示例#1
0
int main(int argc, char *argv[]) 
{
  ArgMapping amap;

  bool dry=false;
  amap.arg("dry", dry, "dry=1 for a dry-run");

  long m=2047;
  amap.arg("m", m, "cyclotomic ring");

  long p=2;
  amap.arg("p", p, "plaintext base");

  long r=1;
  amap.arg("r", r,  "lifting");

  long d=1;
  amap.arg("d", d, "degree of the field extension");
  amap.note("d == 0 => factors[0] defines extension");

  long L=3;
  amap.arg("L", L, "# of levels in the modulus chain",  "heuristic");

  long bnd = 64;
  amap.arg("bnd", bnd, "recursion bound for replication");

  long B = 0;
  amap.arg("B", B, "bound for # of replications", "all");

  amap.parse(argc, argv);
  setDryRun(dry);

  TestIt(m, p, r, d, L, bnd, B);
  cout << endl;
}
示例#2
0
void TestIt(long idx, long p, long r, long L, long c, long skHwt, int build_cache=0)
{
  Vec<long> mvec;
  vector<long> gens;
  vector<long> ords;

  long phim = mValues[idx][1];
  long m = mValues[idx][2];
  assert(GCD(p, m) == 1);

  append(mvec, mValues[idx][4]);
  if (mValues[idx][5]>1) append(mvec, mValues[idx][5]);
  if (mValues[idx][6]>1) append(mvec, mValues[idx][6]);
  gens.push_back(mValues[idx][7]);
  if (mValues[idx][8]>1) gens.push_back(mValues[idx][8]);
  if (mValues[idx][9]>1) gens.push_back(mValues[idx][9]);
  ords.push_back(mValues[idx][10]);
  if (abs(mValues[idx][11])>1) ords.push_back(mValues[idx][11]);
  if (abs(mValues[idx][12])>1) ords.push_back(mValues[idx][12]);

  if (!noPrint) {
    cout << "*** TestIt";
    if (isDryRun()) cout << " (dry run)";
    cout << ": p=" << p
	 << ", r=" << r
	 << ", L=" << L
	 << ", t=" << skHwt
	 << ", c=" << c
	 << ", m=" << m
	 << " (=" << mvec << "), gens="<<gens<<", ords="<<ords
	 << endl;
    cout << "Computing key-independent tables..." << std::flush;
  }
  setTimersOn();
  setDryRun(false); // Need to get a "real context" to test bootstrapping

  double t = -GetTime();
  FHEcontext context(m, p, r, gens, ords);
  if (scale) {
    context.scale = scale;
  }

  context.zMStar.set_cM(mValues[idx][13]/100.0);
  buildModChain(context, L, c, /*willBeBootstrappable=*/true);

  if (!noPrint) {
    std::cout << "security=" << context.securityLevel()<<endl;
    std::cout << "# small primes = " << context.smallPrimes.card() << "\n";
    std::cout << "# ctxt primes = " << context.ctxtPrimes.card() << "\n";
    std::cout << "# bits in ctxt primes = "
         << long(context.logOfProduct(context.ctxtPrimes)/log(2.0) + 0.5) << "\n";
    std::cout << "# special primes = " << context.specialPrimes.card() << "\n";
    std::cout << "# bits in special primes = "
         << long(context.logOfProduct(context.specialPrimes)/log(2.0) + 0.5) << "\n";
    std::cout << "scale=" << context.scale<<endl;
  }

  context.makeBootstrappable(mvec,/*t=*/skHwt,build_cache,/*alsoThick=*/false);
  // save time...disable some fat boot precomputation

  t += GetTime();

  //if (skHwt>0) context.rcData.skHwt = skHwt;
  if (!noPrint) {
    cout << " done in "<<t<<" seconds\n";
    cout << "  e="    << context.rcData.e
	 << ", e'="   << context.rcData.ePrime
	 << ", a="<< context.rcData.a
	 << ", t="    << context.rcData.skHwt
	 << "\n  ";
    context.zMStar.printout();
  }
  setDryRun(dry); // Now we can set the dry-run flag if desired


  long p2r = context.alMod.getPPowR();

  for (long numkey=0; numkey<OUTER_REP; numkey++) { // test with 3 keys

  t = -GetTime();
  if (!noPrint) cout << "Generating keys, " << std::flush;
  FHESecKey secretKey(context);
  secretKey.GenSecKey(64);      // A Hamming-weight-64 secret key
  addSome1DMatrices(secretKey); // compute key-switching matrices that we need
  addFrbMatrices(secretKey);
  if (!noPrint) cout << "computing key-dependent tables..." << std::flush;
  secretKey.genRecryptData();
  t += GetTime();
  if (!noPrint) cout << " done in "<<t<<" seconds\n";

  FHEPubKey publicKey = secretKey;

  long d = context.zMStar.getOrdP();
  long phim = context.zMStar.getPhiM();
  long nslots = phim/d;

  // GG defines the plaintext space Z_p[X]/GG(X)
  ZZX GG;
  GG = context.alMod.getFactorsOverZZ()[0];
  EncryptedArray ea(context, GG);

  if (debug) {
    dbgKey = &secretKey;
    dbgEa = &ea;
  }

  zz_p::init(p2r);
  Vec<zz_p> val0(INIT_SIZE, nslots);
  for (auto& x: val0)
    random(x);

  vector<ZZX> val1;
  val1.resize(nslots);
  for (long i = 0; i < nslots; i++) {
    val1[i] = conv<ZZX>(conv<ZZ>(rep(val0[i])));
  }

  vector<ZZX> val_const1;
  val_const1.resize(nslots);
  for (long i = 0; i < nslots; i++) {
    val_const1[i] = 1;
  }

  Ctxt c1(publicKey);
  ea.encrypt(c1, publicKey, val1);

  Ctxt c2(c1);
  if (!noPrint) CheckCtxt(c2, "before recryption");

  publicKey.thinReCrypt(c2);
  if (!noPrint) CheckCtxt(c2, "after recryption");

  vector<ZZX> val2;
  ea.decrypt(c2, secretKey, val2);

  if (val1 == val2) 
    cout << "GOOD\n";
  else
    cout << "BAD\n";
  }
}
示例#3
0
int main(int argc, char *argv[])
{
  argmap_t argmap;
  argmap["test"] = "1";
  argmap["m"] = "4369";
  argmap["p"] = "2";
  argmap["r"] = "1";
  argmap["depth"] = "5";
  argmap["L"] = "0";
  argmap["ord1"] = "30";
  argmap["ord2"] = "0";
  argmap["ord3"] = "0";
  argmap["ord4"] = "0";
  argmap["good1"] = "1";
  argmap["good2"] = "1";
  argmap["good3"] = "1";
  argmap["good4"] = "1";
  argmap["dry"] = "0";
  argmap["noPrint"] = "1";

  // get parameters from the command line

  if (!parseArgs(argc, argv, argmap)) usage(argv[0]);

  long test = atoi(argmap["test"]);
  long p = atoi(argmap["p"]);
  long r = atoi(argmap["r"]);
  long m = atoi(argmap["m"]);
  long depth = atoi(argmap["depth"]);
  long L = atoi(argmap["L"]);

  long ord1 = atoi(argmap["ord1"]);
  long ord2 = atoi(argmap["ord2"]);
  long ord3 = atoi(argmap["ord3"]);
  long ord4 = atoi(argmap["ord4"]);
  long good1 = atoi(argmap["good1"]);
  long good2 = atoi(argmap["good2"]);
  long good3 = atoi(argmap["good3"]);
  long good4 = atoi(argmap["good4"]);

  bool dry = atoi(argmap["dry"]);
  noPrint = atoi(argmap["noPrint"]);

  setDryRun(dry);
  if (test==0 || dry!=0) {
    Vec<GenDescriptor> vec;
    long nGens;
    if (ord2<=1) nGens=1;
    else if (ord3<=1) nGens=2;
    else if (ord4<=1) nGens=3;
    else nGens=4;
    vec.SetLength(nGens);

    switch (nGens) {
    case 4:  vec[3] = GenDescriptor(ord4, good4, /*genIdx=*/3);
    case 3:  vec[2] = GenDescriptor(ord3, good3, /*genIdx=*/2);
    case 2:  vec[1] = GenDescriptor(ord2, good2, /*genIdx=*/1);
    default: vec[0] = GenDescriptor(ord1, good1, /*genIdx=*/0);
    }
    if (!noPrint) {
      cout << "***Testing ";
      if (isDryRun()) cout << "(dry run) ";
      for (long i=0; i<vec.length(); i++)
	cout << "("<<vec[i].order<<","<<vec[i].good<<")";
      cout << ", depth="<<depth<<"\n";
    }
    testCube(vec, depth);
  }
  else {
    setTimersOn();
    if (!noPrint)
      cout << "***Testing m="<<m<<", p="<<p<<", depth="<<depth<< endl;
    testCtxt(m,p,depth,L,r);
  }
}
示例#4
0
void  TestIt(long p, long r, long c, long _k, long w,
             long L, Vec<long>& mvec, 
             Vec<long>& gens, Vec<long>& ords, long useCache)
{
  if (lsize(mvec)<1) { // use default values
    mvec.SetLength(3); gens.SetLength(3); ords.SetLength(3);
    mvec[0] = 7;    mvec[1] = 3;    mvec[2] = 221;
    gens[0] = 3979; gens[1] = 3095; gens[2] = 3760;
    ords[0] = 6;    ords[1] = 2;    ords[2] = -8;
  }
  if (!noPrint)
    cout << "*** TestIt"
       << (dry? " (dry run):" : ":")
       << " p=" << p
       << ", r=" << r
       << ", c=" << c
       << ", k=" << _k
       << ", w=" << w
       << ", L=" << L
       << ", mvec=" << mvec << ", "
       << ", useCache = " << useCache
       << endl;

  setTimersOn();
  setDryRun(false); // Need to get a "real context" to test ThinEvalMap

  // mvec is supposed to include the prime-power factorization of m
  long nfactors = mvec.length();
  for (long i = 0; i < nfactors; i++)
    for (long j = i+1; j < nfactors; j++)
      assert(GCD(mvec[i], mvec[j]) == 1);

  // multiply all the prime powers to get m itself
  long m = computeProd(mvec);
  assert(GCD(p, m) == 1);

  // build a context with these generators and orders
  vector<long> gens1, ords1;
  convert(gens1, gens);
  convert(ords1, ords);
  FHEcontext context(m, p, r, gens1, ords1);
  buildModChain(context, L, c);

  if (!noPrint) {
    context.zMStar.printout(); // print structure of Zm* /(p) to cout
    cout << endl;
  }
  long d = context.zMStar.getOrdP();
  long phim = context.zMStar.getPhiM();
  long nslots = phim/d;

  setDryRun(dry); // Now we can set the dry-run flag if desired

  FHESecKey secretKey(context);
  const FHEPubKey& publicKey = secretKey;
  secretKey.GenSecKey(w); // A Hamming-weight-w secret key
  addSome1DMatrices(secretKey); // compute key-switching matrices that we need
  addFrbMatrices(secretKey); // compute key-switching matrices that we need

  // GG defines the plaintext space Z_p[X]/GG(X)
  ZZX GG;
  GG = context.alMod.getFactorsOverZZ()[0];
  EncryptedArray ea(context, GG);

  zz_p::init(context.alMod.getPPowR());

  Vec<zz_p> val0(INIT_SIZE, nslots);
  for (auto& x: val0)
    random(x);

  vector<ZZX> val1;
  val1.resize(nslots);
  for (long i = 0; i < nslots; i++) {
    val1[i] = conv<ZZX>(conv<ZZ>(rep(val0[i])));
  }

  Ctxt ctxt(publicKey);
  ea.encrypt(ctxt, publicKey, val1);

  resetAllTimers();
  FHE_NTIMER_START(ALL);

  // Compute homomorphically the transformation that takes the
  // coefficients packed in the slots and produces the polynomial
  // corresponding to cube

  if (!noPrint) CheckCtxt(ctxt, "init");

  if (!noPrint) cout << "build ThinEvalMap\n";
  ThinEvalMap map(ea, /*minimal=*/false, mvec, 
    /*invert=*/false, /*build_cache=*/false); 
  // compute the transformation to apply

  if (!noPrint) cout << "apply ThinEvalMap\n";
  if (useCache) map.upgrade();
  map.apply(ctxt); // apply the transformation to ctxt
  if (!noPrint) CheckCtxt(ctxt, "ThinEvalMap");
  if (!noPrint) cout << "check results\n";

  if (!noPrint) cout << "build ThinEvalMap\n";
  ThinEvalMap imap(ea, /*minimal=*/false, mvec, 
    /*invert=*/true, /*build_cache=*/false); 
  // compute the transformation to apply
  if (!noPrint) cout << "apply ThinEvalMap\n";
  if (useCache) imap.upgrade();
  imap.apply(ctxt); // apply the transformation to ctxt
  if (!noPrint) {
    CheckCtxt(ctxt, "ThinEvalMap");
    cout << "check results\n";
  }

#if 1

  /* create dirty version of ctxt */
  Vec<zz_pX> dirty_val0;
  dirty_val0.SetLength(nslots);
  for (long i = 0; i < nslots; i++) {
    random(dirty_val0[i], d);
    SetCoeff(dirty_val0[i], 0, val0[i]);
  }
  
  vector<ZZX> dirty_val1;
  dirty_val1.resize(nslots);
  for (long i = 0; i < nslots; i++) {
    dirty_val1[i] = conv<ZZX>(dirty_val0[i]);
  }

  Ctxt dirty_ctxt(publicKey);
  ea.encrypt(dirty_ctxt, publicKey, dirty_val1);


  EvalMap dirty_map(ea, /*minimal=*/false, mvec, 
    /*invert=*/false, /*build_cache=*/false); 

  dirty_map.apply(dirty_ctxt);
  imap.apply(dirty_ctxt);
#endif


  vector<ZZX> val2;
  ea.decrypt(ctxt, secretKey, val2);

  if (val1 == val2)
    cout << "ThinEvalMap: GOOD\n";
  else
    cout << "ThinEvalMap: BAD\n";

#if 1
  vector<ZZX> dirty_val2;
  ea.decrypt(dirty_ctxt, secretKey, dirty_val2);

  if (val1 == dirty_val2)
    cout << "ThinEvalMap: GOOD\n";
  else
    cout << "ThinEvalMap: BAD\n";
#endif


  FHE_NTIMER_STOP(ALL);

  if (!noPrint) {
    cout << "\n*********\n";
    printAllTimers();
    cout << endl;
  }
}