '-f' are sent
     *	in parallel.
     *
     *	Packets from one file are sent in
     *	series, unless '-p' is specified, in
     *	which case N packets from each file
     *	are sent in parallel.
     */
    if (this->filename != filename)
    {
        filename = this->filename;
        n = parallel;
    }

    if (n > 0)
    {
        n--;

        /*
         *	Send the current packet.
         */
        send_one_packet(this);

        /*
         *	Wait a little before sending
         *	the next packet, if told to.
         */
        if (persec)
        {
            struct timeval tv;

            /*
             *	Don't sleep elsewhere.
             */
            sleep_time = 0;

            if (persec == 1)
            {
                tv.tv_sec = 1;
                tv.tv_usec = 0;
            }
            else
            {
                tv.tv_sec = 0;
                tv.tv_usec = 1000000/persec;
            }

            /*
             *	Sleep for milliseconds,
             *	portably.
             *
             *	If we get an error or
             *	a signal, treat it like
             *	a normal timeout.
             */
            select(0, NULL, NULL, NULL, &tv);
        }

        /*
         *	If we haven't sent this packet
         *	often enough, we're not done,
         *	and we shouldn't sleep.
         */
        if (this->resend < resend_count)
        {
            done = 0;
            sleep_time = 0;
        }
    }
    else   /* haven't sent this packet, we're not done */
    {
        assert(this->done == 0);
        assert(this->reply == NULL);
        done = 0;
    }

    /*
     *	Still have outstanding requests.
     */
    if (rbtree_num_elements(request_tree) > 0)
    {
        done = 0;
    }
    else
    {
        sleep_time = 0;
    }

    /*
     *	Nothing to do until we receive a request, so
     *	sleep until then.  Once we receive one packet,
     *	we go back, and walk through the whole list again,
     *	sending more packets (if necessary), and updating
     *	the sleep time.
     */
    int ret = recv_one_packet(3);

    rbtree_free(filename_tree);
    rbtree_free(request_tree);

    return ret;
}