示例#1
0
/* ----------------------------------------------------------------
 *		ExecSeqScanEstimate
 *
 *		estimates the space required to serialize seqscan node.
 * ----------------------------------------------------------------
 */
void
ExecSeqScanEstimate(SeqScanState *node,
					ParallelContext *pcxt)
{
	EState	   *estate = node->ss.ps.state;

	node->pscan_len = heap_parallelscan_estimate(estate->es_snapshot);
	shm_toc_estimate_chunk(&pcxt->estimator, node->pscan_len);
	shm_toc_estimate_keys(&pcxt->estimator, 1);
}
示例#2
0
/* ----------------------------------------------------------------
 *		ExecIndexOnlyScanEstimate
 *
 *		Compute the amount of space we'll need in the parallel
 *		query DSM, and inform pcxt->estimator about our needs.
 * ----------------------------------------------------------------
 */
void
ExecIndexOnlyScanEstimate(IndexOnlyScanState *node,
						  ParallelContext *pcxt)
{
	EState	   *estate = node->ss.ps.state;

	node->ioss_PscanLen = index_parallelscan_estimate(node->ioss_RelationDesc,
													  estate->es_snapshot);
	shm_toc_estimate_chunk(&pcxt->estimator, node->ioss_PscanLen);
	shm_toc_estimate_keys(&pcxt->estimator, 1);
}
示例#3
0
/* ----------------------------------------------------------------
 *		ExecForeignScanEstimate
 *
 *		Informs size of the parallel coordination information, if any
 * ----------------------------------------------------------------
 */
void
ExecForeignScanEstimate(ForeignScanState *node, ParallelContext *pcxt)
{
	FdwRoutine *fdwroutine = node->fdwroutine;

	if (fdwroutine->EstimateDSMForeignScan)
	{
		node->pscan_len = fdwroutine->EstimateDSMForeignScan(node, pcxt);
		shm_toc_estimate_chunk(&pcxt->estimator, node->pscan_len);
		shm_toc_estimate_keys(&pcxt->estimator, 1);
	}
}
示例#4
0
void
ExecCustomScanEstimate(CustomScanState *node, ParallelContext *pcxt)
{
	const CustomExecMethods *methods = node->methods;

	if (methods->EstimateDSMCustomScan)
	{
		node->pscan_len = methods->EstimateDSMCustomScan(node, pcxt);
		shm_toc_estimate_chunk(&pcxt->estimator, node->pscan_len);
		shm_toc_estimate_keys(&pcxt->estimator, 1);
	}
}
/* ----------------------------------------------------------------
 *		ExecBitmapHeapEstimate
 *
 *		estimates the space required to serialize bitmap scan node.
 * ----------------------------------------------------------------
 */
void
ExecBitmapHeapEstimate(BitmapHeapScanState *node,
					   ParallelContext *pcxt)
{
	EState	   *estate = node->ss.ps.state;

	node->pscan_len = add_size(offsetof(ParallelBitmapHeapState,
										phs_snapshot_data),
							   EstimateSnapshotSpace(estate->es_snapshot));

	shm_toc_estimate_chunk(&pcxt->estimator, node->pscan_len);
	shm_toc_estimate_keys(&pcxt->estimator, 1);
}
示例#6
0
/* ----------------------------------------------------------------
 *		ExecSortEstimate
 *
 *		Estimate space required to propagate sort statistics.
 * ----------------------------------------------------------------
 */
void
ExecSortEstimate(SortState *node, ParallelContext *pcxt)
{
	Size		size;

	/* don't need this if not instrumenting or no workers */
	if (!node->ss.ps.instrument || pcxt->nworkers == 0)
		return;

	size = mul_size(pcxt->nworkers, sizeof(TuplesortInstrumentation));
	size = add_size(size, offsetof(SharedSortInfo, sinstrument));
	shm_toc_estimate_chunk(&pcxt->estimator, size);
	shm_toc_estimate_keys(&pcxt->estimator, 1);
}
示例#7
0
/*
 * Set up a dynamic shared memory segment.
 *
 * We set up a small control region that contains only a test_shm_mq_header,
 * plus one region per message queue.  There are as many message queues as
 * the number of workers, plus one.
 */
static void
setup_dynamic_shared_memory(int64 queue_size, int nworkers,
							dsm_segment **segp, test_shm_mq_header **hdrp,
							shm_mq **outp, shm_mq **inp)
{
	shm_toc_estimator e;
	int			i;
	Size		segsize;
	dsm_segment *seg;
	shm_toc    *toc;
	test_shm_mq_header *hdr;

	/* Ensure a valid queue size. */
	if (queue_size < 0 || ((uint64) queue_size) < shm_mq_minimum_size)
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
				 errmsg("queue size must be at least %zu bytes",
						shm_mq_minimum_size)));
	if (queue_size != ((Size) queue_size))
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
				 errmsg("queue size overflows size_t")));

	/*
	 * Estimate how much shared memory we need.
	 *
	 * Because the TOC machinery may choose to insert padding of oddly-sized
	 * requests, we must estimate each chunk separately.
	 *
	 * We need one key to register the location of the header, and we need
	 * nworkers + 1 keys to track the locations of the message queues.
	 */
	shm_toc_initialize_estimator(&e);
	shm_toc_estimate_chunk(&e, sizeof(test_shm_mq_header));
	for (i = 0; i <= nworkers; ++i)
		shm_toc_estimate_chunk(&e, (Size) queue_size);
	shm_toc_estimate_keys(&e, 2 + nworkers);
	segsize = shm_toc_estimate(&e);

	/* Create the shared memory segment and establish a table of contents. */
	seg = dsm_create(shm_toc_estimate(&e), 0);
	toc = shm_toc_create(PG_TEST_SHM_MQ_MAGIC, dsm_segment_address(seg),
						 segsize);

	/* Set up the header region. */
	hdr = shm_toc_allocate(toc, sizeof(test_shm_mq_header));
	SpinLockInit(&hdr->mutex);
	hdr->workers_total = nworkers;
	hdr->workers_attached = 0;
	hdr->workers_ready = 0;
	shm_toc_insert(toc, 0, hdr);

	/* Set up one message queue per worker, plus one. */
	for (i = 0; i <= nworkers; ++i)
	{
		shm_mq	   *mq;

		mq = shm_mq_create(shm_toc_allocate(toc, (Size) queue_size),
						   (Size) queue_size);
		shm_toc_insert(toc, i + 1, mq);

		if (i == 0)
		{
			/* We send messages to the first queue. */
			shm_mq_set_sender(mq, MyProc);
			*outp = mq;
		}
		if (i == nworkers)
		{
			/* We receive messages from the last queue. */
			shm_mq_set_receiver(mq, MyProc);
			*inp = mq;
		}
	}

	/* Return results to caller. */
	*segp = seg;
	*hdrp = hdr;
}