static void dce110_tg_v_program_blank_color(struct timing_generator *tg,
		const struct tg_color *black_color)
{
	uint32_t addr = mmCRTCV_BLACK_COLOR;
	uint32_t value = dm_read_reg(tg->ctx, addr);

	set_reg_field_value(
		value,
		black_color->color_b_cb,
		CRTCV_BLACK_COLOR,
		CRTC_BLACK_COLOR_B_CB);
	set_reg_field_value(
		value,
		black_color->color_g_y,
		CRTCV_BLACK_COLOR,
		CRTC_BLACK_COLOR_G_Y);
	set_reg_field_value(
		value,
		black_color->color_r_cr,
		CRTCV_BLACK_COLOR,
		CRTC_BLACK_COLOR_R_CR);

	dm_write_reg(tg->ctx, addr, value);

	addr = mmCRTCV_BLANK_DATA_COLOR;
	dm_write_reg(tg->ctx, addr, value);
}
static bool dce110_timing_generator_v_enable_crtc(struct timing_generator *tg)
{
/*
* Set MASTER_UPDATE_MODE to 0
* This is needed for DRR, and also suggested to be default value by Syed.
*/

	uint32_t value;

	value = 0;
	set_reg_field_value(value, 0,
			CRTCV_MASTER_UPDATE_MODE, MASTER_UPDATE_MODE);
	dm_write_reg(tg->ctx,
			mmCRTCV_MASTER_UPDATE_MODE, value);

	/* TODO: may want this on for looking for underflow */
	value = 0;
	dm_write_reg(tg->ctx, mmCRTCV_MASTER_UPDATE_MODE, value);

	value = 0;
	set_reg_field_value(value, 1,
			CRTCV_MASTER_EN, CRTC_MASTER_EN);
	dm_write_reg(tg->ctx,
			mmCRTCV_MASTER_EN, value);

	return true;
}
/* set the payload value for the unsolicited response */
static void set_unsolicited_response_payload(
	const struct hw_ctx_audio *hw_ctx,
	enum audio_payload payload)
{
	/* set the payload value for the unsolicited response
	 Jack presence is not required to be enabled */
	uint32_t value = 0;

	value = read_indirect_azalia_reg(
		hw_ctx,
		ixAZALIA_F0_CODEC_PIN_CONTROL_UNSOLICITED_RESPONSE_FORCE);

	set_reg_field_value(value, payload,
		AZALIA_F0_CODEC_PIN_CONTROL_UNSOLICITED_RESPONSE_FORCE,
		UNSOLICITED_RESPONSE_PAYLOAD);

	set_reg_field_value(value, 1,
		AZALIA_F0_CODEC_PIN_CONTROL_UNSOLICITED_RESPONSE_FORCE,
		UNSOLICITED_RESPONSE_FORCE);

	write_indirect_azalia_reg(
		hw_ctx,
		ixAZALIA_F0_CODEC_PIN_CONTROL_UNSOLICITED_RESPONSE_FORCE,
		value);
}
static void enable_alpha(
	struct line_buffer *base,
	bool enable)
{
	struct line_buffer_dce110 *lb = LB110_FROM_BASE(base);
	struct dal_context *dal_ctx = base->dal_context;
	uint32_t value;
	uint32_t addr = lb->lbx_data_format;

	value = dal_read_reg(dal_ctx, addr);

	if (enable == 1)
		set_reg_field_value(
				value,
				1,
				LB_DATA_FORMAT,
				ALPHA_EN);
	else
		set_reg_field_value(
				value,
				0,
				LB_DATA_FORMAT,
				ALPHA_EN);

	dal_write_reg(dal_ctx, addr, value);
}
static void dce110_timing_generator_v_set_overscan_color(struct timing_generator *tg,
	const struct tg_color *overscan_color)
{
	struct dc_context *ctx = tg->ctx;
	uint32_t value = 0;
	uint32_t addr;

	set_reg_field_value(
		value,
		overscan_color->color_b_cb,
		CRTCV_OVERSCAN_COLOR,
		CRTC_OVERSCAN_COLOR_BLUE);

	set_reg_field_value(
		value,
		overscan_color->color_g_y,
		CRTCV_OVERSCAN_COLOR,
		CRTC_OVERSCAN_COLOR_GREEN);

	set_reg_field_value(
		value,
		overscan_color->color_r_cr,
		CRTCV_OVERSCAN_COLOR,
		CRTC_OVERSCAN_COLOR_RED);

	addr = mmCRTCV_OVERSCAN_COLOR;
	dm_write_reg(ctx, addr, value);
}
void dce110_opp_power_on_regamma_lut_v(
	struct transform *xfm,
	bool power_on)
{
	uint32_t value = dm_read_reg(xfm->ctx, mmDCFEV_MEM_PWR_CTRL);

	set_reg_field_value(
		value,
		0,
		DCFEV_MEM_PWR_CTRL,
		COL_MAN_GAMMA_CORR_MEM_PWR_FORCE);

	set_reg_field_value(
		value,
		power_on,
		DCFEV_MEM_PWR_CTRL,
		COL_MAN_GAMMA_CORR_MEM_PWR_DIS);

	set_reg_field_value(
		value,
		0,
		DCFEV_MEM_PWR_CTRL,
		COL_MAN_INPUT_GAMMA_MEM_PWR_FORCE);

	set_reg_field_value(
		value,
		power_on,
		DCFEV_MEM_PWR_CTRL,
		COL_MAN_INPUT_GAMMA_MEM_PWR_DIS);

	dm_write_reg(xfm->ctx, mmDCFEV_MEM_PWR_CTRL, value);
}
/**
* Function:
* void program_overscan
*
* Purpose: Programs overscan border
* Input:   overscan
*
* Output:
   void
*/
static void program_overscan(
		struct dce110_transform *xfm110,
		const struct overscan_info *overscan)
{
	uint32_t overscan_left_right = 0;
	uint32_t overscan_top_bottom = 0;

	set_reg_field_value(overscan_left_right, overscan->left,
		SCLV_EXT_OVERSCAN_LEFT_RIGHT, EXT_OVERSCAN_LEFT);

	set_reg_field_value(overscan_left_right, overscan->right,
		SCLV_EXT_OVERSCAN_LEFT_RIGHT, EXT_OVERSCAN_RIGHT);

	set_reg_field_value(overscan_top_bottom, overscan->top,
		SCLV_EXT_OVERSCAN_TOP_BOTTOM, EXT_OVERSCAN_TOP);

	set_reg_field_value(overscan_top_bottom, overscan->bottom,
		SCLV_EXT_OVERSCAN_TOP_BOTTOM, EXT_OVERSCAN_BOTTOM);

	dm_write_reg(xfm110->base.ctx,
			mmSCLV_EXT_OVERSCAN_LEFT_RIGHT,
			overscan_left_right);

	dm_write_reg(xfm110->base.ctx,
			mmSCLV_EXT_OVERSCAN_TOP_BOTTOM,
			overscan_top_bottom);
}
static void setup_i2c_polling(
	struct dc_context *ctx,
	const uint32_t addr,
	bool enable_detect,
	bool detect_mode)
{
	uint32_t value;

	value = dm_read_reg(ctx, addr);

	set_reg_field_value(
		value,
		enable_detect,
		DC_I2C_DDC1_SETUP,
		DC_I2C_DDC1_ENABLE);

	set_reg_field_value(
		value,
		enable_detect,
		DC_I2C_DDC1_SETUP,
		DC_I2C_DDC1_EDID_DETECT_ENABLE);

	if (enable_detect)
		set_reg_field_value(
			value,
			detect_mode,
			DC_I2C_DDC1_SETUP,
			DC_I2C_DDC1_EDID_DETECT_MODE);

	dm_write_reg(ctx, addr, value);
}
/* enable DP audio */
static void enable_dp_audio(
	const struct hw_ctx_audio *hw_ctx,
	enum engine_id engine_id)
{
	const uint32_t addr = mmDP_SEC_CNTL + engine_offset[engine_id];

	uint32_t value;

	/* Enable Audio packets */
	value = dal_read_reg(hw_ctx->ctx, addr);
	set_reg_field_value(value, 1,
		DP_SEC_CNTL,
		DP_SEC_ASP_ENABLE);

	dal_write_reg(hw_ctx->ctx, addr, value);

	/* Program the ATP and AIP next */
	set_reg_field_value(value, 1,
		DP_SEC_CNTL,
		DP_SEC_ATP_ENABLE);

	set_reg_field_value(value, 1,
		DP_SEC_CNTL,
		DP_SEC_AIP_ENABLE);

	dal_write_reg(hw_ctx->ctx, addr, value);

	/* Program STREAM_ENABLE after all the other enables. */
	set_reg_field_value(value, 1,
		DP_SEC_CNTL,
		DP_SEC_STREAM_ENABLE);

	dal_write_reg(hw_ctx->ctx, addr, value);
}
static void enable_advanced_request(
	struct timing_generator *tg,
	bool enable,
	const struct hw_crtc_timing *timing)
{
	uint32_t addr = tg->regs[IDX_CRTC_START_LINE_CONTROL];
	uint32_t value = dal_read_reg(tg->ctx, addr);
	uint32_t start_line_position;

	if (enable) {
		if (get_vsync_and_front_porch_size(timing) <= 3)
			start_line_position = 3;
		else
			start_line_position = 4;
	} else
		start_line_position = 2;

	set_reg_field_value(
		value,
		start_line_position,
		CRTCV_START_LINE_CONTROL,
		CRTC_ADVANCED_START_LINE_POSITION);

	set_reg_field_value(
		value,
		enable ? 1 : 0,
		CRTCV_START_LINE_CONTROL,
		CRTC_LEGACY_REQUESTOR_EN);

	dal_write_reg(tg->ctx, addr, value);
}
示例#11
0
/* luma part */
static void program_pri_addr_l(
	struct dce_mem_input *mem_input110,
	PHYSICAL_ADDRESS_LOC address)
{
	uint32_t value = 0;
	uint32_t temp = 0;

	/*high register MUST be programmed first*/
	temp = address.high_part &
UNP_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH_L__GRPH_PRIMARY_SURFACE_ADDRESS_HIGH_L_MASK;

	set_reg_field_value(value, temp,
		UNP_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH_L,
		GRPH_PRIMARY_SURFACE_ADDRESS_HIGH_L);

	dm_write_reg(
		mem_input110->base.ctx,
		mmUNP_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH_L,
		value);

	temp = 0;
	value = 0;
	temp = address.low_part >>
	UNP_GRPH_PRIMARY_SURFACE_ADDRESS_L__GRPH_PRIMARY_SURFACE_ADDRESS_L__SHIFT;

	set_reg_field_value(value, temp,
		UNP_GRPH_PRIMARY_SURFACE_ADDRESS_L,
		GRPH_PRIMARY_SURFACE_ADDRESS_L);

	dm_write_reg(
		mem_input110->base.ctx,
		mmUNP_GRPH_PRIMARY_SURFACE_ADDRESS_L,
		value);
}
示例#12
0
/* initialize HW state */
void dce_aud_hw_init(
		struct audio *audio)
{
	uint32_t value;
	struct dce_audio *aud = DCE_AUD(audio);

	/* we only need to program the following registers once, so we only do
	it for the inst 0*/
	if (audio->inst != 0)
		return;

	/* Suport R5 - 32khz
	 * Suport R6 - 44.1khz
	 * Suport R7 - 48khz
	 */
	/*disable clock gating before write to endpoint register*/
	value = AZ_REG_READ(AZALIA_F0_CODEC_PIN_CONTROL_HOT_PLUG_CONTROL);
	set_reg_field_value(value, 1,
			AZALIA_F0_CODEC_PIN_CONTROL_HOT_PLUG_CONTROL,
			CLOCK_GATING_DISABLE);
	AZ_REG_WRITE(AZALIA_F0_CODEC_PIN_CONTROL_HOT_PLUG_CONTROL, value);
	REG_UPDATE(AZALIA_F0_CODEC_FUNCTION_PARAMETER_SUPPORTED_SIZE_RATES,
			AUDIO_RATE_CAPABILITIES, 0x70);

	/*Keep alive bit to verify HW block in BU. */
	REG_UPDATE_2(AZALIA_F0_CODEC_FUNCTION_PARAMETER_POWER_STATES,
			CLKSTOP, 1,
			EPSS, 1);
	set_reg_field_value(value, 0,
			AZALIA_F0_CODEC_PIN_CONTROL_HOT_PLUG_CONTROL,
			CLOCK_GATING_DISABLE);
	AZ_REG_WRITE(AZALIA_F0_CODEC_PIN_CONTROL_HOT_PLUG_CONTROL, value);
}
示例#13
0
void dce110_compressor_set_fbc_invalidation_triggers(
	struct compressor *compressor,
	uint32_t fbc_trigger)
{
	/* Disable region hit event, FBC_MEMORY_REGION_MASK = 0 (bits 16-19)
	 * for DCE 11 regions cannot be used - does not work with S/G
	 */
	uint32_t addr = mmFBC_CLIENT_REGION_MASK;
	uint32_t value = dm_read_reg(compressor->ctx, addr);

	set_reg_field_value(
		value,
		0,
		FBC_CLIENT_REGION_MASK,
		FBC_MEMORY_REGION_MASK);
	dm_write_reg(compressor->ctx, addr, value);

	/* Setup events when to clear all CSM entries (effectively marking
	 * current compressed data invalid)
	 * For DCE 11 CSM metadata 11111 means - "Not Compressed"
	 * Used as the initial value of the metadata sent to the compressor
	 * after invalidation, to indicate that the compressor should attempt
	 * to compress all chunks on the current pass.  Also used when the chunk
	 * is not successfully written to memory.
	 * When this CSM value is detected, FBC reads from the uncompressed
	 * buffer. Set events according to passed in value, these events are
	 * valid for DCE11:
	 *     - bit  0 - display register updated
	 *     - bit 28 - memory write from any client except from MCIF
	 *     - bit 29 - CG static screen signal is inactive
	 * In addition, DCE11.1 also needs to set new DCE11.1 specific events
	 * that are used to trigger invalidation on certain register changes,
	 * for example enabling of Alpha Compression may trigger invalidation of
	 * FBC once bit is set. These events are as follows:
	 *      - Bit 2 - FBC_GRPH_COMP_EN register updated
	 *      - Bit 3 - FBC_SRC_SEL register updated
	 *      - Bit 4 - FBC_MIN_COMPRESSION register updated
	 *      - Bit 5 - FBC_ALPHA_COMP_EN register updated
	 *      - Bit 6 - FBC_ZERO_ALPHA_CHUNK_SKIP_EN register updated
	 *      - Bit 7 - FBC_FORCE_COPY_TO_COMP_BUF register updated
	 */
	addr = mmFBC_IDLE_FORCE_CLEAR_MASK;
	value = dm_read_reg(compressor->ctx, addr);
	set_reg_field_value(
		value,
		fbc_trigger |
		FBC_IDLE_FORCE_GRPH_COMP_EN |
		FBC_IDLE_FORCE_SRC_SEL_CHANGE |
		FBC_IDLE_FORCE_MIN_COMPRESSION_CHANGE |
		FBC_IDLE_FORCE_ALPHA_COMP_EN |
		FBC_IDLE_FORCE_ZERO_ALPHA_CHUNK_SKIP_EN |
		FBC_IDLE_FORCE_FORCE_COPY_TO_COMP_BUF,
		FBC_IDLE_FORCE_CLEAR_MASK,
		FBC_IDLE_FORCE_CLEAR_MASK);
	dm_write_reg(compressor->ctx, addr, value);
}
/* setup stream encoder in dvi mode */
void dce80_stream_encoder_dvi_set_stream_attribute(
	struct stream_encoder *enc,
	struct dc_crtc_timing *crtc_timing,
	bool is_dual_link)
{
	struct dce110_stream_encoder *enc110 = DCE110STRENC_FROM_STRENC(enc);
	struct dc_context *ctx = enc110->base.ctx;
	uint32_t addr = LINK_REG(TMDS_CNTL);
	uint32_t value = dm_read_reg(ctx, addr);
	struct bp_encoder_control cntl = {0};

	cntl.action = ENCODER_CONTROL_SETUP;
	cntl.engine_id = enc110->base.id;
	cntl.signal = is_dual_link ?
		SIGNAL_TYPE_DVI_DUAL_LINK :
		SIGNAL_TYPE_DVI_SINGLE_LINK;
	cntl.enable_dp_audio = false;
	cntl.pixel_clock = crtc_timing->pix_clk_khz;
	cntl.lanes_number = (is_dual_link) ?
				LANE_COUNT_EIGHT : LANE_COUNT_FOUR;
	cntl.color_depth = crtc_timing->display_color_depth;

	if (enc110->base.bp->funcs->encoder_control(
			enc110->base.bp, &cntl) != BP_RESULT_OK)
		return;

	switch (crtc_timing->pixel_encoding) {
	case PIXEL_ENCODING_YCBCR422:
		set_reg_field_value(value, 1, TMDS_CNTL, TMDS_PIXEL_ENCODING);
		break;
	default:
		set_reg_field_value(value, 0, TMDS_CNTL, TMDS_PIXEL_ENCODING);
		break;
	}

	switch (crtc_timing->pixel_encoding) {
	case COLOR_DEPTH_101010:
		if (crtc_timing->pixel_encoding == PIXEL_ENCODING_RGB)
			set_reg_field_value(
				value,
				2,
				TMDS_CNTL,
				TMDS_COLOR_FORMAT);
		else
			set_reg_field_value(
				value,
				0,
				TMDS_CNTL,
				TMDS_COLOR_FORMAT);
		break;
	default:
		set_reg_field_value(value, 0, TMDS_CNTL, TMDS_COLOR_FORMAT);
		break;
	}
	dm_write_reg(ctx, addr, value);
}
static void dce110_transform_v_set_scalerv_bypass(struct transform *xfm)
{
	uint32_t addr = mmSCLV_MODE;
	uint32_t value = dm_read_reg(xfm->ctx, addr);

	set_reg_field_value(value, 0, SCLV_MODE, SCL_MODE);
	set_reg_field_value(value, 0, SCLV_MODE, SCL_MODE_C);
	set_reg_field_value(value, 0, SCLV_MODE, SCL_PSCL_EN);
	set_reg_field_value(value, 0, SCLV_MODE, SCL_PSCL_EN_C);
	dm_write_reg(xfm->ctx, addr, value);
}
/* setup Azalia HW block */
static void setup_azalia(
	const struct hw_ctx_audio *hw_ctx,
	enum engine_id engine_id,
	enum signal_type signal,
	const struct audio_crtc_info *crtc_info,
	const struct audio_pll_info *pll_info,
	const struct audio_info *audio_info)
{
	uint32_t speakers = 0;
	uint32_t channels = 0;

	if (audio_info == NULL)
		/* This should not happen.it does so we don't get BSOD*/
		return;

	speakers = audio_info->flags.info.ALLSPEAKERS;
	channels = dal_audio_hw_ctx_speakers_to_channels(
		hw_ctx,
		audio_info->flags.speaker_flags).all;

	/* setup the audio stream source select (audio -> dig mapping) */
	{
		const uint32_t addr =
			mmAFMT_AUDIO_SRC_CONTROL + engine_offset[engine_id];

		uint32_t value = 0;
		/*convert one-based index to zero-based */
		set_reg_field_value(value,
			FROM_BASE(hw_ctx)->azalia_stream_id - 1,
			AFMT_AUDIO_SRC_CONTROL,
			AFMT_AUDIO_SRC_SELECT);

		dal_write_reg(hw_ctx->ctx, addr, value);
	}

	/* Channel allocation */
	{
		const uint32_t addr =
			mmAFMT_AUDIO_PACKET_CONTROL2 + engine_offset[engine_id];
		uint32_t value = dal_read_reg(hw_ctx->ctx, addr);

		set_reg_field_value(value,
			channels,
			AFMT_AUDIO_PACKET_CONTROL2,
			AFMT_AUDIO_CHANNEL_ENABLE);

		dal_write_reg(hw_ctx->ctx, addr, value);
	}

	configure_azalia(hw_ctx, signal, crtc_info, audio_info);
}
void dce80_stream_encoder_stop_dp_info_packets(
	struct stream_encoder *enc)
{
	/* stop generic packets on DP */
	struct dce110_stream_encoder *enc110 = DCE110STRENC_FROM_STRENC(enc);
	struct dc_context *ctx = enc110->base.ctx;
	uint32_t addr = LINK_REG(DP_SEC_CNTL);
	uint32_t value = dm_read_reg(ctx, addr);

	set_reg_field_value(value, 0, DP_SEC_CNTL, DP_SEC_GSP0_ENABLE);
	set_reg_field_value(value, 0, DP_SEC_CNTL, DP_SEC_GSP1_ENABLE);
	set_reg_field_value(value, 0, DP_SEC_CNTL, DP_SEC_GSP2_ENABLE);
	set_reg_field_value(value, 0, DP_SEC_CNTL, DP_SEC_GSP3_ENABLE);
	set_reg_field_value(value, 0, DP_SEC_CNTL, DP_SEC_AVI_ENABLE);
	set_reg_field_value(value, 0, DP_SEC_CNTL, DP_SEC_MPG_ENABLE);
	set_reg_field_value(value, 0, DP_SEC_CNTL, DP_SEC_STREAM_ENABLE);

	/* this register shared with audio info frame.
	* therefore we need to keep master enabled
	* if at least one of the fields is not 0
	*/

	if (value)
		set_reg_field_value(
			value,
			1,
			DP_SEC_CNTL,
			DP_SEC_STREAM_ENABLE);

	dm_write_reg(ctx, addr, value);
}
示例#18
0
static void power_on_lut(struct transform *xfm,
	bool power_on, bool inputgamma, bool regamma)
{
	uint32_t value = dm_read_reg(xfm->ctx, mmDCFEV_MEM_PWR_CTRL);
	int i;

	if (power_on) {
		if (inputgamma)
			set_reg_field_value(
				value,
				1,
				DCFEV_MEM_PWR_CTRL,
				COL_MAN_INPUT_GAMMA_MEM_PWR_DIS);
		if (regamma)
			set_reg_field_value(
				value,
				1,
				DCFEV_MEM_PWR_CTRL,
				COL_MAN_GAMMA_CORR_MEM_PWR_DIS);
	} else {
		if (inputgamma)
			set_reg_field_value(
				value,
				0,
				DCFEV_MEM_PWR_CTRL,
				COL_MAN_INPUT_GAMMA_MEM_PWR_DIS);
		if (regamma)
			set_reg_field_value(
				value,
				0,
				DCFEV_MEM_PWR_CTRL,
				COL_MAN_GAMMA_CORR_MEM_PWR_DIS);
	}

	dm_write_reg(xfm->ctx, mmDCFEV_MEM_PWR_CTRL, value);

	for (i = 0; i < 3; i++) {
		value = dm_read_reg(xfm->ctx, mmDCFEV_MEM_PWR_CTRL);
		if (get_reg_field_value(value,
				DCFEV_MEM_PWR_CTRL,
				COL_MAN_INPUT_GAMMA_MEM_PWR_DIS) &&
			get_reg_field_value(value,
					DCFEV_MEM_PWR_CTRL,
					COL_MAN_GAMMA_CORR_MEM_PWR_DIS))
			break;

		udelay(2);
	}
}
/* LB_MEMORY_CONFIG
 *  00 - Use all three pieces of memory
 *  01 - Use only one piece of memory of total 720x144 bits
 *  10 - Use two pieces of memory of total 960x144 bits
 *  11 - reserved
 *
 * LB_MEMORY_SIZE
 *  Total entries of LB memory.
 *  This number should be larger than 960. The default value is 1712(0x6B0) */
static void power_up(struct line_buffer *base)
{
	struct line_buffer_dce110 *lb = LB110_FROM_BASE(base);
	uint32_t value;

	value = dal_read_reg(base->dal_context, lb->lbx_memory_ctrl);

	/*Use all three pieces of memory always*/
	set_reg_field_value(value, 0, LB_MEMORY_CTRL, LB_MEMORY_CONFIG);
	/*hard coded number DCE11 1712(0x6B0) Partitions: 720/960/1712*/
	set_reg_field_value(value, LB_ENTRIES_TOTAL_NUMBER, LB_MEMORY_CTRL,
			LB_MEMORY_SIZE);

	dal_write_reg(base->dal_context, lb->lbx_memory_ctrl, value);
}
static bool blank_crtc(
	struct timing_generator *tg,
	enum color_space color_space)
{
	struct crtc_black_color black_color;
	uint32_t addr = tg->regs[IDX_CRTC_BLACK_COLOR];
	uint32_t value = dal_read_reg(tg->ctx, addr);

	dal_timing_generator_color_space_to_black_color(
		color_space,
		&black_color);

	set_reg_field_value(
		value,
		black_color.black_color_b_cb,
		CRTCV_BLACK_COLOR,
		CRTC_BLACK_COLOR_B_CB);
	set_reg_field_value(
		value,
		black_color.black_color_g_y,
		CRTCV_BLACK_COLOR,
		CRTC_BLACK_COLOR_G_Y);
	set_reg_field_value(
		value,
		black_color.black_color_r_cr,
		CRTCV_BLACK_COLOR,
		CRTC_BLACK_COLOR_R_CR);

	dal_write_reg(tg->ctx, addr, value);

	addr = tg->regs[IDX_CRTC_BLANK_CONTROL];
	value = dal_read_reg(tg->ctx, addr);
	set_reg_field_value(
		value,
		1,
		CRTCV_BLANK_CONTROL,
		CRTC_BLANK_DATA_EN);

	set_reg_field_value(
		value,
		1,
		CRTCV_BLANK_CONTROL,
		CRTC_BLANK_DE_MODE);

	dal_write_reg(tg->ctx, addr, value);

	return true;
}
static void process_channel_reply(
	struct i2c_engine *engine,
	struct i2c_reply_transaction_data *reply)
{
	uint8_t length = reply->length;
	uint8_t *buffer = reply->data;

	struct i2c_hw_engine_dce110 *i2c_hw_engine_dce110 =
		FROM_I2C_ENGINE(engine);
	uint32_t value = dal_read_reg(engine->base.ctx, mmDC_I2C_DATA);

	/*set index*/
	set_reg_field_value(
		value,
		i2c_hw_engine_dce110->buffer_used_write,
		DC_I2C_DATA,
		DC_I2C_INDEX);

	set_reg_field_value(
		value,
		1,
		DC_I2C_DATA,
		DC_I2C_DATA_RW);

	set_reg_field_value(
		value,
		1,
		DC_I2C_DATA,
		DC_I2C_INDEX_WRITE);

	dal_write_reg(engine->base.ctx, mmDC_I2C_DATA, value);

	while (length) {
		/* after reading the status,
		 * if the I2C operation executed successfully
		 * (i.e. DC_I2C_STATUS_DONE = 1) then the I2C controller
		 * should read data bytes from I2C circular data buffer */

		value = dal_read_reg(engine->base.ctx, mmDC_I2C_DATA);

		*buffer++ = get_reg_field_value(
				value,
				DC_I2C_DATA,
				DC_I2C_DATA);

		--length;
	}
}
/* set audio latency in in ms/2+1 */
static void set_audio_latency(
	const struct hw_ctx_audio *hw_ctx,
	int latency_in_ms)
{
	uint32_t value = 0;

	if (latency_in_ms < 0)
		latency_in_ms = 0;

	if (latency_in_ms > 255)
		latency_in_ms = 255;

	value = read_indirect_azalia_reg(
		hw_ctx,
		ixAZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC);

	set_reg_field_value(value, latency_in_ms,
		AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC,
		AUDIO_LIPSYNC);

	write_indirect_azalia_reg(
		hw_ctx,
		ixAZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC,
		value);

}
static void enable_afmt_clock(
	const struct hw_ctx_audio *hw_ctx,
	enum engine_id engine_id,
	bool enable_flag)
{
	uint32_t engine_offs = engine_offset[engine_id];
	uint32_t value;
	uint32_t count = 0;
	uint32_t enable = enable_flag ? 1:0;

	/* Enable Audio packets*/
	value = dal_read_reg(hw_ctx->ctx, mmAFMT_CNTL + engine_offs);

	/*enable AFMT clock*/
	set_reg_field_value(value, enable,
		AFMT_CNTL, AFMT_AUDIO_CLOCK_EN);
	dal_write_reg(hw_ctx->ctx, mmAFMT_CNTL + engine_offs, value);

	/*wait for AFMT clock to turn on,
	 * the expectation is that this
	 * should complete in 1-2 reads)
	 */
	do {
		/* Wait for 1us between subsequent register reads.*/
		dal_delay_in_microseconds(1);
		value = dal_read_reg(hw_ctx->ctx,
				mmAFMT_CNTL + engine_offs);
	} while (get_reg_field_value(value,
				AFMT_CNTL, AFMT_AUDIO_CLOCK_ON) !=
						enable && count++ < 10);
}
示例#24
0
static bool hpd_ack(
	struct irq_service *irq_service,
	const struct irq_source_info *info)
{
	uint32_t addr = info->status_reg;
	uint32_t value = dm_read_reg(irq_service->ctx, addr);
	uint32_t current_status =
		get_reg_field_value(
			value,
			HPD0_DC_HPD_INT_STATUS,
			DC_HPD_SENSE_DELAYED);

	dal_irq_service_ack_generic(irq_service, info);

	value = dm_read_reg(irq_service->ctx, info->enable_reg);

	set_reg_field_value(
		value,
		current_status ? 0 : 1,
		HPD0_DC_HPD_INT_CONTROL,
		DC_HPD_INT_POLARITY);

	dm_write_reg(irq_service->ctx, info->enable_reg, value);

	return true;
}
static bool set_pixel_storage_depth(
	struct line_buffer *base,
	enum lb_pixel_depth depth)
{
	bool ret = true;
	struct line_buffer_dce110 *lb = LB110_FROM_BASE(base);
	uint32_t value;

	value = dal_read_reg(
			base->dal_context,
			lb->lbx_data_format);
	switch (depth) {
	case LB_PIXEL_DEPTH_18BPP:
		set_reg_field_value(value, 2, LB_DATA_FORMAT, PIXEL_DEPTH);
		set_reg_field_value(value, 1, LB_DATA_FORMAT, PIXEL_EXPAN_MODE);
		break;
	case LB_PIXEL_DEPTH_24BPP:
		set_reg_field_value(value, 1, LB_DATA_FORMAT, PIXEL_DEPTH);
		set_reg_field_value(value, 1, LB_DATA_FORMAT, PIXEL_EXPAN_MODE);
		break;
	case LB_PIXEL_DEPTH_30BPP:
		set_reg_field_value(value, 0, LB_DATA_FORMAT, PIXEL_DEPTH);
		set_reg_field_value(value, 1, LB_DATA_FORMAT, PIXEL_EXPAN_MODE);
		break;
	case LB_PIXEL_DEPTH_36BPP:
		set_reg_field_value(value, 3, LB_DATA_FORMAT, PIXEL_DEPTH);
		set_reg_field_value(value, 0, LB_DATA_FORMAT, PIXEL_EXPAN_MODE);
		break;
	default:
		ret = false;
		break;
	}

	if (ret == true) {

		set_reg_field_value(value, 0, LB_DATA_FORMAT, ALPHA_EN);
		dal_write_reg(
				base->dal_context, lb->lbx_data_format, value);
		if (!(lb->caps & depth)) {
			/*we should use unsupported capabilities
			 *  unless it is required by w/a*/
			dal_logger_write(base->dal_context->logger,
				LOG_MAJOR_WARNING,
				LOG_MINOR_COMPONENT_GPU,
				"%s: Capability not supported",
				__func__);
		}

	}

	return ret;
}
/* initialize HW state */
static void hw_initialize(
	const struct hw_ctx_audio *hw_ctx)
{
	uint32_t stream_id = FROM_BASE(hw_ctx)->azalia_stream_id;
	uint32_t addr;


	/* we only need to program the following registers once, so we only do
	it for the first audio stream.*/
	if (stream_id != FIRST_AUDIO_STREAM_ID)
		return;


	/* Suport R5 - 32khz
	 * Suport R6 - 44.1khz
	 * Suport R7 - 48khz
	 */
	addr = mmAZALIA_F0_CODEC_FUNCTION_PARAMETER_SUPPORTED_SIZE_RATES;
	{
		uint32_t value;

		value = dal_read_reg(hw_ctx->ctx, addr);

		set_reg_field_value(value, 0x70,
		AZALIA_F0_CODEC_FUNCTION_PARAMETER_SUPPORTED_SIZE_RATES,
		AUDIO_RATE_CAPABILITIES);

		dal_write_reg(hw_ctx->ctx, addr, value);
	}

	/*Keep alive bit to verify HW block in BU. */
	addr = mmAZALIA_F0_CODEC_FUNCTION_PARAMETER_POWER_STATES;
	{
		uint32_t value;

		value = dal_read_reg(hw_ctx->ctx, addr);

		set_reg_field_value(value, 1,
		AZALIA_F0_CODEC_FUNCTION_PARAMETER_POWER_STATES,
		CLKSTOP);

		set_reg_field_value(value, 1,
		AZALIA_F0_CODEC_FUNCTION_PARAMETER_POWER_STATES,
		EPSS);
		dal_write_reg(hw_ctx->ctx, addr, value);
	}
}
static bool dce110_transform_v_power_up_line_buffer(struct transform *xfm)
{
	struct dce110_transform *xfm110 = TO_DCE110_TRANSFORM(xfm);
	uint32_t value;

	value = dm_read_reg(xfm110->base.ctx, mmLBV_MEMORY_CTRL);

	/*Use all three pieces of memory always*/
	set_reg_field_value(value, 0, LBV_MEMORY_CTRL, LB_MEMORY_CONFIG);
	/*hard coded number DCE11 1712(0x6B0) Partitions: 720/960/1712*/
	set_reg_field_value(value, LB_TOTAL_NUMBER_OF_ENTRIES, LBV_MEMORY_CTRL,
			LB_MEMORY_SIZE);

	dm_write_reg(xfm110->base.ctx, mmLBV_MEMORY_CTRL, value);

	return true;
}
static void dce110_timing_generator_v_set_overscan_color_black(
	struct timing_generator *tg,
	const struct tg_color *color)
{
	struct dc_context *ctx = tg->ctx;
	uint32_t addr;
	uint32_t value = 0;

	set_reg_field_value(
			value,
			color->color_b_cb,
			CRTC_OVERSCAN_COLOR,
			CRTC_OVERSCAN_COLOR_BLUE);

	set_reg_field_value(
			value,
			color->color_r_cr,
			CRTC_OVERSCAN_COLOR,
			CRTC_OVERSCAN_COLOR_RED);

	set_reg_field_value(
			value,
			color->color_g_y,
			CRTC_OVERSCAN_COLOR,
			CRTC_OVERSCAN_COLOR_GREEN);

	addr = mmCRTCV_OVERSCAN_COLOR;
	dm_write_reg(ctx, addr, value);
	addr = mmCRTCV_BLACK_COLOR;
	dm_write_reg(ctx, addr, value);
	/* This is desirable to have a constant DAC output voltage during the
	 * blank time that is higher than the 0 volt reference level that the
	 * DAC outputs when the NBLANK signal
	 * is asserted low, such as for output to an analog TV. */
	addr = mmCRTCV_BLANK_DATA_COLOR;
	dm_write_reg(ctx, addr, value);

	/* TO DO we have to program EXT registers and we need to know LB DATA
	 * format because it is used when more 10 , i.e. 12 bits per color
	 *
	 * m_mmDxCRTC_OVERSCAN_COLOR_EXT
	 * m_mmDxCRTC_BLACK_COLOR_EXT
	 * m_mmDxCRTC_BLANK_DATA_COLOR_EXT
	 */
}
static bool dce110_timing_generator_v_disable_crtc(struct timing_generator *tg)
{
	uint32_t value;

	value = dm_read_reg(tg->ctx,
			mmCRTCV_CONTROL);
	set_reg_field_value(value, 0,
			CRTCV_CONTROL, CRTC_DISABLE_POINT_CNTL);
	set_reg_field_value(value, 0,
				CRTCV_CONTROL, CRTC_MASTER_EN);
	dm_write_reg(tg->ctx,
			mmCRTCV_CONTROL, value);
	/*
	 * TODO: call this when adding stereo support
	 * tg->funcs->disable_stereo(tg);
	 */
	return true;
}
static inline void reset_hw_engine(struct engine *engine)
{
	uint32_t value = dal_read_reg(engine->ctx, mmDC_I2C_CONTROL);

	set_reg_field_value(
		value,
		1,
		DC_I2C_CONTROL,
		DC_I2C_SOFT_RESET);

	set_reg_field_value(
		value,
		1,
		DC_I2C_CONTROL,
		DC_I2C_SW_STATUS_RESET);

	dal_write_reg(engine->ctx, mmDC_I2C_CONTROL, value);
}