void RenderMathMLFraction::layoutBlock(bool relayoutChildren, LayoutUnit)
{
    ASSERT(needsLayout());

    if (!relayoutChildren && simplifiedLayout())
        return;

    if (!isValid()) {
        setLogicalWidth(0);
        setLogicalHeight(0);
        clearNeedsLayout();
        return;
    }

    numerator().layoutIfNeeded();
    denominator().layoutIfNeeded();

    setLogicalWidth(std::max(numerator().logicalWidth(), denominator().logicalWidth()));

    updateLineThickness();
    LayoutUnit verticalOffset = 0; // This is the top of the renderer.
    LayoutPoint numeratorLocation(horizontalOffset(numerator(), element().numeratorAlignment()), verticalOffset);
    numerator().setLocation(numeratorLocation);

    LayoutUnit numeratorAscent = ascentForChild(numerator());
    LayoutUnit numeratorDescent = numerator().logicalHeight() - numeratorAscent;
    LayoutUnit denominatorAscent = ascentForChild(denominator());
    LayoutUnit denominatorDescent = denominator().logicalHeight() - denominatorAscent;
    if (isStack()) {
        LayoutUnit gapMin, topShiftUp, bottomShiftDown;
        getStackParameters(gapMin, topShiftUp, bottomShiftDown);
        LayoutUnit gap = topShiftUp - numeratorDescent + bottomShiftDown - denominatorAscent;
        if (gap < gapMin) {
            // If the gap is not large enough, we increase the shifts by the same value.
            LayoutUnit delta = (gapMin - gap) / 2;
            topShiftUp += delta;
            bottomShiftDown += delta;
        }
        verticalOffset += numeratorAscent + topShiftUp; // This is the middle of the stack gap.
        m_ascent = verticalOffset + mathAxisHeight();
        verticalOffset += bottomShiftDown - denominatorAscent;
    } else {
        LayoutUnit numeratorGapMin, denominatorGapMin, numeratorMinShiftUp, denominatorMinShiftDown;
        getFractionParameters(numeratorGapMin, denominatorGapMin, numeratorMinShiftUp, denominatorMinShiftDown);
        verticalOffset += std::max(numerator().logicalHeight() + numeratorGapMin + m_lineThickness / 2, numeratorAscent + numeratorMinShiftUp); // This is the middle of the fraction bar.
        m_ascent = verticalOffset + mathAxisHeight();
        verticalOffset += std::max(m_lineThickness / 2 + denominatorGapMin, denominatorMinShiftDown - denominatorAscent);
    }

    LayoutPoint denominatorLocation(horizontalOffset(denominator(), element().denominatorAlignment()), verticalOffset);
    denominator().setLocation(denominatorLocation);

    verticalOffset = std::max(verticalOffset + denominator().logicalHeight(), m_ascent + denominatorDescent); // This is the bottom of our renderer.
    setLogicalHeight(verticalOffset);

    clearNeedsLayout();
}
示例#2
0
inline void RenderBlockFlow::layoutBlockFlow(bool relayoutChildren, SubtreeLayoutScope& layoutScope)
{
    LayoutUnit oldLeft = logicalLeft();
    bool logicalWidthChanged = updateLogicalWidthAndColumnWidth();
    relayoutChildren |= logicalWidthChanged;

    LayoutState state(*this, locationOffset(), logicalWidthChanged);

    LayoutUnit beforeEdge = borderBefore() + paddingBefore();
    LayoutUnit afterEdge = borderAfter() + paddingAfter();
    LayoutUnit previousHeight = logicalHeight();
    setLogicalHeight(beforeEdge);

    m_paintInvalidationLogicalTop = 0;
    m_paintInvalidationLogicalBottom = 0;
    if (!firstChild() && !isAnonymousBlock())
        setChildrenInline(true);

    if (childrenInline())
        layoutInlineChildren(relayoutChildren, m_paintInvalidationLogicalTop, m_paintInvalidationLogicalBottom, afterEdge);
    else
        layoutBlockChildren(relayoutChildren, layoutScope, beforeEdge, afterEdge);

    LayoutUnit oldClientAfterEdge = clientLogicalBottom();

    updateLogicalHeight();

    if (previousHeight != logicalHeight())
        relayoutChildren = true;

    layoutPositionedObjects(relayoutChildren || isDocumentElement(), oldLeft != logicalLeft() ? ForcedLayoutAfterContainingBlockMoved : DefaultLayout);

    // Add overflow from children (unless we're multi-column, since in that case all our child overflow is clipped anyway).
    computeOverflow(oldClientAfterEdge);
}
示例#3
0
void RenderBlockFlow::layoutBlockChildren(bool relayoutChildren, SubtreeLayoutScope& layoutScope, LayoutUnit beforeEdge, LayoutUnit afterEdge)
{
    dirtyForLayoutFromPercentageHeightDescendants(layoutScope);

    RenderBox* next = firstChildBox();
    RenderBox* lastNormalFlowChild = 0;

    while (next) {
        RenderBox* child = next;
        next = child->nextSiblingBox();

        // FIXME: this should only be set from clearNeedsLayout crbug.com/361250
        child->setLayoutDidGetCalled(true);

        updateBlockChildDirtyBitsBeforeLayout(relayoutChildren, child);

        if (child->isOutOfFlowPositioned()) {
            child->containingBlock()->insertPositionedObject(child);
            adjustPositionedBlock(child);
            continue;
        }

        // Lay out the child.
        layoutBlockChild(child);
        lastNormalFlowChild = child;
    }

    // Negative margins can cause our height to shrink below our minimal height (border/padding).
    // If this happens, ensure that the computed height is increased to the minimal height.
    setLogicalHeight(std::max(logicalHeight() + afterEdge, beforeEdge + afterEdge));
}
void LayoutListMarker::layout()
{
    ASSERT(needsLayout());
    LayoutAnalyzer::Scope analyzer(*this);

    if (isImage()) {
        updateMarginsAndContent();
        LayoutSize imageSize(imageBulletSize());
        setWidth(imageSize.width());
        setHeight(imageSize.height());
    } else {
        setLogicalWidth(minPreferredLogicalWidth());
        setLogicalHeight(style()->fontMetrics().height());
    }

    setMarginStart(0);
    setMarginEnd(0);

    Length startMargin = style()->marginStart();
    Length endMargin = style()->marginEnd();
    if (startMargin.isFixed())
        setMarginStart(startMargin.value());
    if (endMargin.isFixed())
        setMarginEnd(endMargin.value());

    clearNeedsLayout();
}
示例#5
0
void SVGRootInlineBox::layoutRootBox(const FloatRect& childRect)
{
    RenderBlock* parentBlock = block();
    ASSERT(parentBlock);

    // Finally, assign the root block position, now that all content is laid out.
    LayoutRect boundingRect = enclosingLayoutRect(childRect);
    parentBlock->setLocation(boundingRect.location());
    parentBlock->setSize(boundingRect.size());

    // Position all children relative to the parent block.
    for (InlineBox* child = firstChild(); child; child = child->nextOnLine()) {
        // Skip generated content.
        if (!child->renderer()->node())
            continue;
        child->adjustPosition(-childRect.x(), -childRect.y());
    }

    // Position ourselves.
    setX(0);
    setY(0);
    setLogicalWidth(childRect.width());
    setLogicalHeight(childRect.height());
    setLineTopBottomPositions(0, boundingRect.height(), 0, boundingRect.height());
}
void RenderMathMLPadded::layoutBlock(bool relayoutChildren, LayoutUnit)
{
    ASSERT(needsLayout());

    if (!relayoutChildren && simplifiedLayout())
        return;

    // We first layout our children as a normal <mrow> element.
    LayoutUnit contentAscent, contentDescent, contentWidth;
    contentAscent = contentDescent = 0;
    RenderMathMLRow::computeLineVerticalStretch(contentAscent, contentDescent);
    RenderMathMLRow::layoutRowItems(contentAscent, contentDescent);
    contentWidth = logicalWidth();

    // We parse the mpadded attributes using the content metrics as the default value.
    LayoutUnit width = contentWidth;
    LayoutUnit ascent = contentAscent;
    LayoutUnit descent = contentDescent;
    LayoutUnit lspace = 0;
    LayoutUnit voffset = 0;
    resolveAttributes(width, ascent, descent, lspace, voffset);

    // Align children on the new baseline and shift them by (lspace, -voffset)
    LayoutPoint contentLocation(lspace, ascent - contentAscent - voffset);
    for (auto* child = firstChildBox(); child; child = child->nextSiblingBox())
        child->setLocation(child->location() + contentLocation);

    // Set the final metrics.
    setLogicalWidth(width);
    m_ascent = ascent;
    setLogicalHeight(ascent + descent);

    clearNeedsLayout();
}
示例#7
0
void LayoutListMarker::layout() {
  ASSERT(needsLayout());
  LayoutAnalyzer::Scope analyzer(*this);

  if (isImage()) {
    updateMarginsAndContent();
    LayoutSize imageSize(imageBulletSize());
    setWidth(imageSize.width());
    setHeight(imageSize.height());
  } else {
    const SimpleFontData* fontData = style()->font().primaryFont();
    DCHECK(fontData);
    setLogicalWidth(minPreferredLogicalWidth());
    setLogicalHeight(
        LayoutUnit(fontData ? fontData->getFontMetrics().height() : 0));
  }

  setMarginStart(LayoutUnit());
  setMarginEnd(LayoutUnit());

  Length startMargin = style()->marginStart();
  Length endMargin = style()->marginEnd();
  if (startMargin.isFixed())
    setMarginStart(LayoutUnit(startMargin.value()));
  if (endMargin.isFixed())
    setMarginEnd(LayoutUnit(endMargin.value()));

  clearNeedsLayout();
}
void RenderRegion::updateLogicalHeight()
{
    RenderBlock::updateLogicalHeight();

    if (!hasAutoLogicalHeight())
        return;

    // We want to update the logical height based on the computed override logical
    // content height only if the view is in the layout phase
    // in which all the auto logical height regions have their override logical height set.
    if (!m_flowThread->inConstrainedLayoutPhase())
        return;

    // There may be regions with auto logical height that during the prerequisite layout phase
    // did not have the chance to layout flow thread content. Because of that, these regions do not
    // have an overrideLogicalContentHeight computed and they will not be able to fragment any flow
    // thread content.
    if (!hasOverrideHeight())
        return;

    LayoutUnit newLogicalHeight = overrideLogicalContentHeight() + borderAndPaddingLogicalHeight();
    ASSERT(newLogicalHeight < LayoutUnit::max() / 2);
    if (newLogicalHeight > logicalHeight())
        setLogicalHeight(newLogicalHeight);
}
void RenderNamedFlowFragment::updateLogicalHeight()
{
    RenderRegion::updateLogicalHeight();

    if (!hasAutoLogicalHeight())
        return;

    // We want to update the logical height based on the computed auto-height
    // only after the measure cotnent layout phase when all the
    // auto logical height regions have a computed auto-height.
    if (m_flowThread->inMeasureContentLayoutPhase())
        return;

    // There may be regions with auto logical height that during the prerequisite layout phase
    // did not have the chance to layout flow thread content. Because of that, these regions do not
    // have a computedAutoHeight and they will not be able to fragment any flow
    // thread content.
    if (!hasComputedAutoHeight())
        return;

    LayoutUnit newLogicalHeight = computedAutoHeight() + borderAndPaddingLogicalHeight();
    ASSERT(newLogicalHeight < RenderFlowThread::maxLogicalHeight());
    if (newLogicalHeight > logicalHeight()) {
        setLogicalHeight(newLogicalHeight);
        // Recalculate position of the render block after new logical height is set.
        // (needed in absolute positioning case with bottom alignment for example)
        RenderRegion::updateLogicalHeight();
    }
}
示例#10
0
void RenderMultiColumnBlock::checkForPaginationLogicalHeightChange(LayoutUnit& /*pageLogicalHeight*/, bool& /*pageLogicalHeightChanged*/, bool& /*hasSpecifiedPageLogicalHeight*/)
{
    // We don't actually update any of the variables. We just subclassed to adjust our column height.
    updateLogicalHeight();
    m_columnHeightAvailable = max<LayoutUnit>(contentLogicalHeight(), 0);
    setLogicalHeight(0);
}
void RenderMultiColumnSet::computeLogicalHeight()
{
    // Make sure our column height is up to date.
    RenderMultiColumnBlock* parentBlock = toRenderMultiColumnBlock(parent());
    setComputedColumnHeight(parentBlock->columnHeight()); // FIXME: Once we make more than one column set, this will become variable.
    
    // Our logical height is always just the height of our columns.
    setLogicalHeight(computedColumnHeight());
}
示例#12
0
void RenderBlockFlow::layoutBlockChild(RenderBox* child)
{
    child->computeAndSetBlockDirectionMargins(this);
    LayoutUnit marginBefore = marginBeforeForChild(child);
    child->setY(logicalHeight() + marginBefore);
    child->layoutIfNeeded();
    determineLogicalLeftPositionForChild(child);
    setLogicalHeight(logicalHeight() + marginBefore + logicalHeightForChild(child) + marginAfterForChild(child));
}
示例#13
0
void RenderGrid::layoutGridItems()
{
    Vector<GridTrack> columnTracks(maximumIndexInDirection(ForColumns));
    Vector<GridTrack> rowTracks(maximumIndexInDirection(ForRows));
    computedUsedBreadthOfGridTracks(ForColumns, columnTracks, rowTracks);
    ASSERT(tracksAreWiderThanMinTrackBreadth(ForColumns, columnTracks));
    computedUsedBreadthOfGridTracks(ForRows, columnTracks, rowTracks);
    ASSERT(tracksAreWiderThanMinTrackBreadth(ForRows, rowTracks));

    for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
        LayoutPoint childPosition = findChildLogicalPosition(child, columnTracks, rowTracks);

        size_t columnTrack = resolveGridPosition(child->style()->gridItemColumn());
        size_t rowTrack = resolveGridPosition(child->style()->gridItemRow());

        // Because the grid area cannot be styled, we don't need to adjust
        // the grid breadth to account for 'box-sizing'.
        LayoutUnit oldOverrideContainingBlockContentLogicalWidth = child->hasOverrideContainingBlockLogicalWidth() ? child->overrideContainingBlockContentLogicalWidth() : LayoutUnit();
        LayoutUnit oldOverrideContainingBlockContentLogicalHeight = child->hasOverrideContainingBlockLogicalHeight() ? child->overrideContainingBlockContentLogicalHeight() : LayoutUnit();

        if (oldOverrideContainingBlockContentLogicalWidth != columnTracks[columnTrack].m_usedBreadth || oldOverrideContainingBlockContentLogicalHeight != rowTracks[rowTrack].m_usedBreadth)
            child->setNeedsLayout(true, MarkOnlyThis);

        child->setOverrideContainingBlockContentLogicalWidth(columnTracks[columnTrack].m_usedBreadth);
        child->setOverrideContainingBlockContentLogicalHeight(rowTracks[rowTrack].m_usedBreadth);

        // FIXME: Grid items should stretch to fill their cells. Once we
        // implement grid-{column,row}-align, we can also shrink to fit. For
        // now, just size as if we were a regular child.
        child->layoutIfNeeded();

        // FIXME: Handle border & padding on the grid element.
        child->setLogicalLocation(childPosition);
    }

    for (size_t i = 0; i < rowTracks.size(); ++i)
        setLogicalHeight(logicalHeight() + rowTracks[i].m_usedBreadth);

    // FIXME: We should handle min / max logical height.

    setLogicalHeight(logicalHeight() + borderAndPaddingLogicalHeight());
}
示例#14
0
void RenderMultiColumnSet::updateLogicalHeight()
{
    // FIXME: This is the only class that overrides updateLogicalHeight. If we didn't have to set computedColumnHeight,
    // we could remove this and make updateLogicalHeight non-virtual. https://bugs.webkit.org/show_bug.cgi?id=96804
    // Make sure our column height is up to date.
    LogicalExtentComputedValues computedValues;
    computeLogicalHeight(0, 0, computedValues);
    setComputedColumnHeight(computedValues.m_extent); // FIXME: Once we make more than one column set, this will become variable.
    
    // Our logical height is always just the height of our columns.
    setLogicalHeight(computedColumnHeight());
}
示例#15
0
void RenderGrid::layoutBlock(bool relayoutChildren, LayoutUnit)
{
    ASSERT(needsLayout());

    if (!relayoutChildren && simplifiedLayout())
        return;

    // FIXME: Much of this method is boiler plate that matches RenderBox::layoutBlock and Render*FlexibleBox::layoutBlock.
    // It would be nice to refactor some of the duplicate code.
    LayoutRepainter repainter(*this, checkForRepaintDuringLayout());
    LayoutStateMaintainer statePusher(view(), this, locationOffset(), hasTransform() || hasReflection() || style()->isFlippedBlocksWritingMode());

    if (inRenderFlowThread()) {
        // Regions changing widths can force us to relayout our children.
        if (logicalWidthChangedInRegions())
            relayoutChildren = true;
    }
    computeInitialRegionRangeForBlock();

    LayoutSize previousSize = size();

    setLogicalHeight(0);
    computeLogicalWidth();

    m_overflow.clear();

    layoutGridItems();

    LayoutUnit oldClientAfterEdge = clientLogicalBottom();
    computeLogicalHeight();

    if (size() != previousSize)
        relayoutChildren = true;

    layoutPositionedObjects(relayoutChildren || isRoot());

    computeRegionRangeForBlock();

    computeOverflow(oldClientAfterEdge);
    statePusher.pop();

    updateLayerTransform();

    // Update our scroll information if we're overflow:auto/scroll/hidden now that we know if
    // we overflow or not.
    if (hasOverflowClip())
        layer()->updateScrollInfoAfterLayout();

    repainter.repaintAfterLayout();

    setNeedsLayout(false);
}
示例#16
0
void RenderMultiColumnBlock::checkForPaginationLogicalHeightChange(LayoutUnit& /*pageLogicalHeight*/, bool& /*pageLogicalHeightChanged*/, bool& /*hasSpecifiedPageLogicalHeight*/)
{
    // We don't actually update any of the variables. We just subclassed to adjust our column height.
    updateLogicalHeight();
    LayoutUnit newContentLogicalHeight = contentLogicalHeight();
    m_requiresBalancing = !newContentLogicalHeight;
    if (!m_requiresBalancing) {
        // The regions will be invalidated when we lay them out and they change size to
        // the new column height.
        if (columnHeight() != newContentLogicalHeight)
            setColumnHeight(newContentLogicalHeight);
    }
    setLogicalHeight(0);
}
示例#17
0
void RenderFlowThread::computeLogicalHeight()
{
    LayoutUnit logicalHeight = 0;

    for (RenderRegionList::iterator iter = m_regionList.begin(); iter != m_regionList.end(); ++iter) {
        RenderRegion* region = *iter;
        if (!region->isValid())
            continue;
        ASSERT(!region->needsLayout());
        logicalHeight += isHorizontalWritingMode() ? region->contentHeight() : region->contentWidth();
    }

    setLogicalHeight(logicalHeight);
}
示例#18
0
void RenderFlowThread::updateLogicalHeight()
{
    LayoutUnit logicalHeight = 0;

    for (RenderRegionList::iterator iter = m_regionList.begin(); iter != m_regionList.end(); ++iter) {
        RenderRegion* region = *iter;
        if (!region->isValid())
            continue;
        ASSERT(!region->needsLayout());
        logicalHeight += region->logicalHeightOfAllFlowThreadContent();
    }

    setLogicalHeight(logicalHeight);
}
示例#19
0
void RenderMultiColumnBlock::checkForPaginationLogicalHeightChange(LayoutUnit& pageLogicalHeight, bool& pageLogicalHeightChanged, bool& hasSpecifiedPageLogicalHeight)
{
    // We need to go ahead and set our explicit page height if one exists, so that we can
    // avoid doing multiple layout passes.
    computeLogicalHeight();
    LayoutUnit newContentLogicalHeight = contentLogicalHeight();
    if (newContentLogicalHeight > ZERO_LAYOUT_UNIT) {
        pageLogicalHeight = newContentLogicalHeight;
        hasSpecifiedPageLogicalHeight = true;
    }
    setLogicalHeight(ZERO_LAYOUT_UNIT);

    if (columnHeight() != pageLogicalHeight && everHadLayout()) {
        setColumnHeight(pageLogicalHeight);
        pageLogicalHeightChanged = true;
    }
    
    // Set up our column sets.
    ensureColumnSets();
}
示例#20
0
void LayoutListMarker::layout() {
  ASSERT(needsLayout());
  LayoutAnalyzer::Scope analyzer(*this);

  LayoutUnit blockOffset;
  for (LayoutBox* o = parentBox(); o && o != listItem(); o = o->parentBox()) {
    blockOffset += o->logicalTop();
  }
  if (listItem()->style()->isLeftToRightDirection()) {
    m_lineOffset = listItem()->logicalLeftOffsetForLine(
        blockOffset, DoNotIndentText, LayoutUnit());
  } else {
    m_lineOffset = listItem()->logicalRightOffsetForLine(
        blockOffset, DoNotIndentText, LayoutUnit());
  }
  if (isImage()) {
    updateMarginsAndContent();
    LayoutSize imageSize(imageBulletSize());
    setWidth(imageSize.width());
    setHeight(imageSize.height());
  } else {
    const SimpleFontData* fontData = style()->font().primaryFont();
    DCHECK(fontData);
    setLogicalWidth(minPreferredLogicalWidth());
    setLogicalHeight(
        LayoutUnit(fontData ? fontData->getFontMetrics().height() : 0));
  }

  setMarginStart(LayoutUnit());
  setMarginEnd(LayoutUnit());

  Length startMargin = style()->marginStart();
  Length endMargin = style()->marginEnd();
  if (startMargin.isFixed())
    setMarginStart(LayoutUnit(startMargin.value()));
  if (endMargin.isFixed())
    setMarginEnd(LayoutUnit(endMargin.value()));

  clearNeedsLayout();
}
示例#21
0
void SVGRootInlineBox::layoutRootBox()
{
    RenderBlock* parentBlock = block();
    ASSERT(parentBlock);

    IntRect childRect;
    for (InlineBox* child = firstChild(); child; child = child->nextOnLine()) {
        // Skip generated content.
        if (!child->renderer()->node())
            continue;
        childRect.unite(child->calculateBoundaries());
    }

    int xBlock = childRect.x();
    int yBlock = childRect.y();
    int widthBlock = childRect.width();
    int heightBlock = childRect.height();

    // Finally, assign the root block position, now that all content is laid out.
    parentBlock->setLocation(xBlock, yBlock);
    parentBlock->setWidth(widthBlock);
    parentBlock->setHeight(heightBlock);

    // Position all children relative to the parent block.
    for (InlineBox* child = firstChild(); child; child = child->nextOnLine()) {
        // Skip generated content.
        if (!child->renderer()->node())
            continue;
        child->adjustPosition(-xBlock, -yBlock);
    }

    // Position ourselves.
    setX(0);
    setY(0);
    setLogicalWidth(widthBlock);
    setLogicalHeight(heightBlock);
    setBlockLogicalHeight(heightBlock);
    setLineTopBottomPositions(0, heightBlock);
}
示例#22
0
void RenderGrid::layoutGridItems()
{
    Vector<GridTrack> columnTracks, rowTracks;
    computedUsedBreadthOfGridTracks(ForColumns, columnTracks);
    // FIXME: The logical width of Grid Columns from the prior step is used in
    // the formatting of Grid items in content-sized Grid Rows to determine
    // their required height. We will probably need to pass columns through.
    computedUsedBreadthOfGridTracks(ForRows, rowTracks);

    for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
        LayoutPoint childPosition = findChildLogicalPosition(child, columnTracks, rowTracks);
        // FIXME: Grid items should stretch to fill their cells. Once we
        // implement grid-{column,row}-align, we can also shrink to fit. For
        // now, just size as if we were a regular child.
        child->layoutIfNeeded();

        // FIXME: Handle border & padding on the grid element.
        child->setLogicalLocation(childPosition);
    }

    // FIXME: Handle border & padding on the grid element.
    for (size_t i = 0; i < rowTracks.size(); ++i)
        setLogicalHeight(logicalHeight() + rowTracks[i].m_usedBreadth);
}
void RenderMathMLRoot::layoutBlock(bool relayoutChildren, LayoutUnit)
{
    ASSERT(needsLayout());

    if (!relayoutChildren && simplifiedLayout())
        return;

    updateStyle();
    m_radicalOperatorTop = 0;
    m_baseWidth = 0;

    if (!isValid()) {
        setLogicalWidth(0);
        setLogicalHeight(0);
        clearNeedsLayout();
        return;
    }

    // We layout the children, determine the vertical metrics of the base and set the logical width.
    // Note: Per the MathML specification, the children of <msqrt> are wrapped in an inferred <mrow>, which is the desired base.
    LayoutUnit baseAscent, baseDescent;
    recomputeLogicalWidth();
    if (m_kind == SquareRoot) {
        baseAscent = baseDescent;
        RenderMathMLRow::computeLineVerticalStretch(baseAscent, baseDescent);
        RenderMathMLRow::layoutRowItems(baseAscent, baseDescent);
        m_baseWidth = logicalWidth();
    } else {
        getBase().layoutIfNeeded();
        m_baseWidth = getBase().logicalWidth();
        baseAscent = ascentForChild(getBase());
        baseDescent = getBase().logicalHeight() - baseAscent;
        getIndex().layoutIfNeeded();
    }

    // Stretch the radical operator to cover the base height.
    // We can then determine the metrics of the radical operator + the base.
    m_radicalOperator.stretchTo(style(), baseAscent + baseDescent);
    LayoutUnit radicalOperatorHeight = m_radicalOperator.ascent() + m_radicalOperator.descent();
    LayoutUnit indexBottomRaise = m_degreeBottomRaisePercent * radicalOperatorHeight;
    LayoutUnit radicalAscent = baseAscent + m_verticalGap + m_ruleThickness + m_extraAscender;
    LayoutUnit radicalDescent = std::max<LayoutUnit>(baseDescent, radicalOperatorHeight + m_extraAscender - radicalAscent);
    LayoutUnit descent = radicalDescent;
    LayoutUnit ascent = radicalAscent;

    // We set the logical width.
    if (m_kind == SquareRoot)
        setLogicalWidth(m_radicalOperator.width() + m_baseWidth);
    else {
        ASSERT(m_kind == RootWithIndex);
        setLogicalWidth(m_kernBeforeDegree + getIndex().logicalWidth() + m_kernAfterDegree + m_radicalOperator.width() + m_baseWidth);
    }

    // For <mroot>, we update the metrics to take into account the index.
    LayoutUnit indexAscent, indexDescent;
    if (m_kind == RootWithIndex) {
        indexAscent = ascentForChild(getIndex());
        indexDescent = getIndex().logicalHeight() - indexAscent;
        ascent = std::max<LayoutUnit>(radicalAscent, indexBottomRaise + indexDescent + indexAscent - descent);
    }

    // We set the final position of children.
    m_radicalOperatorTop = ascent - radicalAscent + m_extraAscender;
    LayoutUnit horizontalOffset = m_radicalOperator.width();
    if (m_kind == RootWithIndex)
        horizontalOffset += m_kernBeforeDegree + getIndex().logicalWidth() + m_kernAfterDegree;
    LayoutPoint baseLocation(mirrorIfNeeded(horizontalOffset, m_baseWidth), ascent - baseAscent);
    if (m_kind == SquareRoot) {
        for (auto* child = firstChildBox(); child; child = child->nextSiblingBox())
            child->setLocation(child->location() + baseLocation);
    } else {
        ASSERT(m_kind == RootWithIndex);
        getBase().setLocation(baseLocation);
        LayoutPoint indexLocation(mirrorIfNeeded(m_kernBeforeDegree, getIndex()), ascent + descent - indexBottomRaise - indexDescent - indexAscent);
        getIndex().setLocation(indexLocation);
    }

    setLogicalHeight(ascent + descent);
    clearNeedsLayout();
}
示例#24
0
void RenderSVGText::layout()
{
    ASSERT(needsLayout());

    subtreeStyleDidChange();

    LayoutRepainter repainter(*this, SVGRenderSupport::checkForSVGRepaintDuringLayout(this));

    bool updateCachedBoundariesInParents = false;
    if (m_needsTransformUpdate) {
        m_localTransform = toSVGTextElement(node())->animatedLocalTransform();
        m_needsTransformUpdate = false;
        updateCachedBoundariesInParents = true;
    }

    if (!everHadLayout()) {
        // When laying out initially, collect all layout attributes, build the character data map,
        // and propogate resulting SVGLayoutAttributes to all RenderSVGInlineText children in the subtree.
        ASSERT(m_layoutAttributes.isEmpty());
        collectLayoutAttributes(this, m_layoutAttributes);
        updateFontInAllDescendants(this);
        m_layoutAttributesBuilder.buildLayoutAttributesForForSubtree(this);

        m_needsReordering = true;
        m_needsTextMetricsUpdate = false;
        m_needsPositioningValuesUpdate = false;
        updateCachedBoundariesInParents = true;
    } else if (m_needsPositioningValuesUpdate) {
        // When the x/y/dx/dy/rotate lists change, recompute the layout attributes, and eventually
        // update the on-screen font objects as well in all descendants.
        if (m_needsTextMetricsUpdate) {
            updateFontInAllDescendants(this);
            m_needsTextMetricsUpdate = false;
        }

        m_layoutAttributesBuilder.buildLayoutAttributesForForSubtree(this);
        m_needsReordering = true;
        m_needsPositioningValuesUpdate = false;
        updateCachedBoundariesInParents = true;
    } else if (m_needsTextMetricsUpdate || SVGRenderSupport::findTreeRootObject(this)->isLayoutSizeChanged()) {
        // If the root layout size changed (eg. window size changes) or the transform to the root
        // context has changed then recompute the on-screen font size.
        updateFontInAllDescendants(this, &m_layoutAttributesBuilder);

        ASSERT(!m_needsReordering);
        ASSERT(!m_needsPositioningValuesUpdate);
        m_needsTextMetricsUpdate = false;
        updateCachedBoundariesInParents = true;
    }

    checkLayoutAttributesConsistency(this, m_layoutAttributes);

    // Reduced version of RenderBlock::layoutBlock(), which only takes care of SVG text.
    // All if branches that could cause early exit in RenderBlocks layoutBlock() method are turned into assertions.
    ASSERT(!isInline());
    ASSERT(!simplifiedLayout());
    ASSERT(!scrollsOverflow());
    ASSERT(!hasControlClip());
    ASSERT(!hasColumns());
    ASSERT(!positionedObjects());
    ASSERT(!m_overflow);
    ASSERT(!isAnonymousBlock());

    if (!firstChild())
        setChildrenInline(true);

    // FIXME: We need to find a way to only layout the child boxes, if needed.
    FloatRect oldBoundaries = objectBoundingBox();
    ASSERT(childrenInline());

    rebuildFloatsFromIntruding();

    LayoutUnit beforeEdge = borderBefore() + paddingBefore();
    LayoutUnit afterEdge = borderAfter() + paddingAfter() + scrollbarLogicalHeight();
    setLogicalHeight(beforeEdge);

    LayoutUnit repaintLogicalTop = 0;
    LayoutUnit repaintLogicalBottom = 0;
    layoutInlineChildren(true, repaintLogicalTop, repaintLogicalBottom, afterEdge);

    if (m_needsReordering)
        m_needsReordering = false;

    if (!updateCachedBoundariesInParents)
        updateCachedBoundariesInParents = oldBoundaries != objectBoundingBox();

    // Invalidate all resources of this client if our layout changed.
    if (everHadLayout() && selfNeedsLayout())
        SVGResourcesCache::clientLayoutChanged(this);

    // If our bounds changed, notify the parents.
    if (updateCachedBoundariesInParents)
        RenderSVGBlock::setNeedsBoundariesUpdate();

    repainter.repaintAfterLayout();
    clearNeedsLayout();
}
示例#25
0
void RenderView::computeLogicalHeight()
{
    if (!shouldUsePrintingLayout() && m_frameView)
        setLogicalHeight(viewLogicalHeight());
}
示例#26
0
void RenderView::computeLogicalHeight()
{
    if (!printing() && m_frameView)
        setLogicalHeight(viewLogicalHeight());
}