void FitterUtilsSimultaneousExpOfPolyTimesX::fit(bool wantplot, bool constPartReco,
      double fracPartReco_const,
      ofstream& out, TTree* t, bool update, string plotsfile)
{

   //***************Get the PDFs from the workspace

   TFile fw(workspacename.c_str());   
   RooWorkspace* workspace = (RooWorkspace*)fw.Get("workspace");
   RooRealVar *B_plus_M = workspace->var("B_plus_M");
   RooRealVar *misPT = workspace->var("misPT");
   RooRealVar *l1Kee = workspace->var("l1Kee");
   RooRealVar *l2Kee = workspace->var("l2Kee");
   RooRealVar *l3Kee = workspace->var("l3Kee");
   RooRealVar *l4Kee = workspace->var("l4Kee");
   RooRealVar *l5Kee = workspace->var("l5Kee");
   RooRealVar *l1KeeGen = workspace->var("l1KeeGen");
   RooRealVar *l2KeeGen = workspace->var("l2KeeGen");
   RooRealVar *l3KeeGen = workspace->var("l3KeeGen");
   RooRealVar *l4KeeGen = workspace->var("l4KeeGen");
   RooRealVar *l5KeeGen = workspace->var("l5KeeGen");
   RooRealVar *fractionalErrorJpsiLeak = workspace->var("fractionalErrorJpsiLeak");


   RooRealVar l1Kemu(*l1Kee);
   l1Kemu.SetName("l1Kemu"); l1Kemu.SetTitle("l1Kemu");    
   RooRealVar l2Kemu(*l2Kee);
   l2Kemu.SetName("l2Kemu"); l2Kemu.SetTitle("l2Kemu");    
   RooRealVar l3Kemu(*l3Kee);
   l3Kemu.SetName("l3Kemu"); l3Kemu.SetTitle("l3Kemu");    
   RooRealVar l4Kemu(*l4Kee);
   l4Kemu.SetName("l4Kemu"); l4Kemu.SetTitle("l4Kemu");    
   RooRealVar l5Kemu(*l5Kee);
   l5Kemu.SetName("l5Kemu"); l5Kemu.SetTitle("l5Kemu");    


   RooHistPdf *histPdfSignalZeroGamma = (RooHistPdf *) workspace->pdf("histPdfSignalZeroGamma");
   RooHistPdf *histPdfSignalOneGamma = (RooHistPdf *) workspace->pdf("histPdfSignalOneGamma");
   RooHistPdf *histPdfSignalTwoGamma = (RooHistPdf *) workspace->pdf("histPdfSignalTwoGamma");
   RooHistPdf *histPdfPartReco = (RooHistPdf *) workspace->pdf("histPdfPartReco");
   RooHistPdf *histPdfJpsiLeak(0);
   if(nGenJpsiLeak>0) histPdfJpsiLeak = (RooHistPdf *) workspace->pdf("histPdfJpsiLeak");

   //Here set in the Kemu PDF the parameters that have to be shared

   RooExpOfPolyTimesX* combPDF = new RooExpOfPolyTimesX("combPDF", "combPDF",  *B_plus_M, *misPT,  *l1Kee, *l2Kee, *l3Kee, *l4Kee, *l5Kee);
   RooExpOfPolyTimesX* KemuPDF = new RooExpOfPolyTimesX("kemuPDF", "kemuPDF",  *B_plus_M, *misPT,  l1Kemu, *l2Kee, *l3Kee, *l4Kee, *l5Kee);



   RooWorkspace* workspaceGen = (RooWorkspace*)fw.Get("workspaceGen");
   RooDataSet* dataGenSignalZeroGamma = (RooDataSet*)workspaceGen->data("dataGenSignalZeroGamma");
   RooDataSet* dataGenSignalOneGamma = (RooDataSet*)workspaceGen->data("dataGenSignalOneGamma");
   RooDataSet* dataGenSignalTwoGamma = (RooDataSet*)workspaceGen->data("dataGenSignalTwoGamma");
   RooDataSet* dataGenPartReco = (RooDataSet*)workspaceGen->data("dataGenPartReco");
   RooDataSet* dataGenComb = (RooDataSet*)workspaceGen->data("dataGenComb");
   RooDataSet* dataGenKemu = (RooDataSet*)workspaceGen->data("dataGenKemu");
   RooDataSet* dataGenJpsiLeak(0);
   if(nGenJpsiLeak>0) dataGenJpsiLeak = (RooDataSet*)workspaceGen->data("dataGenJpsiLeak");


   if(wantplot)
   {
      //**************Must get the datasets

      RooDataSet* dataSetSignalZeroGamma = (RooDataSet*)workspace->data("dataSetSignalZeroGamma");
      RooDataSet* dataSetSignalOneGamma = (RooDataSet*)workspace->data("dataSetSignalOneGamma");
      RooDataSet* dataSetSignalTwoGamma = (RooDataSet*)workspace->data("dataSetSignalTwoGamma");
      RooDataSet* dataSetPartReco = (RooDataSet*)workspace->data("dataSetPartReco");
      RooDataSet* dataSetComb = (RooDataSet*)workspace->data("dataSetComb");
      RooDataSet* dataSetJpsiLeak = (RooDataSet*)workspace->data("dataSetJpsiLeak");

      //**************Plot all the different components

      cout<<"dataGenSignalZeroGamma: "<<dataGenSignalZeroGamma<<endl;
      PlotShape(*dataSetSignalZeroGamma, *dataGenSignalZeroGamma, *histPdfSignalZeroGamma, plotsfile, "cSignalZeroGamma", *B_plus_M, *misPT);
      PlotShape(*dataSetSignalOneGamma, *dataGenSignalOneGamma, *histPdfSignalOneGamma, plotsfile, "cSignalOneGamma", *B_plus_M, *misPT);
      PlotShape(*dataSetSignalTwoGamma, *dataGenSignalTwoGamma, *histPdfSignalTwoGamma, plotsfile, "cSignalTwoGamma", *B_plus_M, *misPT);
      PlotShape(*dataSetPartReco, *dataGenPartReco, *histPdfPartReco, plotsfile, "cPartReco", *B_plus_M, *misPT);
      PlotShape(*dataSetComb, *dataGenComb, *combPDF, plotsfile, "cComb", *B_plus_M, *misPT);
      if(nGenJpsiLeak>1) PlotShape(*dataSetJpsiLeak, *dataGenJpsiLeak, *histPdfJpsiLeak, plotsfile, "cJpsiLeak", *B_plus_M, *misPT);
   }

   //***************Merge datasets

   RooDataSet* dataGenTot(dataGenPartReco);
   dataGenTot->append(*dataGenSignalZeroGamma);
   dataGenTot->append(*dataGenSignalOneGamma);
   dataGenTot->append(*dataGenSignalTwoGamma);
   dataGenTot->append(*dataGenComb);
   if(nGenJpsiLeak>0) dataGenTot->append(*dataGenJpsiLeak);

   //**************Create index category and join samples

   RooCategory category("category", "category");
   category.defineType("Kee");
   category.defineType("Kemu");

   RooDataSet dataGenSimultaneous("dataGenSimultaneous", "dataGenSimultaneous", RooArgSet(*B_plus_M, *misPT), Index(category), Import("Kee", *dataGenTot), Import("Kemu", *dataGenKemu));

   //**************Prepare fitting function

   RooRealVar nSignal("nSignal", "#signal events", 1.*nGenSignal, nGenSignal-7*sqrt(nGenSignal), nGenSignal+7*sqrt(nGenSignal));
   RooRealVar nPartReco("nPartReco", "#nPartReco", 1.*nGenPartReco, nGenPartReco-7*sqrt(nGenPartReco), nGenPartReco+7*sqrt(nGenPartReco));
   RooRealVar nComb("nComb", "#nComb", 1.*nGenComb, nGenComb-7*sqrt(nGenComb), nGenComb+7*sqrt(nGenComb));
   RooRealVar nKemu("nKemu", "#nKemu", 1.*nGenKemu, nGenKemu-7*sqrt(nGenKemu), nGenKemu+7*sqrt(nGenKemu));
   RooRealVar nJpsiLeak("nJpsiLeak", "#nJpsiLeak", 1.*nGenJpsiLeak, nGenJpsiLeak-7*sqrt(nGenJpsiLeak), nGenJpsiLeak+7*sqrt(nGenJpsiLeak));
   RooRealVar fracZero("fracZero", "fracZero",0.5,0,1);
   RooRealVar fracOne("fracOne", "fracOne",0.5, 0,1);
   RooFormulaVar fracPartReco("fracPartReco", "nPartReco/nSignal", RooArgList(nPartReco,nSignal));
   RooFormulaVar fracOneRec("fracOneRec", "(1-fracZero)*fracOne", RooArgList(fracZero, fracOne));

   RooAddPdf histPdfSignal("histPdfSignal", "histPdfSignal", RooArgList(*histPdfSignalZeroGamma, *histPdfSignalOneGamma, *histPdfSignalTwoGamma), RooArgList(fracZero, fracOneRec));

   RooArgList pdfList(histPdfSignal, *histPdfPartReco, *combPDF);
   RooArgList yieldList(nSignal, nPartReco, nComb);

   if(nGenJpsiLeak>0)
   {
      pdfList.add(*histPdfJpsiLeak);
      yieldList.add(nJpsiLeak); 
   }
   RooAddPdf totPdf("totPdf", "totPdf", pdfList, yieldList);
   RooExtendPdf totKemuPdf("totKemuPdf", "totKemuPdf", *KemuPDF, nKemu);

   //**************** Prepare simultaneous PDF

   RooSimultaneous simPdf("simPdf", "simPdf", category);
   simPdf.addPdf(totPdf, "Kee");
   simPdf.addPdf(totKemuPdf, "Kemu");

   //**************** Constrain the fraction of zero and one photon

   int nGenSignalZeroGamma(floor(nGenFracZeroGamma*nGenSignal));
   int nGenSignalOneGamma(floor(nGenFracOneGamma*nGenSignal));
   int nGenSignalTwoGamma(floor(nGenSignal-nGenSignalZeroGamma-nGenSignalOneGamma));

   RooRealVar fracZeroConstMean("fracZeroConstMean", "fracZeroConstMean", nGenSignalZeroGamma*1./nGenSignal);
   RooRealVar fracZeroConstSigma("fracZeroConstSigma", "fracZeroConstSigma", sqrt(nGenSignalZeroGamma)/nGenSignal);
   RooGaussian fracZeroConst("fracZeroConst", "fracZeroConst", fracZero, fracZeroConstMean, fracZeroConstSigma); 

   RooRealVar fracOneConstMean("fracOneConstMean", "fracOneConstMean", nGenSignalOneGamma*1./nGenSignal/(1-fracZeroConstMean.getVal()));
   RooRealVar fracOneConstSigma("fracOneConstSigma", "fracOneConstSigma", sqrt(nGenSignalOneGamma)/nGenSignal/(1-fracZeroConstMean.getVal()));
   RooGaussian fracOneConst("fracOneConst", "fracOneConst", fracOne, fracOneConstMean, fracOneConstSigma); 

   RooRealVar fracPartRecoMean("fracPartRecoMean", "fracPartRecoMean", nGenPartReco/(1.*nGenSignal));
   RooRealVar fracPartRecoSigma("fracPartRecoSigma", "fracPartRecoSigma", fracPartReco_const*fracPartRecoMean.getVal());

   RooGaussian fracPartRecoConst("fracPartRecoConst", "fracPartRecoConst", fracPartReco, fracPartRecoMean, fracPartRecoSigma);

   RooRealVar JpsiLeakMean("JpsiLeakMean", "JpsiLeakMean", nGenJpsiLeak);
   RooRealVar JpsiLeakSigma("JpsiLeakSigma", "JpsiLeakSigma", nGenJpsiLeak*fractionalErrorJpsiLeak->getVal());
   RooGaussian JpsiLeakConst("JpsiLeakConst", "JpsiLeakConst", nJpsiLeak, JpsiLeakMean, JpsiLeakSigma); 


   //**************** fit
   
   RooAbsReal::defaultIntegratorConfig()->setEpsAbs(1e-8) ;
   RooAbsReal::defaultIntegratorConfig()->setEpsRel(1e-8) ;


   initiateParams(nGenSignalZeroGamma, nGenSignalOneGamma, nGenSignalTwoGamma, 
         nKemu, nSignal, nPartReco, nComb, fracZero, fracOne,
         nJpsiLeak, constPartReco, fracPartRecoSigma, 
         *l1Kee, *l2Kee, *l3Kee, *l4Kee, *l5Kee, l1Kemu, l2Kemu, l3Kemu, l4Kemu, l5Kemu, 
         *l1KeeGen, *l2KeeGen, *l3KeeGen, *l4KeeGen, *l5KeeGen);

   RooArgSet constraints(fracZeroConst, fracOneConst);
   if (constPartReco) constraints.add(fracPartRecoConst);
   if(nGenJpsiLeak>0) constraints.add(JpsiLeakConst);

   RooAbsReal* nll = simPdf.createNLL(dataGenSimultaneous, Extended(), ExternalConstraints(constraints));
   RooMinuit minuit(*nll);
   minuit.setStrategy(2);


   int migradRes(1);
   int hesseRes(4);

   vector<int> migradResVec;
   vector<int> hesseResVec;

   double edm(10);
   int nrefit(0);

   RooFitResult* fitRes(0);
   vector<RooFitResult*> fitResVec;

   bool hasConverged(false);

   for(int i(0); (i<15) && !hasConverged ; ++i)
   {
      initiateParams(nGenSignalZeroGamma, nGenSignalOneGamma, nGenSignalTwoGamma, 
            nKemu, nSignal, nPartReco, nComb, fracZero, fracOne,
            nJpsiLeak, constPartReco, fracPartRecoSigma, 
            *l1Kee, *l2Kee, *l3Kee, *l4Kee, *l5Kee, l1Kemu, l2Kemu, l3Kemu, l4Kemu, l5Kemu, 
            *l1KeeGen, *l2KeeGen, *l3KeeGen, *l4KeeGen, *l5KeeGen);

      cout<<"FITTING: starting with nsignal = "<<nSignal.getValV()<<" refit nbr. "<<i<<endl;
      //if(fitRes != NULL && fitRes != 0) delete fitRes;

      migradRes = minuit.migrad();
      hesseRes = minuit.hesse();

      fitRes = minuit.save();
      edm = fitRes->edm();

      fitResVec.push_back(fitRes); 
      migradResVec.push_back(migradRes);
      hesseResVec.push_back(hesseRes);

      if( migradRes == 0 && hesseRes == 0 && edm < 1e-3 ) hasConverged = true;

      ++nrefit;

      cout<<"Fitting nbr "<<i<<" done. Hesse: "<<hesseRes<<" migrad: "<<migradRes<<" edm: "<<edm<<" minNll: "<<fitRes->minNll()<<endl;
   }


   if(!hasConverged)
   {
      double minNll(1e20);
      int minIndex(-1);
      for(unsigned int i(0); i<fitResVec.size(); ++i)
      {
         if( fitResVec.at(i)->minNll() < minNll)
         {
            minIndex = i;
            minNll = fitResVec[i]->minNll();
         }
      }
      
      migradRes = migradResVec.at(minIndex);
      hesseRes = hesseResVec.at(minIndex);
      cout<<"Fit not converged, choose fit "<<minIndex<<". Hesse: "<<hesseRes<<" migrad: "<<migradRes<<" edm: "<<edm<<" minNll: "<<fitRes->minNll()<<endl;
   }


   fillTreeResult(t, fitRes,  update, migradRes, hesseRes, hasConverged);

   for(unsigned int i(0); i<fitResVec.size(); ++i) delete fitResVec.at(i);
   //totPdf.fitTo(*dataGenTot, Extended(), Save(), Warnings(false));

   //*************** output fit status


   int w(12);
   out<<setw(w)<<migradRes<<setw(w)<<hesseRes<<setw(w)<<edm<<setw(w)<<nrefit<<endl;

   if(wantplot) plot_fit_result(plotsfile, totPdf, *dataGenTot);
   if(wantplot) plot_kemu_fit_result(plotsfile, totKemuPdf, *dataGenKemu);

   fw.Close();
   //delete and return
   delete nll;
   delete workspace;
   delete workspaceGen;
   delete combPDF;
   delete KemuPDF;
}
示例#2
0
int main(int argc, const char** argv){
  bool ReDoCuts=false;

  TCut TwelveCut = "gamma_CL>0.1&&BDT_response>0.36&&piplus_MC12TuneV3_ProbNNpi>0.2&&piminus_MC12TuneV3_ProbNNpi>0.2&&Kaon_MC12TuneV3_ProbNNk>0.4";
  TCut ElevenCut = "gamma_CL>0.1&&BDT_response>0.30&&piplus_MC12TuneV3_ProbNNpi>0.2&&piminus_MC12TuneV3_ProbNNpi>0.2&&Kaon_MC12TuneV3_ProbNNk>0.4";
  
  //______________________________MAKE CUT FILE FOR 2012___________________________________
  if(ReDoCuts){
    DataFile MCA(std::getenv("BUKETAPMCBDTRESPROOT"),MC,Twel,MagAll,buketap,"BDTApplied_SampleA");
    
    DataFile MCB(std::getenv("BUKETAPMCBDTRESPROOT"),MC,Twel,MagAll,buketap,"BDTApplied_SampleB");
  
    TreeReader* MC12Reader=  new TreeReader("DecayTree");
    MC12Reader->AddFile(MCA);
    MC12Reader->AddFile(MCB);
    MC12Reader->Initialize();
    
    TFile* MC12Cut = new TFile("CutFile12.root","RECREATE");
    TTree* MC12CutTree=MC12Reader->CopyTree(TwelveCut,-1,"DecayTree");
    TRandom3 *MCRand = new TRandom3(224);
    TH1I * MCnCands12= new TH1I("MCnCands12","MCnCands12",10,0,10);
    TTree*MC12SingleTree=HandyFunctions::GetSingleTree(MCRand,MC12CutTree,MCnCands12,NULL);
    MCnCands12->Write();
    MC12SingleTree->Write();
    MC12Cut->Close();
    
    //________________________________MAKE CUT FILE FOR 2011__________________________________
    
    DataFile MC11A(std::getenv("BUKETAPMCBDTRESPROOT"),MC,Elev,MagAll,buketap,"BDTApplied_SampleA");
    
    DataFile MC11B(std::getenv("BUKETAPMCBDTRESPROOT"),MC,Elev,MagAll,buketap,"BDTApplied_SampleB");
    
    TreeReader* MC11Reader= new TreeReader("DecayTree");
    MC11Reader->AddFile(MC11A);
    MC11Reader->AddFile(MC11B);
    MC11Reader->Initialize();
    
    TFile* MC11Cut = new TFile("CutFile11.root","RECREATE");
    TTree* MC11CutTree=MC11Reader->CopyTree(ElevenCut,-1,"DecayTree");

    TH1I * MCnCands11= new TH1I("MCnCands11","MCnCands11",10,0,10);
    TTree* MC11SingleTree=HandyFunctions::GetSingleTree(MCRand,MC11CutTree,MCnCands11,NULL);
    MCnCands11->Write();
    MC11SingleTree->Write();
    MC11Cut->Close();
  //_________________________________ MAKE FLAT TREES  ____________________________________
  
    TFile* MC12Input = new TFile("CutFile12.root");
    TTree* MC12InputTree=(TTree*)MC12Input->Get("DecayTree");
    Float_t MCEta_Mass12[20]; MC12InputTree->SetBranchAddress("Bu_DTFNoFix_eta_prime_M",&MCEta_Mass12);
    Int_t isSingle12; MC12InputTree->SetBranchAddress("isSingle",&isSingle12);
    
    TFile* MC12FlatOut = new TFile("MCMinimalFile12.root","RECREATE");
    TTree* MC12FlatTree = MC12InputTree->CloneTree(0);
    Double_t MCBu_DTFNoFix_eta_Prime_MF12; MC12FlatTree->Branch("Bu_DTFNoFix_eta_prime_MF",&MCBu_DTFNoFix_eta_Prime_MF12,"Bu_DTFNoFix_eta_prime_MF/D");
    
    Long64_t Entries12=MC12InputTree->GetEntries();
    
    for(int i=0;i<Entries12;++i){
      MC12InputTree->GetEntry(i);
      if(isSingle12==0)continue;
      MCBu_DTFNoFix_eta_Prime_MF12=MCEta_Mass12[0];
      MC12FlatTree->Fill();
    }
    
    MC12FlatTree->Write();
    MC12FlatOut->Close();
    
    TFile* MC11Input = new TFile("CutFile11.root");
    TTree* MC11InputTree=(TTree*)MC11Input->Get("DecayTree");
    Float_t MCEta_Mass11[20]; MC11InputTree->SetBranchAddress("Bu_DTFNoFix_eta_prime_M",&MCEta_Mass11);
    Int_t isSingle11; MC11InputTree->SetBranchAddress("isSingle",&isSingle11);
    
    TFile* MC11FlatOut = new TFile("MCMinimalFile11.root","RECREATE");
    TTree* MC11FlatTree = MC11InputTree->CloneTree(0);
    Double_t MCBu_DTFNoFix_eta_Prime_MF11; MC11FlatTree->Branch("Bu_DTFNoFix_eta_prime_MF",&MCBu_DTFNoFix_eta_Prime_MF11,"Bu_DTFNoFix_eta_prime_MF/D");
    
    Long64_t Entries11=MC11InputTree->GetEntries();
    
    for(int i=0;i<Entries11;++i){
      MC11InputTree->GetEntry(i);
      if(isSingle11==0)continue;
      MCBu_DTFNoFix_eta_Prime_MF11=MCEta_Mass11[0];
      MC11FlatTree->Fill();
    }
    
    MC11FlatTree->Write();
    MC11FlatOut->Close();
  }
  
  //_____________________________________________LOAD ROODATASETS___________________________________

  TFile* MCFlatInput12= new TFile("MCMinimalFile12.root");
  TTree* MCFlatInputTree12=(TTree*)MCFlatInput12->Get("DecayTree");

  TFile* MCFlatInput11= new TFile("MCMinimalFile11.root");
  TTree* MCFlatInputTree11=(TTree*)MCFlatInput11->Get("DecayTree");

  RooRealVar MCBMass("Bu_DTF_MF","Bu_DTF_MF",5000.0,5600.0);
  RooRealVar MCEtaMass("eta_prime_MM","eta_prime_MM",700.0,1200.0);
  RooRealVar BDT_response("BDT_response","BDT_response",-1.0,1.0);
  RooRealVar gamma_CL("gamma_CL","gamma_CL",0.1,1.0);
  RooArgSet Args(MCBMass,MCEtaMass,BDT_response,gamma_CL);

  RooDataSet* MCData12 = new RooDataSet("MCData12","MCData12",Args,Import(*MCFlatInputTree12));
  
  std::cout <<" Data File 12 Loaded"<<std::endl;
  
  RooDataSet* MCData11 = new RooDataSet("MCData11","MCData11",Args,Import(*MCFlatInputTree11));

  std::cout<<" Data File 11 loaded"<<std::endl;

  RooDataSet* MCDataAll= new RooDataSet("MCDataAll","MCDataAll",Args);

  MCDataAll->append(*MCData12);
  MCDataAll->append(*MCData11);
  
  RooPlot* massFrame = MCBMass.frame(Title("Data Import Check"),Bins(50));
  MCDataAll->plotOn(massFrame);
  
  RooPlot *BDTFrame = BDT_response.frame(Title("BDT Cut Check"),Bins(50));
  MCDataAll->plotOn(BDTFrame);
  TCanvas C;
  C.Divide(2,1);
  C.cd(1);
  massFrame->Draw();
  C.cd(2);
  BDTFrame->Draw();
  C.SaveAs("ImportChecks.eps");

  //________________________________MAKE MCROODATACATEGORIES__________________________________

  RooDataSet* MCBData=(RooDataSet*)MCDataAll->reduce(RooArgSet(MCBMass));
  MCBData->Print("v");
  
  RooDataSet* MCEtaData=(RooDataSet*)MCDataAll->reduce(RooArgSet(MCEtaMass));
  MCEtaData->Print("v");

  RooCategory MCMassType("MCMassType","MCMassType") ;
  MCMassType.defineType("B") ;
  MCMassType.defineType("Eta") ;
  
  // Construct combined dataset in (x,sample)
  RooDataSet MCcombData("MCcombData","MC combined data",Args,Index(MCMassType),Import("B",*MCBData),Import("Eta",*MCEtaData));

  
  //=============================================== MC FIT MODEL===================================
  
  RooRealVar Mean("Mean","Mean",5279.29,5276.0,5284.00);
  RooRealVar Sigma("Sigma","Sigma",20.54,17.0,24.8);
  RooRealVar LAlpha("LAlpha","LAlpha",-1.064,-2.5,0.0);
  RooRealVar RAlpha("RAlpha","RAlpha",1.88,0.0,5.0);
  RooRealVar LN("LN","LN",13.0,0.0,40.0);
  RooRealVar RN("RN","RN",2.56,0.0,6.0);

  RooCBShape CBLeft("CBLeft","CBLeft",MCBMass,Mean,Sigma,LAlpha,LN);
  
  RooCBShape CBRight("CBRight","CBRight",MCBMass,Mean,Sigma,RAlpha,RN);

  RooRealVar FitFraction("FitFraction","FitFraction",0.5,0.0,1.0);
  RooAddPdf DCB("DCB","DCB",RooArgList(CBRight,CBLeft),FitFraction);

  RooRealVar SignalYield("SignalYield","SignalYield",4338.0,500.0,10000.0);
  //  RooExtendPdf ExtDCB("ExtDCB","ExtDCB",DCB,SignalYield);
  
  //==============================ETA DCB ++++++++++++++++++++++++++++++
  
  RooRealVar MCEtamean("MCEtamean","MCEtamean",958.0,955.0,960.0);
  RooRealVar MCEtasigma("MCEtasigma","MCEtasigma",9.16,8.0,14.0);
  RooRealVar EtaLAlpha("EtaLAlpha","EtaLAlpha",-1.45,-5.0,1.0);
  RooRealVar EtaRAlpha("EtaRAlpha","EtaRAlpha",1.76,0.0,4.0);
  RooRealVar EtaLN("EtaLN","EtaLN",0.1,0.0,20.0);
  RooRealVar EtaRN("EtaRN","EtaRN",0.1,0.0,20.0);

  RooCBShape EtaCBLeft("EtaCBLeft","EtaCBLeft",MCEtaMass,MCEtamean,MCEtasigma,EtaLAlpha,EtaLN);
  
  RooCBShape EtaCBRight("EtaCBRight","EtaCBRight",MCEtaMass,MCEtamean,MCEtasigma,EtaRAlpha,EtaRN);

  RooRealVar EtaFitFraction("EtaFitFraction","EtaFitFraction",0.22,0.1,1.0);
  RooAddPdf EtaDCB("EteaDCB","EtaDCB",RooArgList(EtaCBRight,EtaCBLeft),EtaFitFraction);

  RooProdPdf MCSignalPdf("MCSignalPdf","MCSignalPdf",RooArgSet(EtaDCB,DCB));
  
  RooExtendPdf ExtendedMCSignalPdf("ExtendedMCSignalPdf","ExtendedMCSignalPdf",MCSignalPdf,SignalYield);

  RooSimultaneous MCsimPdf("MCsimPdf","MC simultaneous pdf",MCMassType) ;
  //  MCsimPdf.addPdf(ExtDCB,"B");
  //  MCsimPdf.addPdf(ExtendedMCEtaDCB,"Eta"); 

  //============================== DO the MC FIT =======================================
  //MCsimPdf.fitTo(MCcombData,Extended(kTRUE),Minos(kTRUE));
  //ExtendedMCEtaDCB.fitTo(*MCEtaData,Extended(kTRUE),Minos(kTRUE));
  //ExtDCB.fitTo(*MCBData,Extended(
  ExtendedMCSignalPdf.fitTo(*MCDataAll,Extended(kTRUE),Minos(kTRUE));
  
  RooPlot* MCframe1 = MCBMass.frame(Range(5100.0,5500.0),Bins(50),Title("B mass projection"));
  MCDataAll->plotOn(MCframe1);
  ExtendedMCSignalPdf.plotOn(MCframe1);
  ExtendedMCSignalPdf.paramOn(MCframe1);
  
  RooPlot* MCframe2 = MCEtaMass.frame(Range(880.0,1020.0),Bins(50),Title("Eta mass projection")) ;
  MCDataAll->plotOn(MCframe2);
  ExtendedMCSignalPdf.plotOn(MCframe2);
  ExtendedMCSignalPdf.paramOn(MCframe2);
  
  TCanvas* MCc = new TCanvas("rf501_simultaneouspdf","rf403_simultaneouspdf",1200,1000) ;
  gPad->SetLeftMargin(0.15) ; MCframe1->GetYaxis()->SetTitleOffset(1.4) ; MCframe1->Draw() ;
  MCc->SaveAs("MCSimulCanvas.pdf");

  TCanvas* MCcEta = new TCanvas(" Eta Canvas","Eta Canvas",1200,1000);
  gPad->SetLeftMargin(0.15) ; MCframe2->GetYaxis()->SetTitleOffset(1.4) ; MCframe2->Draw() ;
  MCcEta->SaveAs("MCEtaCanvas.pdf");

  TFile* MCFits= new TFile("MCFitResult.root","RECREATE");
  //  TCanvas* DecMCB=HandyFunctions::DecoratePlot(MCframe1);
  //  TCanvas* DecMCEta=HandyFunctions::DecoratePlot(MCframe2);
  //DecMCEta->Write();
  //  DecMCB->Write();
  MCc->Write();
  MCcEta->Write();

  std::cout<<"MC Eta Chi2 = "<<MCframe2->chiSquare()<<std::endl;
  std::cout<<"MC B Chi2 = "<<MCframe1->chiSquare()<<std::endl;

  //___________________________________ CUT DOWN COLLISION DATA ______________________________
  if(ReDoCuts){
    DataFile TwelveA(std::getenv("BUKETAPDATABDTRESPROOT"),Data,Twel,MagAll,buketap,"BDTApplied_SampleA");

    DataFile TwelveB(std::getenv("BUKETAPDATABDTRESPROOT"),Data,Twel,MagAll,buketap,"BDTApplied_SampleB");
  
    DataFile ElevenA(std::getenv("BUKETAPDATABDTRESPROOT"),Data,Elev,MagAll,buketap,"BDTApplied_SampleA");

    DataFile ElevenB(std::getenv("BUKETAPDATABDTRESPROOT"),Data,Elev,MagAll,buketap,"BDTApplied_SampleB");		

    TRandom3* DataRand= new TRandom3(224);
    TH1I* DataNCand12= new TH1I("DataNCand12","DataNCand12",10,0,10);
    TH1I* DataNCand11= new TH1I("DataNCand11","DataNCand11",10,0,10);
    
    TreeReader* UncutDataReader12= new TreeReader("DecayTree");
    UncutDataReader12->AddFile(TwelveA);
    UncutDataReader12->AddFile(TwelveB);
    UncutDataReader12->Initialize();
    
    TFile* CutDataFile12 = new TFile("CutDataFile12.root","RECREATE");
    TTree* CutDataTree12 = UncutDataReader12->CopyTree(TwelveCut,-1,"DecayTree");
    TTree* SingleCutDataTree12=HandyFunctions::GetSingleTree(DataRand,CutDataTree12,DataNCand12,NULL);
    SingleCutDataTree12->Write();
    CutDataFile12->Close();
    
    TreeReader* UncutDataReader11= new TreeReader("DecayTree");
    UncutDataReader11->AddFile(ElevenB);
    UncutDataReader11->AddFile(ElevenA);
    UncutDataReader11->Initialize();
    
    TFile* CutDataFile11 = new TFile("CutDataFile11.root","RECREATE");
    TTree* CutDataTree11 = UncutDataReader11->CopyTree(ElevenCut,-1,"DecayTree");
    TTree* SingleCutDataTree11=HandyFunctions::GetSingleTree(DataRand,CutDataTree11,DataNCand11,NULL);
    SingleCutDataTree11->Write();
    CutDataFile11->Close();
  

    TFile* DataInput12 = new TFile("CutDataFile12.root");
    TTree* DataInputTree12=(TTree*)DataInput12->Get("DecayTree");
    DataInputTree12->SetBranchStatus("*",0);
    DataInputTree12->SetBranchStatus("Bu_DTF_MF",1);
    DataInputTree12->SetBranchStatus("Bu_DTFNoFix_eta_prime_M",1);
    DataInputTree12->SetBranchStatus("eta_prime_MM",1);
    DataInputTree12->SetBranchStatus("isSingle",1);
    Float_t Eta_Mass12[20]; DataInputTree12->SetBranchAddress("Bu_DTFNoFix_eta_prime_M",&Eta_Mass12);
    Int_t isSingle12; DataInputTree12->SetBranchAddress("isSingle",&isSingle12);
    
    TFile* MinimalDataFile12 = new TFile("MinimalDataFile12.root","RECREATE");
    TTree* MinimalDataTree12= DataInputTree12->CloneTree(0);
    Double_t Bu_DTFNoFix_eta_prime_MF12; MinimalDataTree12->Branch("Bu_DTFNoFix_eta_prime_MF",&Bu_DTFNoFix_eta_prime_MF12,"Bu_DTFNoFix_eta_prime_MF/D");
    
    Long64_t Entries12=DataInputTree12->GetEntries();
    
    for(int i=0;i<Entries12;++i){
      DataInputTree12->GetEntry(i);
      if(isSingle12==0)continue;
      Bu_DTFNoFix_eta_prime_MF12=Eta_Mass12[0];
      MinimalDataTree12->Fill();
    }
    
    MinimalDataTree12->Write();
    MinimalDataFile12->Close();
    
    TFile* DataInput11 = new TFile("CutDataFile11.root");
    TTree* DataInputTree11=(TTree*)DataInput11->Get("DecayTree");
    DataInputTree11->SetBranchStatus("*",0);
    DataInputTree11->SetBranchStatus("Bu_DTF_MF",1);
    DataInputTree11->SetBranchStatus("Bu_DTFNoFix_eta_prime_M",1);
    DataInputTree11->SetBranchStatus("eta_prime_MM",1);
    DataInputTree11->SetBranchStatus("isSingle",1);
    Float_t Eta_Mass11[20]; DataInputTree11->SetBranchAddress("Bu_DTFNoFix_eta_prime_M",&Eta_Mass11);
    Int_t isSingle11; DataInputTree11->SetBranchAddress("isSingle",&isSingle11);
    
    TFile* MinimalDataFile11 = new TFile("MinimalDataFile11.root","RECREATE");
    TTree* MinimalDataTree11= DataInputTree11->CloneTree(0);
    Double_t Bu_DTFNoFix_eta_prime_MF11; MinimalDataTree11->Branch("Bu_DTFNoFix_eta_prime_MF",&Bu_DTFNoFix_eta_prime_MF11,"Bu_DTFNoFix_eta_prime_MF/D");
    
    Long64_t Entries11=DataInputTree11->GetEntries();
    
    for(int i=0;i<Entries11;++i){
    DataInputTree11->GetEntry(i);
    if(isSingle11==0)continue;
    Bu_DTFNoFix_eta_prime_MF11=Eta_Mass11[0];
    MinimalDataTree11->Fill();
    }
    MinimalDataTree11->Write();
    MinimalDataFile11->Close();
  }

  //___________________________________ LOAD DATA TO ROODATASET____________________________________
  
  RooRealVar BMass("Bu_DTF_MF","Bu_DTF_MF",5000.0,5600.0);
  RooRealVar EtaMass("eta_prime_MM","eta_prime_MM",870.0,1050.0);
  RooArgSet MassArgs(BMass,EtaMass);

  TFile* Data12File = new TFile("MinimalDataFile12.root");
  TTree* DataTree12=(TTree*)Data12File->Get("DecayTree");

  RooDataSet* Data12 = new RooDataSet("Data12","Data12",MassArgs,Import(*DataTree12));

  TFile* Data11File = new TFile("MinimalDataFile11.root");
  TTree* DataTree11=(TTree*)Data11File->Get("DecayTree");

  RooDataSet* Data11 = new RooDataSet("Data11","Data11",MassArgs,Import(*DataTree11));
  
  RooDataSet* AllData = new RooDataSet("AllData","AllData",MassArgs);
  AllData->append(*Data12);
  AllData->append(*Data11);
  TCanvas ImportC;
  RooPlot* ImportCheck = BMass.frame(Title("ImportCheck"),Bins(50));
  AllData->plotOn(ImportCheck);
  ImportCheck->Draw();
  ImportC.SaveAs("Alldataimport.pdf");

  std::cout<<" Data Loaded, Total Entries = "<<AllData->numEntries()<<std::endl;

  AllData->Print("v");

  RooDataSet* BData=(RooDataSet*)AllData->reduce(RooArgSet(BMass));
  BData->Print("v");

  RooDataSet* EtaData=(RooDataSet*)AllData->reduce(RooArgSet(EtaMass));
  EtaData->Print("v");

  //___________________________________Fit to Eta_Prime in BMass Sidebands______________________

  RooDataSet* BSidebands=(RooDataSet*)AllData->reduce(Cut("(Bu_DTF_MF>5000.0&&Bu_DTF_MF<5179.0)||(Bu_DTF_MF>5379.0&&Bu_DTF_MF<5800.0)"));

  TCanvas BSidebandCanvas;
  RooPlot* BSidebandPlot = EtaMass.frame(Title("B sidebands"),Bins(30));
  BSidebands->plotOn(BSidebandPlot);
  BSidebandPlot->Draw();
  BSidebandCanvas.SaveAs("BSidebandDataCheck.pdf");

  
  RooRealVar BsbMean(" Mean","BsbMean",958.0,900.0,1020.0);
  RooRealVar BsbSigma(" Sigma","BsbSigma",19.8,10.0,40.8);
  RooRealVar BsbLAlpha(" Alpha","BsbLAlpha",-1.63,-10.0,0.0);
  //  RooRealVar BsbRAlpha("BsbRAlpha","BsbRAlpha",1.47,0.0,10.0);
  RooRealVar BsbLN(" N","BsbLN",0.1,0.0,20.0);
  //  RooRealVar BsbRN("BsbRN","BsbRN",0.1,0.0,20.0);

  RooCBShape BsbCBLeft("BsbCBLeft","BsbCBLeft",EtaMass,BsbMean,BsbSigma,BsbLAlpha,BsbLN);
  
  //  RooCBShape BsbCBRight("BsbCBRight","BsbCBRight",EtaMass,BsbMean,BsbSigma,BsbRAlpha,BsbRN);

  //  RooRealVar BsbFitFraction("BsbFitFraction","BsbFitFraction",0.5,0.0,1.0);
  //  RooAddPdf BsbDCB("BsbDCB","BsbDCB",RooArgList(BsbCBRight,BsbCBLeft),BsbFitFraction);
  RooRealVar Bsbslope("Bsbslope","Bsbslope",0.5,0.0,1.0);
  RooRealVar BsbP2("BsbP2","BsbP2",-0.5,-1.0,0.0);
  RooChebychev BsbLinear("BsbLinear","BsbLinear",EtaMass,RooArgSet(Bsbslope,BsbP2));

  RooRealVar BsbFitFraction("BsbFitFraction","BsbFitFraction",0.2,0.0,1.0);

  RooAddPdf BsbBackground("BsbBackground","BsbBackground",RooArgList(BsbLinear,BsbCBLeft),BsbFitFraction);
  
  RooRealVar BsbYield(" Yield","BsbYield",500.0,0.0,1000.0);
  RooExtendPdf BsbExtDCB("BsbExtDCB","BsbExtDCB",BsbCBLeft,BsbYield);

  BsbExtDCB.fitTo(*BSidebands,Extended(kTRUE),Minos(kTRUE));
  TCanvas BSBFitCanvas;
  RooPlot* BSBFitPlot = EtaMass.frame(Title("Eta fit in B Sidebands"),Bins(30));
  BSidebands->plotOn(BSBFitPlot);
  BsbExtDCB.plotOn(BSBFitPlot);
  BsbExtDCB.paramOn(BSBFitPlot);
  BSBFitPlot->Draw();
  BSBFitCanvas.SaveAs("BSidebandFit.pdf");
  TFile * SidebandFitFile= new TFile("SidebandFit.root","RECREATE");
  BSBFitCanvas.Write();
  SidebandFitFile->Close();
  
  //___________________________________DO THE 2D FIT TO DATA___________________________________


  const double PDGBMass= 5279.26;
  BMass.setRange("SignalWindow",PDGBMass-(3*Sigma.getVal()),PDGBMass+(3*Sigma.getVal()));
  RooRealVar DSignalYield("DSignalYield","DSignalYield",4000.0,0.0,10000.0);

  //================================= B MASS SIGNAL PDF==============================
  RooRealVar DMean("Mean","DMean",5279.29,5270.0,5290.00);
  RooRealVar DSigma("Sigma","DSigma",19.8,10.0,40.8);
  RooRealVar DLAlpha("DLAlpha","DLAlpha",LAlpha.getVal());
  RooRealVar DRAlpha("DRAlpha","DRAlpha",RAlpha.getVal());
  RooRealVar DLN("DLN","DLN",LN.getVal());
  RooRealVar DRN("DRN","DRN",RN.getVal());

  RooCBShape DCBLeft("DCBLeft","DCBLeft",BMass,DMean,DSigma,DLAlpha,DLN);
  
  RooCBShape DCBRight("DCBRight","DCBRight",BMass,DMean,DSigma,DRAlpha,DRN);

  RooRealVar DFitFraction("FitFraction","DFitFraction",0.5,0.0,1.0);
  RooAddPdf DDCB("DDCB","DDCB",RooArgList(DCBRight,DCBLeft),DFitFraction);
  
  //==============================B MASS BKG PDF==============================
  RooRealVar slope("slope","slope",-0.5,-1.0,0.0);
  RooChebychev bkg("bkg","Background",BMass,RooArgSet(slope));
  
  //==============================Eta mass signal pdf================================
  RooRealVar DEtamean("Etamean","DEtamean",958.0,945.0,980.0) ;
  RooRealVar DEtasigma("Etasigma","DEtasigma",15.0,5.0,65.0) ;
  RooRealVar DEtaLAlpha("DEtaLAlpha","DEtaLAlpha",EtaLAlpha.getVal());
  RooRealVar DEtaRAlpha("DEtaRAlpha","DEtaRAlpha",EtaRAlpha.getVal());
  RooRealVar DEtaLN("DEtaLN","DEtaLN",EtaLN.getVal());
  RooRealVar DEtaRN("DEtaRN","DEtaRN",EtaRN.getVal());
  
  RooCBShape EtaDCBLeft("EtaDCBLeft","EtaDCBLeft",EtaMass,DEtamean,DEtasigma,DEtaLAlpha,DEtaLN);
  
  RooCBShape EtaDCBRight("EtaDCBRight","EtaDCBRight",EtaMass,DEtamean,DEtasigma,DEtaRAlpha,DEtaRN);
  
  RooRealVar DEtaFitFraction("EtaFitFraction","DEtaFitFraction",0.5,0.0,1.0);
  RooAddPdf EtaDDCB("EtaDDCB","EtaDDCB",RooArgList(EtaDCBRight,EtaDCBLeft),DEtaFitFraction);

  RooProdPdf DSignalPdf("DSignalPdf","DSignalPdf",RooArgList(EtaDDCB,DDCB));
  
  RooExtendPdf DExtSignalPdf("DExtSignalPdf","DExtSignalPdf",DSignalPdf,DSignalYield);

  //=============================== Eta mass bkg pdf==================================
  
  RooRealVar EtaBkgMean("EtaBkgMean","EtaBkgMean",958.0,900.0,1020.0);
  RooRealVar EtaBkgSigma("EtaBkgSigma","EtaBkgSigma",19.8,10.0,40.8);
  RooRealVar EtaBkgLAlpha("EtaBkgLAlpha","EtaBkgLAlpha",BsbLAlpha.getVal());
  //  RooRealVar EtaBkgRAlpha("EtaBkgRAlpha","EtaBkgRAlpha",BsbRAlpha.getVal());
  RooRealVar EtaBkgLN("EtaBkgLN","EtaBkgLN",BsbLN.getVal());
  //  RooRealVar EtaBkgRN("EtaBkgRN","EtaBkgRN",BsbRN.getVal());

  RooCBShape EtaBkgCBLeft("EtaBkgCBLeft","EtaBkgCBLeft",EtaMass,DEtamean,EtaBkgSigma,EtaBkgLAlpha,EtaBkgLN);
  
  //  RooCBShape EtaBkgCBRight("EtaBkgCBRight","EtaBkgCBRight",EtaMass,DEtamean,EtaBkgSigma,EtaBkgRAlpha,EtaBkgRN);
  
  //  RooRealVar EtaBkgFitFraction("EtaBkgFitFraction","EtaBkgFitFraction",0.5,0.0,1.0);
  //  RooAddPdf EtaBkgDCB("EtaBkgDCB","EtaBkgDCB",RooArgList(EtaBkgCBRight,EtaBkgCBLeft),EtaBkgFitFraction);
  
  RooProdPdf DataBackgroundPDF("DataBackgroundPDF","DataBackgroundPDF",RooArgList(EtaBkgCBLeft,bkg));
  
  RooRealVar DataBackgroundYield("BackgroundYield","DataBackgroundYield",500.0,0.0,10000.0);
  
  RooExtendPdf ExtDataBackgroundPDF("ExtDataBackgroundPDF","ExtDataBackgroundPDF",DataBackgroundPDF,DataBackgroundYield);

  RooAddPdf TotalPDF("TotalPDF","TotalPDF",RooArgList(ExtDataBackgroundPDF,DExtSignalPdf));
  std::cout<<"Dependents = "<<std::endl;
  RooArgSet* Dependents=TotalPDF.getDependents(AllData);
  Dependents->Print("v");
  std::cout<<"parameters= "<<std::endl;
  RooArgSet* parameters=TotalPDF.getParameters(AllData);
  parameters->Print("v");
  RooCategory MassType("MassType","MassType") ;
  MassType.defineType("B") ;
  MassType.defineType("Eta") ;
  
  // Construct combined dataset in (x,sample)
  RooDataSet combData("combData","combined data",MassArgs,Index(MassType),Import("B",*BData),Import("Eta",*EtaData));

  RooSimultaneous simPdf("simPdf","simultaneous pdf",MassType) ;

  // Associate model with the physics state and model_ctl with the control state
  //  simPdf.addPdf(WholeFit,"B");
  //  simPdf.addPdf(WholeEtaFit,"Eta"); 

  //  simPdf.fitTo(combData,Extended(kTRUE)/*,Minos(kTRUE)*/);
  
  TotalPDF.fitTo(*AllData,Extended(kTRUE),Minos(kTRUE));

  RooPlot* frame1 = BMass.frame(Bins(50),Title("B mass projection"));
  AllData->plotOn(frame1);
  TotalPDF.plotOn(frame1,Components(ExtDataBackgroundPDF),LineStyle(kDashed),LineColor(kRed));
  TotalPDF.plotOn(frame1);
  TotalPDF.paramOn(frame1);
  
  // The same plot for the control sample slice
  RooPlot* frame2 = EtaMass.frame(Bins(50),Title("Eta mass projection")) ;
  AllData->plotOn(frame2);
  TotalPDF.plotOn(frame2,Components(ExtDataBackgroundPDF),LineStyle(kDashed),LineColor(kRed));
  TotalPDF.plotOn(frame2);
  TotalPDF.paramOn(frame2);
  TCanvas* DecoratedCanvas =HandyFunctions::DecoratePlot(frame2);

  
  TCanvas* DataBC= new TCanvas("BCanvas","BCanvas",1200,1000) ;
  gPad->SetLeftMargin(0.15) ; frame1->GetYaxis()->SetTitleOffset(1.4) ; frame1->Draw() ;
  TCanvas* EtaBC= new TCanvas("EtaCanvas","EtaCanvas",1200,1000) ;
  gPad->SetLeftMargin(0.15) ; frame2->GetYaxis()->SetTitleOffset(1.4) ; frame2->Draw() ;
  DataBC->SaveAs("DataBC.pdf");
  EtaBC->SaveAs("EtaBC.pdf");
  
  TFile * DataSimulFit = new TFile("DataSimulFit.root","RECREATE");
  DataBC->Write();
  EtaBC->Write();
  DecoratedCanvas->Write();

  
		 
		  

  
}