/* * All outgoing AX.25 I frames pass via this routine. Therefore this is * where the fragmentation of frames takes place. If fragment is set to * zero then we are not allowed to do fragmentation, even if the frame * is too large. */ void ax25_output(ax25_cb *ax25, int paclen, struct sk_buff *skb) { struct sk_buff *skbn; unsigned char *p; int frontlen, len, fragno, ka9qfrag, first = 1; if (paclen < 16) { WARN_ON_ONCE(1); kfree_skb(skb); return; } if ((skb->len - 1) > paclen) { if (*skb->data == AX25_P_TEXT) { skb_pull(skb, 1); /* skip PID */ ka9qfrag = 0; } else { paclen -= 2; /* Allow for fragment control info */ ka9qfrag = 1; } fragno = skb->len / paclen; if (skb->len % paclen == 0) fragno--; frontlen = skb_headroom(skb); /* Address space + CTRL */ while (skb->len > 0) { spin_lock_bh(&ax25_frag_lock); if ((skbn = alloc_skb(paclen + 2 + frontlen, GFP_ATOMIC)) == NULL) { spin_unlock_bh(&ax25_frag_lock); printk(KERN_CRIT "AX.25: ax25_output - out of memory\n"); return; } if (skb->sk != NULL) skb_set_owner_w(skbn, skb->sk); spin_unlock_bh(&ax25_frag_lock); len = (paclen > skb->len) ? skb->len : paclen; if (ka9qfrag == 1) { skb_reserve(skbn, frontlen + 2); skb_set_network_header(skbn, skb_network_offset(skb)); skb_copy_from_linear_data(skb, skb_put(skbn, len), len); p = skb_push(skbn, 2); *p++ = AX25_P_SEGMENT; *p = fragno--; if (first) { *p |= AX25_SEG_FIRST; first = 0; } } else { skb_reserve(skbn, frontlen + 1); skb_set_network_header(skbn, skb_network_offset(skb)); skb_copy_from_linear_data(skb, skb_put(skbn, len), len); p = skb_push(skbn, 1); *p = AX25_P_TEXT; } skb_pull(skb, len); skb_queue_tail(&ax25->write_queue, skbn); /* Throw it on the queue */ } kfree_skb(skb); } else { skb_queue_tail(&ax25->write_queue, skb); /* Throw it on the queue */ } switch (ax25->ax25_dev->values[AX25_VALUES_PROTOCOL]) { case AX25_PROTO_STD_SIMPLEX: case AX25_PROTO_STD_DUPLEX: ax25_kick(ax25); break; #ifdef CONFIG_AX25_DAMA_SLAVE /* * A DAMA slave is _required_ to work as normal AX.25L2V2 * if no DAMA master is available. */ case AX25_PROTO_DAMA_SLAVE: if (!ax25->ax25_dev->dama.slave) ax25_kick(ax25); break; #endif } }
static int handle_recv_skb(struct capiminor *mp, struct sk_buff *skb) { struct sk_buff *nskb; unsigned int datalen; u16 errcode, datahandle; datalen = skb->len - CAPIMSG_LEN(skb->data); if (mp->tty) { if (mp->tty->ldisc.receive_buf == 0) { printk(KERN_ERR "capi: ldisc has no receive_buf function\n"); return -1; } if (mp->ttyinstop) { #if defined(_DEBUG_DATAFLOW) || defined(_DEBUG_TTYFUNCS) printk(KERN_DEBUG "capi: recv tty throttled\n"); #endif return -1; } if (mp->tty->ldisc.receive_room && mp->tty->ldisc.receive_room(mp->tty) < datalen) { #if defined(_DEBUG_DATAFLOW) || defined(_DEBUG_TTYFUNCS) printk(KERN_DEBUG "capi: no room in tty\n"); #endif return -1; } if ((nskb = gen_data_b3_resp_for(mp, skb)) == 0) { printk(KERN_ERR "capi: gen_data_b3_resp failed\n"); return -1; } datahandle = CAPIMSG_U16(skb->data,CAPIMSG_BASELEN+4); errcode = (*capifuncs->capi_put_message)(mp->applid, nskb); if (errcode != CAPI_NOERROR) { printk(KERN_ERR "capi: send DATA_B3_RESP failed=%x\n", errcode); kfree_skb(nskb); return -1; } (void)skb_pull(skb, CAPIMSG_LEN(skb->data)); #ifdef _DEBUG_DATAFLOW printk(KERN_DEBUG "capi: DATA_B3_RESP %u len=%d => ldisc\n", datahandle, skb->len); #endif mp->tty->ldisc.receive_buf(mp->tty, skb->data, 0, skb->len); kfree_skb(skb); return 0; } else if (mp->file) { if (skb_queue_len(&mp->recvqueue) > CAPINC_MAX_RECVQUEUE) { #if defined(_DEBUG_DATAFLOW) || defined(_DEBUG_TTYFUNCS) printk(KERN_DEBUG "capi: no room in raw queue\n"); #endif return -1; } if ((nskb = gen_data_b3_resp_for(mp, skb)) == 0) { printk(KERN_ERR "capi: gen_data_b3_resp failed\n"); return -1; } datahandle = CAPIMSG_U16(skb->data,CAPIMSG_BASELEN+4); errcode = (*capifuncs->capi_put_message)(mp->applid, nskb); if (errcode != CAPI_NOERROR) { printk(KERN_ERR "capi: send DATA_B3_RESP failed=%x\n", errcode); kfree_skb(nskb); return -1; } (void)skb_pull(skb, CAPIMSG_LEN(skb->data)); #ifdef _DEBUG_DATAFLOW printk(KERN_DEBUG "capi: DATA_B3_RESP %u len=%d => raw\n", datahandle, skb->len); #endif skb_queue_tail(&mp->recvqueue, skb); wake_up_interruptible(&mp->recvwait); return 0; } #ifdef _DEBUG_DATAFLOW printk(KERN_DEBUG "capi: currently no receiver\n"); #endif return -1; }
static void hscx_interrupt(struct IsdnCardState *cs, u_char val, u_char hscx) { u_char r; struct BCState *bcs = cs->bcs + hscx; struct sk_buff *skb; int fifo_size = test_bit(HW_IPAC, &cs->HW_Flags)? 64: 32; int count; if (!test_bit(BC_FLG_INIT, &bcs->Flag)) return; if (val & 0x80) { /* RME */ r = READHSCX(cs, hscx, HSCX_RSTA); if ((r & 0xf0) != 0xa0) { if (!(r & 0x80)) { if (cs->debug & L1_DEB_WARN) debugl1(cs, "HSCX invalid frame"); #ifdef ERROR_STATISTIC bcs->err_inv++; #endif } if ((r & 0x40) && bcs->mode) { if (cs->debug & L1_DEB_WARN) debugl1(cs, "HSCX RDO mode=%d", bcs->mode); #ifdef ERROR_STATISTIC bcs->err_rdo++; #endif } if (!(r & 0x20)) { if (cs->debug & L1_DEB_WARN) debugl1(cs, "HSCX CRC error"); #ifdef ERROR_STATISTIC bcs->err_crc++; #endif } WriteHSCXCMDR(cs, hscx, 0x80); } else { count = READHSCX(cs, hscx, HSCX_RBCL) & ( test_bit(HW_IPAC, &cs->HW_Flags)? 0x3f: 0x1f); if (count == 0) count = fifo_size; hscx_empty_fifo(bcs, count); if ((count = bcs->hw.hscx.rcvidx - 1) > 0) { if (cs->debug & L1_DEB_HSCX_FIFO) debugl1(cs, "HX Frame %d", count); if (!(skb = dev_alloc_skb(count))) printk(KERN_WARNING "HSCX: receive out of memory\n"); else { memcpy(skb_put(skb, count), bcs->hw.hscx.rcvbuf, count); skb_queue_tail(&bcs->rqueue, skb); } } } bcs->hw.hscx.rcvidx = 0; schedule_event(bcs, B_RCVBUFREADY); } if (val & 0x40) { /* RPF */ hscx_empty_fifo(bcs, fifo_size); if (bcs->mode == L1_MODE_TRANS) { /* receive audio data */ if (!(skb = dev_alloc_skb(fifo_size))) printk(KERN_WARNING "HiSax: receive out of memory\n"); else { memcpy(skb_put(skb, fifo_size), bcs->hw.hscx.rcvbuf, fifo_size); skb_queue_tail(&bcs->rqueue, skb); } bcs->hw.hscx.rcvidx = 0; schedule_event(bcs, B_RCVBUFREADY); } } if (val & 0x10) { /* XPR */ if (bcs->tx_skb) { if (bcs->tx_skb->len) { hscx_fill_fifo(bcs); return; } else { if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) && (PACKET_NOACK != bcs->tx_skb->pkt_type)) { u_long flags; spin_lock_irqsave(&bcs->aclock, flags); bcs->ackcnt += bcs->hw.hscx.count; spin_unlock_irqrestore(&bcs->aclock, flags); schedule_event(bcs, B_ACKPENDING); } dev_kfree_skb_irq(bcs->tx_skb); bcs->hw.hscx.count = 0; bcs->tx_skb = NULL; } } if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) { bcs->hw.hscx.count = 0; test_and_set_bit(BC_FLG_BUSY, &bcs->Flag); hscx_fill_fifo(bcs); } else { test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag); schedule_event(bcs, B_XMTBUFREADY); } } }
/* Queue an skb to a connected sock. * Socket lock must be held. */ static int pipe_do_rcv(struct sock *sk, struct sk_buff *skb) { struct pep_sock *pn = pep_sk(sk); struct pnpipehdr *hdr = pnp_hdr(skb); struct sk_buff_head *queue; int err = 0; BUG_ON(sk->sk_state == TCP_CLOSE_WAIT); switch (hdr->message_id) { case PNS_PEP_CONNECT_REQ: pep_reject_conn(sk, skb, PN_PIPE_ERR_PEP_IN_USE); break; case PNS_PEP_DISCONNECT_REQ: pep_reply(sk, skb, PN_PIPE_NO_ERROR, NULL, 0, GFP_ATOMIC); sk->sk_state = TCP_CLOSE_WAIT; if (!sock_flag(sk, SOCK_DEAD)) sk->sk_state_change(sk); break; case PNS_PEP_ENABLE_REQ: /* Wait for PNS_PIPE_(ENABLED|REDIRECTED)_IND */ pep_reply(sk, skb, PN_PIPE_NO_ERROR, NULL, 0, GFP_ATOMIC); break; case PNS_PEP_RESET_REQ: switch (hdr->state_after_reset) { case PN_PIPE_DISABLE: pn->init_enable = 0; break; case PN_PIPE_ENABLE: pn->init_enable = 1; break; default: /* not allowed to send an error here!? */ err = -EINVAL; goto out; } /* fall through */ case PNS_PEP_DISABLE_REQ: atomic_set(&pn->tx_credits, 0); pep_reply(sk, skb, PN_PIPE_NO_ERROR, NULL, 0, GFP_ATOMIC); break; case PNS_PEP_CTRL_REQ: if (skb_queue_len(&pn->ctrlreq_queue) >= PNPIPE_CTRLREQ_MAX) { atomic_inc(&sk->sk_drops); break; } __skb_pull(skb, 4); queue = &pn->ctrlreq_queue; goto queue; case PNS_PIPE_DATA: __skb_pull(skb, 3); /* Pipe data header */ if (!pn_flow_safe(pn->rx_fc)) { err = sock_queue_rcv_skb(sk, skb); if (!err) return 0; if (err == -ENOMEM) atomic_inc(&sk->sk_drops); break; } if (pn->rx_credits == 0) { atomic_inc(&sk->sk_drops); err = -ENOBUFS; break; } pn->rx_credits--; queue = &sk->sk_receive_queue; goto queue; case PNS_PEP_STATUS_IND: pipe_rcv_status(sk, skb); break; case PNS_PIPE_REDIRECTED_IND: err = pipe_rcv_created(sk, skb); break; case PNS_PIPE_CREATED_IND: err = pipe_rcv_created(sk, skb); if (err) break; /* fall through */ case PNS_PIPE_RESET_IND: if (!pn->init_enable) break; /* fall through */ case PNS_PIPE_ENABLED_IND: if (!pn_flow_safe(pn->tx_fc)) { atomic_set(&pn->tx_credits, 1); sk->sk_write_space(sk); } if (sk->sk_state == TCP_ESTABLISHED) break; /* Nothing to do */ sk->sk_state = TCP_ESTABLISHED; pipe_grant_credits(sk); break; case PNS_PIPE_DISABLED_IND: sk->sk_state = TCP_SYN_RECV; pn->rx_credits = 0; break; default: LIMIT_NETDEBUG(KERN_DEBUG"Phonet unknown PEP message: %u\n", hdr->message_id); err = -EINVAL; } out: kfree_skb(skb); return err; queue: skb->dev = NULL; skb_set_owner_r(skb, sk); err = skb->len; skb_queue_tail(queue, skb); if (!sock_flag(sk, SOCK_DEAD)) sk->sk_data_ready(sk, err); return 0; }
static int btusb_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_endpoint_descriptor *ep_desc; struct btusb_data *data; struct hci_dev *hdev; int i, err; BT_DBG("intf %p id %p", intf, id); /* interface numbers are hardcoded in the spec */ if (intf->cur_altsetting->desc.bInterfaceNumber != 0) return -ENODEV; if (!id->driver_info) { const struct usb_device_id *match; match = usb_match_id(intf, blacklist_table); if (match) id = match; } if (id->driver_info == BTUSB_IGNORE) return -ENODEV; if (ignore_dga && id->driver_info & BTUSB_DIGIANSWER) return -ENODEV; if (ignore_csr && id->driver_info & BTUSB_CSR) return -ENODEV; if (ignore_sniffer && id->driver_info & BTUSB_SNIFFER) return -ENODEV; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) { ep_desc = &intf->cur_altsetting->endpoint[i].desc; if (!data->intr_ep && usb_endpoint_is_int_in(ep_desc)) { data->intr_ep = ep_desc; continue; } if (!data->bulk_tx_ep && usb_endpoint_is_bulk_out(ep_desc)) { data->bulk_tx_ep = ep_desc; continue; } if (!data->bulk_rx_ep && usb_endpoint_is_bulk_in(ep_desc)) { data->bulk_rx_ep = ep_desc; continue; } } if (!data->intr_ep || !data->bulk_tx_ep || !data->bulk_rx_ep) { kfree(data); return -ENODEV; } data->cmdreq_type = USB_TYPE_CLASS; data->udev = interface_to_usbdev(intf); data->intf = intf; spin_lock_init(&data->lock); INIT_WORK(&data->work, btusb_work); INIT_WORK(&data->waker, btusb_waker); spin_lock_init(&data->txlock); init_usb_anchor(&data->tx_anchor); init_usb_anchor(&data->intr_anchor); init_usb_anchor(&data->bulk_anchor); init_usb_anchor(&data->isoc_anchor); init_usb_anchor(&data->deferred); hdev = hci_alloc_dev(); if (!hdev) { kfree(data); return -ENOMEM; } hdev->bus = HCI_USB; hdev->driver_data = data; data->hdev = hdev; SET_HCIDEV_DEV(hdev, &intf->dev); hdev->open = btusb_open; hdev->close = btusb_close; hdev->flush = btusb_flush; hdev->send = btusb_send_frame; hdev->destruct = btusb_destruct; hdev->notify = btusb_notify; hdev->owner = THIS_MODULE; /* Interface numbers are hardcoded in the specification */ data->isoc = usb_ifnum_to_if(data->udev, 1); if (!reset) set_bit(HCI_QUIRK_NO_RESET, &hdev->quirks); if (force_scofix || id->driver_info & BTUSB_WRONG_SCO_MTU) { if (!disable_scofix) set_bit(HCI_QUIRK_FIXUP_BUFFER_SIZE, &hdev->quirks); } if (id->driver_info & BTUSB_BROKEN_ISOC) data->isoc = NULL; if (id->driver_info & BTUSB_DIGIANSWER) { data->cmdreq_type = USB_TYPE_VENDOR; set_bit(HCI_QUIRK_NO_RESET, &hdev->quirks); } if (id->driver_info & BTUSB_CSR) { struct usb_device *udev = data->udev; /* Old firmware would otherwise execute USB reset */ if (le16_to_cpu(udev->descriptor.bcdDevice) < 0x117) set_bit(HCI_QUIRK_NO_RESET, &hdev->quirks); } if (id->driver_info & BTUSB_SNIFFER) { struct usb_device *udev = data->udev; /* New sniffer firmware has crippled HCI interface */ if (le16_to_cpu(udev->descriptor.bcdDevice) > 0x997) set_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks); data->isoc = NULL; } if (id->driver_info & BTUSB_BCM92035) { unsigned char cmd[] = { 0x3b, 0xfc, 0x01, 0x00 }; struct sk_buff *skb; skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL); if (skb) { memcpy(skb_put(skb, sizeof(cmd)), cmd, sizeof(cmd)); skb_queue_tail(&hdev->driver_init, skb); } } if (data->isoc) { err = usb_driver_claim_interface(&btusb_driver, data->isoc, data); if (err < 0) { hci_free_dev(hdev); kfree(data); return err; } } err = hci_register_dev(hdev); if (err < 0) { hci_free_dev(hdev); kfree(data); return err; } usb_set_intfdata(intf, data); return 0; }
static int clip_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct clip_priv *clip_priv = PRIV(dev); struct atmarp_entry *entry; struct atm_vcc *vcc; int old; unsigned long flags; pr_debug("clip_start_xmit (skb %p)\n", skb); if (!skb->dst) { printk(KERN_ERR "clip_start_xmit: skb->dst == NULL\n"); dev_kfree_skb(skb); clip_priv->stats.tx_dropped++; return 0; } if (!skb->dst->neighbour) { #if 0 skb->dst->neighbour = clip_find_neighbour(skb->dst, 1); if (!skb->dst->neighbour) { dev_kfree_skb(skb); /* lost that one */ clip_priv->stats.tx_dropped++; return 0; } #endif printk(KERN_ERR "clip_start_xmit: NO NEIGHBOUR !\n"); dev_kfree_skb(skb); clip_priv->stats.tx_dropped++; return 0; } entry = NEIGH2ENTRY(skb->dst->neighbour); if (!entry->vccs) { if (time_after(jiffies, entry->expires)) { /* should be resolved */ entry->expires = jiffies + ATMARP_RETRY_DELAY * HZ; to_atmarpd(act_need, PRIV(dev)->number, entry->ip); } if (entry->neigh->arp_queue.qlen < ATMARP_MAX_UNRES_PACKETS) skb_queue_tail(&entry->neigh->arp_queue, skb); else { dev_kfree_skb(skb); clip_priv->stats.tx_dropped++; } return 0; } pr_debug("neigh %p, vccs %p\n", entry, entry->vccs); ATM_SKB(skb)->vcc = vcc = entry->vccs->vcc; pr_debug("using neighbour %p, vcc %p\n", skb->dst->neighbour, vcc); if (entry->vccs->encap) { void *here; here = skb_push(skb, RFC1483LLC_LEN); memcpy(here, llc_oui, sizeof(llc_oui)); ((__be16 *) here)[3] = skb->protocol; } atomic_add(skb->truesize, &sk_atm(vcc)->sk_wmem_alloc); ATM_SKB(skb)->atm_options = vcc->atm_options; entry->vccs->last_use = jiffies; pr_debug("atm_skb(%p)->vcc(%p)->dev(%p)\n", skb, vcc, vcc->dev); old = xchg(&entry->vccs->xoff, 1); /* assume XOFF ... */ if (old) { printk(KERN_WARNING "clip_start_xmit: XOFF->XOFF transition\n"); return 0; } clip_priv->stats.tx_packets++; clip_priv->stats.tx_bytes += skb->len; vcc->send(vcc, skb); if (atm_may_send(vcc, 0)) { entry->vccs->xoff = 0; return 0; } spin_lock_irqsave(&clip_priv->xoff_lock, flags); netif_stop_queue(dev); /* XOFF -> throttle immediately */ barrier(); if (!entry->vccs->xoff) netif_start_queue(dev); /* Oh, we just raced with clip_pop. netif_start_queue should be good enough, because nothing should really be asleep because of the brief netif_stop_queue. If this isn't true or if it changes, use netif_wake_queue instead. */ spin_unlock_irqrestore(&clip_priv->xoff_lock, flags); return 0; }
/* This function handles received packet. Necessary action is taken based on * cmd/event/data. */ static int mwifiex_usb_recv(struct mwifiex_adapter *adapter, struct sk_buff *skb, u8 ep) { u32 recv_type; __le32 tmp; int ret; if (adapter->hs_activated) mwifiex_process_hs_config(adapter); if (skb->len < INTF_HEADER_LEN) { mwifiex_dbg(adapter, ERROR, "%s: invalid skb->len\n", __func__); return -1; } switch (ep) { case MWIFIEX_USB_EP_CMD_EVENT: mwifiex_dbg(adapter, EVENT, "%s: EP_CMD_EVENT\n", __func__); skb_copy_from_linear_data(skb, &tmp, INTF_HEADER_LEN); recv_type = le32_to_cpu(tmp); skb_pull(skb, INTF_HEADER_LEN); switch (recv_type) { case MWIFIEX_USB_TYPE_CMD: if (skb->len > MWIFIEX_SIZE_OF_CMD_BUFFER) { mwifiex_dbg(adapter, ERROR, "CMD: skb->len too large\n"); ret = -1; goto exit_restore_skb; } else if (!adapter->curr_cmd) { mwifiex_dbg(adapter, WARN, "CMD: no curr_cmd\n"); if (adapter->ps_state == PS_STATE_SLEEP_CFM) { mwifiex_process_sleep_confirm_resp( adapter, skb->data, skb->len); ret = 0; goto exit_restore_skb; } ret = -1; goto exit_restore_skb; } adapter->curr_cmd->resp_skb = skb; adapter->cmd_resp_received = true; break; case MWIFIEX_USB_TYPE_EVENT: if (skb->len < sizeof(u32)) { mwifiex_dbg(adapter, ERROR, "EVENT: skb->len too small\n"); ret = -1; goto exit_restore_skb; } skb_copy_from_linear_data(skb, &tmp, sizeof(u32)); adapter->event_cause = le32_to_cpu(tmp); mwifiex_dbg(adapter, EVENT, "event_cause %#x\n", adapter->event_cause); if (skb->len > MAX_EVENT_SIZE) { mwifiex_dbg(adapter, ERROR, "EVENT: event body too large\n"); ret = -1; goto exit_restore_skb; } memcpy(adapter->event_body, skb->data + MWIFIEX_EVENT_HEADER_LEN, skb->len); adapter->event_received = true; adapter->event_skb = skb; break; default: mwifiex_dbg(adapter, ERROR, "unknown recv_type %#x\n", recv_type); return -1; } break; case MWIFIEX_USB_EP_DATA: mwifiex_dbg(adapter, DATA, "%s: EP_DATA\n", __func__); if (skb->len > MWIFIEX_RX_DATA_BUF_SIZE) { mwifiex_dbg(adapter, ERROR, "DATA: skb->len too large\n"); return -1; } skb_queue_tail(&adapter->rx_data_q, skb); adapter->data_received = true; atomic_inc(&adapter->rx_pending); break; default: mwifiex_dbg(adapter, ERROR, "%s: unknown endport %#x\n", __func__, ep); return -1; } return -EINPROGRESS; exit_restore_skb: /* The buffer will be reused for further cmds/events */ skb_push(skb, INTF_HEADER_LEN); return ret; }
static struct sk_buff_head *msm_ipc_router_build_msg(unsigned int num_sect, struct iovec const *msg_sect, size_t total_len) { struct sk_buff_head *msg_head; struct sk_buff *msg; int i, copied, first = 1; int data_size = 0, request_size, offset; void *data; for (i = 0; i < num_sect; i++) data_size += msg_sect[i].iov_len; if (!data_size) return NULL; msg_head = kmalloc(sizeof(struct sk_buff_head), GFP_KERNEL); if (!msg_head) { pr_err("%s: cannot allocate skb_head\n", __func__); return NULL; } skb_queue_head_init(msg_head); for (copied = 1, i = 0; copied && (i < num_sect); i++) { data_size = msg_sect[i].iov_len; offset = 0; while (offset != msg_sect[i].iov_len) { request_size = data_size; if (first) request_size += IPC_ROUTER_HDR_SIZE; msg = alloc_skb(request_size, GFP_KERNEL); if (!msg) { if (request_size <= (PAGE_SIZE/2)) { pr_err("%s: cannot allocated skb\n", __func__); goto msg_build_failure; } data_size = data_size / 2; continue; } if (first) { skb_reserve(msg, IPC_ROUTER_HDR_SIZE); first = 0; } data = skb_put(msg, data_size); copied = !copy_from_user(msg->data, msg_sect[i].iov_base + offset, data_size); if (!copied) { pr_err("%s: copy_from_user failed\n", __func__); kfree_skb(msg); goto msg_build_failure; } skb_queue_tail(msg_head, msg); offset += data_size; data_size = msg_sect[i].iov_len - offset; } } return msg_head; msg_build_failure: while (!skb_queue_empty(msg_head)) { msg = skb_dequeue(msg_head); kfree_skb(msg); } kfree(msg_head); return NULL; }
void isac_interrupt(struct IsdnCardState *cs, u_char val) { u_char exval, v1; struct sk_buff *skb; unsigned int count; if (cs->debug & L1_DEB_ISAC) debugl1(cs, "ISAC interrupt %x", val); if (val & 0x80) { /* RME */ exval = cs->readisac(cs, ISAC_RSTA); if ((exval & 0x70) != 0x20) { if (exval & 0x40) { if (cs->debug & L1_DEB_WARN) debugl1(cs, "ISAC RDO"); #ifdef ERROR_STATISTIC cs->err_rx++; #endif } if (!(exval & 0x20)) { if (cs->debug & L1_DEB_WARN) debugl1(cs, "ISAC CRC error"); #ifdef ERROR_STATISTIC cs->err_crc++; #endif } cs->writeisac(cs, ISAC_CMDR, 0x80); } else { count = cs->readisac(cs, ISAC_RBCL) & 0x1f; if (count == 0) count = 32; isac_empty_fifo(cs, count); if ((count = cs->rcvidx) > 0) { cs->rcvidx = 0; if (!(skb = alloc_skb(count, GFP_ATOMIC))) printk(KERN_WARNING "HiSax: D receive out of memory\n"); else { memcpy(skb_put(skb, count), cs->rcvbuf, count); skb_queue_tail(&cs->rq, skb); } } } cs->rcvidx = 0; schedule_event(cs, D_RCVBUFREADY); } if (val & 0x40) { /* RPF */ isac_empty_fifo(cs, 32); } if (val & 0x20) { /* RSC */ /* never */ if (cs->debug & L1_DEB_WARN) debugl1(cs, "ISAC RSC interrupt"); } if (val & 0x10) { /* XPR */ if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags)) del_timer(&cs->dbusytimer); if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags)) schedule_event(cs, D_CLEARBUSY); if (cs->tx_skb) { if (cs->tx_skb->len) { isac_fill_fifo(cs); goto afterXPR; } else { dev_kfree_skb_irq(cs->tx_skb); cs->tx_cnt = 0; cs->tx_skb = NULL; } } if ((cs->tx_skb = skb_dequeue(&cs->sq))) { cs->tx_cnt = 0; isac_fill_fifo(cs); } else schedule_event(cs, D_XMTBUFREADY); } afterXPR: if (val & 0x04) { /* CISQ */ exval = cs->readisac(cs, ISAC_CIR0); if (cs->debug & L1_DEB_ISAC) debugl1(cs, "ISAC CIR0 %02X", exval ); if (exval & 2) { cs->dc.isac.ph_state = (exval >> 2) & 0xf; if (cs->debug & L1_DEB_ISAC) debugl1(cs, "ph_state change %x", cs->dc.isac.ph_state); schedule_event(cs, D_L1STATECHANGE); }
static int bfusb_send_frame(struct sk_buff *skb) { struct hci_dev *hdev = (struct hci_dev *) skb->dev; struct bfusb_data *data; struct sk_buff *nskb; unsigned char buf[3]; int sent = 0, size, count; BT_DBG("hdev %p skb %p type %d len %d", hdev, skb, bt_cb(skb)->pkt_type, skb->len); if (!hdev) { BT_ERR("Frame for unknown HCI device (hdev=NULL)"); return -ENODEV; } if (!test_bit(HCI_RUNNING, &hdev->flags)) return -EBUSY; data = hdev->driver_data; switch (bt_cb(skb)->pkt_type) { case HCI_COMMAND_PKT: hdev->stat.cmd_tx++; break; case HCI_ACLDATA_PKT: hdev->stat.acl_tx++; break; case HCI_SCODATA_PKT: hdev->stat.sco_tx++; break; }; /* Prepend skb with frame type */ memcpy(skb_push(skb, 1), &bt_cb(skb)->pkt_type, 1); count = skb->len; /* Max HCI frame size seems to be 1511 + 1 */ nskb = bt_skb_alloc(count + 32, GFP_ATOMIC); if (!nskb) { BT_ERR("Can't allocate memory for new packet"); return -ENOMEM; } nskb->dev = (void *) data; while (count) { size = min_t(uint, count, BFUSB_MAX_BLOCK_SIZE); buf[0] = 0xc1 | ((sent == 0) ? 0x04 : 0) | ((count == size) ? 0x08 : 0); buf[1] = 0x00; buf[2] = (size == BFUSB_MAX_BLOCK_SIZE) ? 0 : size; memcpy(skb_put(nskb, 3), buf, 3); skb_copy_from_linear_data_offset(skb, sent, skb_put(nskb, size), size); sent += size; count -= size; } /* Don't send frame with multiple size of bulk max packet */ if ((nskb->len % data->bulk_pkt_size) == 0) { buf[0] = 0xdd; buf[1] = 0x00; memcpy(skb_put(nskb, 2), buf, 2); } read_lock(&data->lock); skb_queue_tail(&data->transmit_q, nskb); bfusb_tx_wakeup(data); read_unlock(&data->lock); kfree_skb(skb); return 0; }
static void mpc_push(struct atm_vcc *vcc, struct sk_buff *skb) { struct net_device *dev = (struct net_device *)vcc->proto_data; struct sk_buff *new_skb; eg_cache_entry *eg; struct mpoa_client *mpc; uint32_t tag; char *tmp; ddprintk("mpoa: (%s) mpc_push:\n", dev->name); if (skb == NULL) { dprintk("mpoa: (%s) mpc_push: null skb, closing VCC\n", dev->name); mpc_vcc_close(vcc, dev); return; } skb->dev = dev; if (memcmp(skb->data, &llc_snap_mpoa_ctrl, sizeof(struct llc_snap_hdr)) == 0) { dprintk("mpoa: (%s) mpc_push: control packet arrived\n", dev->name); skb_queue_tail(&vcc->sk->receive_queue, skb); /* Pass control packets to daemon */ wake_up(&vcc->sleep); return; } /* data coming over the shortcut */ atm_return(vcc, skb->truesize); mpc = find_mpc_by_lec(dev); if (mpc == NULL) { printk("mpoa: (%s) mpc_push: unknown MPC\n", dev->name); return; } if (memcmp(skb->data, &llc_snap_mpoa_data_tagged, sizeof(struct llc_snap_hdr)) == 0) { /* MPOA tagged data */ ddprintk("mpoa: (%s) mpc_push: tagged data packet arrived\n", dev->name); } else if (memcmp(skb->data, &llc_snap_mpoa_data, sizeof(struct llc_snap_hdr)) == 0) { /* MPOA data */ printk("mpoa: (%s) mpc_push: non-tagged data packet arrived\n", dev->name); printk(" mpc_push: non-tagged data unsupported, purging\n"); dev_kfree_skb_any(skb); return; } else { printk("mpoa: (%s) mpc_push: garbage arrived, purging\n", dev->name); dev_kfree_skb_any(skb); return; } tmp = skb->data + sizeof(struct llc_snap_hdr); tag = *(uint32_t *)tmp; eg = mpc->eg_ops->get_by_tag(tag, mpc); if (eg == NULL) { printk("mpoa: (%s) mpc_push: Didn't find egress cache entry, tag = %u\n", dev->name,tag); purge_egress_shortcut(vcc, NULL); dev_kfree_skb_any(skb); return; } /* * See if ingress MPC is using shortcut we opened as a return channel. * This means we have a bi-directional vcc opened by us. */ if (eg->shortcut == NULL) { eg->shortcut = vcc; printk("mpoa: (%s) mpc_push: egress SVC in use\n", dev->name); } skb_pull(skb, sizeof(struct llc_snap_hdr) + sizeof(tag)); /* get rid of LLC/SNAP header */ new_skb = skb_realloc_headroom(skb, eg->ctrl_info.DH_length); /* LLC/SNAP is shorter than MAC header :( */ dev_kfree_skb_any(skb); if (new_skb == NULL){ mpc->eg_ops->put(eg); return; } skb_push(new_skb, eg->ctrl_info.DH_length); /* add MAC header */ memcpy(new_skb->data, eg->ctrl_info.DLL_header, eg->ctrl_info.DH_length); new_skb->protocol = eth_type_trans(new_skb, dev); new_skb->nh.raw = new_skb->data; eg->latest_ip_addr = new_skb->nh.iph->saddr; eg->packets_rcvd++; mpc->eg_ops->put(eg); memset(ATM_SKB(new_skb), 0, sizeof(struct atm_skb_data)); netif_rx(new_skb); return; }
static void fnic_rq_cmpl_frame_recv(struct vnic_rq *rq, struct cq_desc *cq_desc, struct vnic_rq_buf *buf, int skipped __attribute__((unused)), void *opaque) { struct fnic *fnic = vnic_dev_priv(rq->vdev); struct sk_buff *skb; struct fc_frame *fp; unsigned int eth_hdrs_stripped; u8 type, color, eop, sop, ingress_port, vlan_stripped; u8 fcoe = 0, fcoe_sof, fcoe_eof; u8 fcoe_fc_crc_ok = 1, fcoe_enc_error = 0; u8 tcp_udp_csum_ok, udp, tcp, ipv4_csum_ok; u8 ipv6, ipv4, ipv4_fragment, rss_type, csum_not_calc; u8 fcs_ok = 1, packet_error = 0; u16 q_number, completed_index, bytes_written = 0, vlan, checksum; u32 rss_hash; u16 exchange_id, tmpl; u8 sof = 0; u8 eof = 0; u32 fcp_bytes_written = 0; unsigned long flags; pci_unmap_single(fnic->pdev, buf->dma_addr, buf->len, PCI_DMA_FROMDEVICE); skb = buf->os_buf; buf->os_buf = NULL; cq_desc_dec(cq_desc, &type, &color, &q_number, &completed_index); if (type == CQ_DESC_TYPE_RQ_FCP) { cq_fcp_rq_desc_dec((struct cq_fcp_rq_desc *)cq_desc, &type, &color, &q_number, &completed_index, &eop, &sop, &fcoe_fc_crc_ok, &exchange_id, &tmpl, &fcp_bytes_written, &sof, &eof, &ingress_port, &packet_error, &fcoe_enc_error, &fcs_ok, &vlan_stripped, &vlan); eth_hdrs_stripped = 1; } else if (type == CQ_DESC_TYPE_RQ_ENET) { cq_enet_rq_desc_dec((struct cq_enet_rq_desc *)cq_desc, &type, &color, &q_number, &completed_index, &ingress_port, &fcoe, &eop, &sop, &rss_type, &csum_not_calc, &rss_hash, &bytes_written, &packet_error, &vlan_stripped, &vlan, &checksum, &fcoe_sof, &fcoe_fc_crc_ok, &fcoe_enc_error, &fcoe_eof, &tcp_udp_csum_ok, &udp, &tcp, &ipv4_csum_ok, &ipv6, &ipv4, &ipv4_fragment, &fcs_ok); eth_hdrs_stripped = 0; } else { /* wrong CQ type*/ shost_printk(KERN_ERR, fnic->lport->host, "fnic rq_cmpl wrong cq type x%x\n", type); goto drop; } if (!fcs_ok || packet_error || !fcoe_fc_crc_ok || fcoe_enc_error) { FNIC_FCS_DBG(KERN_DEBUG, fnic->lport->host, "fnic rq_cmpl fcoe x%x fcsok x%x" " pkterr x%x fcoe_fc_crc_ok x%x, fcoe_enc_err" " x%x\n", fcoe, fcs_ok, packet_error, fcoe_fc_crc_ok, fcoe_enc_error); goto drop; } if (eth_hdrs_stripped) fnic_import_rq_fc_frame(skb, fcp_bytes_written, sof, eof); else if (fnic_import_rq_eth_pkt(skb, bytes_written)) goto drop; fp = (struct fc_frame *)skb; /* * If frame is an ELS response that matches the cached FLOGI OX_ID, * and is accept, issue flogi_reg_request copy wq request to firmware * to register the S_ID and determine whether FC_OUI mode or GW mode. */ if (is_matching_flogi_resp_frame(fnic, fp)) { if (!eth_hdrs_stripped) { if (fc_frame_payload_op(fp) == ELS_LS_ACC) { fnic_handle_flogi_resp(fnic, fp); return; } /* * Recd. Flogi reject. No point registering * with fw, but forward to libFC */ goto forward; } goto drop; } if (!eth_hdrs_stripped) goto drop; forward: spin_lock_irqsave(&fnic->fnic_lock, flags); if (fnic->stop_rx_link_events) { spin_unlock_irqrestore(&fnic->fnic_lock, flags); goto drop; } /* Use fr_flags to indicate whether succ. flogi resp or not */ fr_flags(fp) = 0; fr_dev(fp) = fnic->lport; spin_unlock_irqrestore(&fnic->fnic_lock, flags); skb_queue_tail(&fnic->frame_queue, skb); queue_work(fnic_event_queue, &fnic->frame_work); return; drop: dev_kfree_skb_irq(skb); }
void usb_read_port_complete(struct urb *purb, struct pt_regs *regs) { struct recv_buf *precvbuf = (struct recv_buf *)purb->context; _adapter *padapter =(_adapter *)precvbuf->adapter; struct recv_priv *precvpriv = &padapter->recvpriv; RT_TRACE(_module_hci_ops_os_c_,_drv_err_,("usb_read_port_complete!!!\n")); ATOMIC_DEC(&(precvpriv->rx_pending_cnt)); if(RTW_CANNOT_RX(padapter)) { RT_TRACE(_module_hci_ops_os_c_,_drv_err_,("usb_read_port_complete:bDriverStopped(%d) OR bSurpriseRemoved(%d)\n", padapter->bDriverStopped, padapter->bSurpriseRemoved)); DBG_8192C("%s() RX Warning! bDriverStopped(%d) OR bSurpriseRemoved(%d) \n", __FUNCTION__,padapter->bDriverStopped, padapter->bSurpriseRemoved); goto exit; } if(purb->status==0)//SUCCESS { if ((purb->actual_length > MAX_RECVBUF_SZ) || (purb->actual_length < RXDESC_SIZE)) { RT_TRACE(_module_hci_ops_os_c_,_drv_err_,("usb_read_port_complete: (purb->actual_length > MAX_RECVBUF_SZ) || (purb->actual_length < RXDESC_SIZE)\n")); rtw_read_port(padapter, precvpriv->ff_hwaddr, 0, (unsigned char *)precvbuf); DBG_8192C("%s()-%d: RX Warning!\n", __FUNCTION__, __LINE__); } else { rtw_reset_continual_io_error(adapter_to_dvobj(padapter)); precvbuf->transfer_len = purb->actual_length; skb_put(precvbuf->pskb, purb->actual_length); skb_queue_tail(&precvpriv->rx_skb_queue, precvbuf->pskb); #ifndef CONFIG_FIX_NR_BULKIN_BUFFER if (skb_queue_len(&precvpriv->rx_skb_queue)<=1) #endif tasklet_schedule(&precvpriv->recv_tasklet); precvbuf->pskb = NULL; rtw_read_port(padapter, precvpriv->ff_hwaddr, 0, (unsigned char *)precvbuf); } } else { RT_TRACE(_module_hci_ops_os_c_,_drv_err_,("usb_read_port_complete : purb->status(%d) != 0 \n", purb->status)); DBG_8192C("###=> usb_read_port_complete => urb status(%d)\n", purb->status); if(rtw_inc_and_chk_continual_io_error(adapter_to_dvobj(padapter)) == _TRUE ){ padapter->bSurpriseRemoved = _TRUE; } switch(purb->status) { case -EINVAL: case -EPIPE: case -ENODEV: case -ESHUTDOWN: //padapter->bSurpriseRemoved=_TRUE; //RT_TRACE(_module_hci_ops_os_c_,_drv_err_,("usb_read_port_complete:bSurpriseRemoved=TRUE\n")); case -ENOENT: padapter->bDriverStopped=_TRUE; RT_TRACE(_module_hci_ops_os_c_,_drv_err_,("usb_read_port_complete:bDriverStopped=TRUE\n")); break; case -EPROTO: case -EILSEQ: case -ETIME: case -ECOMM: case -EOVERFLOW: #ifdef DBG_CONFIG_ERROR_DETECT { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); pHalData->srestpriv.Wifi_Error_Status = USB_READ_PORT_FAIL; } #endif rtw_read_port(padapter, precvpriv->ff_hwaddr, 0, (unsigned char *)precvbuf); break; case -EINPROGRESS: DBG_8192C("ERROR: URB IS IN PROGRESS!/n"); break; default: break; } } exit: _func_exit_; }
void ax25_kick(ax25_cb *ax25) { struct sk_buff *skb, *skbn; int last = 1; unsigned short start, end, next; if (ax25->state != AX25_STATE_3 && ax25->state != AX25_STATE_4) return; if (ax25->condition & AX25_COND_PEER_RX_BUSY) return; if (skb_peek(&ax25->write_queue) == NULL) return; start = (skb_peek(&ax25->ack_queue) == NULL) ? ax25->va : ax25->vs; end = (ax25->va + ax25->window) % ax25->modulus; if (start == end) return; /* * Transmit data until either we're out of data to send or * the window is full. Send a poll on the final I frame if * the window is filled. */ /* * Dequeue the frame and copy it. * Check for race with ax25_clear_queues(). */ skb = skb_dequeue(&ax25->write_queue); if (!skb) return; ax25->vs = start; do { if ((skbn = skb_clone(skb, GFP_ATOMIC)) == NULL) { skb_queue_head(&ax25->write_queue, skb); break; } if (skb->sk != NULL) skb_set_owner_w(skbn, skb->sk); next = (ax25->vs + 1) % ax25->modulus; last = (next == end); /* * Transmit the frame copy. * bke 960114: do not set the Poll bit on the last frame * in DAMA mode. */ switch (ax25->ax25_dev->values[AX25_VALUES_PROTOCOL]) { case AX25_PROTO_STD_SIMPLEX: case AX25_PROTO_STD_DUPLEX: ax25_send_iframe(ax25, skbn, (last) ? AX25_POLLON : AX25_POLLOFF); break; #ifdef CONFIG_AX25_DAMA_SLAVE case AX25_PROTO_DAMA_SLAVE: ax25_send_iframe(ax25, skbn, AX25_POLLOFF); break; #endif } ax25->vs = next; /* * Requeue the original data frame. */ skb_queue_tail(&ax25->ack_queue, skb); } while (!last && (skb = skb_dequeue(&ax25->write_queue)) != NULL); ax25->condition &= ~AX25_COND_ACK_PENDING; if (!ax25_t1timer_running(ax25)) { ax25_stop_t3timer(ax25); ax25_calculate_t1(ax25); ax25_start_t1timer(ax25); } }
/** * Transmit a packet. * This is a helper function for ctcm_tx(). * * ch Channel to be used for sending. * skb Pointer to struct sk_buff of packet to send. * The linklevel header has already been set up * by ctcm_tx(). * * returns 0 on success, -ERRNO on failure. (Never fails.) */ static int ctcm_transmit_skb(struct channel *ch, struct sk_buff *skb) { unsigned long saveflags; struct ll_header header; int rc = 0; __u16 block_len; int ccw_idx; struct sk_buff *nskb; unsigned long hi; /* we need to acquire the lock for testing the state * otherwise we can have an IRQ changing the state to * TXIDLE after the test but before acquiring the lock. */ spin_lock_irqsave(&ch->collect_lock, saveflags); if (fsm_getstate(ch->fsm) != CTC_STATE_TXIDLE) { int l = skb->len + LL_HEADER_LENGTH; if (ch->collect_len + l > ch->max_bufsize - 2) { spin_unlock_irqrestore(&ch->collect_lock, saveflags); return -EBUSY; } else { atomic_inc(&skb->users); header.length = l; header.type = skb->protocol; header.unused = 0; memcpy(skb_push(skb, LL_HEADER_LENGTH), &header, LL_HEADER_LENGTH); skb_queue_tail(&ch->collect_queue, skb); ch->collect_len += l; } spin_unlock_irqrestore(&ch->collect_lock, saveflags); goto done; } spin_unlock_irqrestore(&ch->collect_lock, saveflags); /* * Protect skb against beeing free'd by upper * layers. */ atomic_inc(&skb->users); ch->prof.txlen += skb->len; header.length = skb->len + LL_HEADER_LENGTH; header.type = skb->protocol; header.unused = 0; memcpy(skb_push(skb, LL_HEADER_LENGTH), &header, LL_HEADER_LENGTH); block_len = skb->len + 2; *((__u16 *)skb_push(skb, 2)) = block_len; /* * IDAL support in CTCM is broken, so we have to * care about skb's above 2G ourselves. */ hi = ((unsigned long)skb_tail_pointer(skb) + LL_HEADER_LENGTH) >> 31; if (hi) { nskb = alloc_skb(skb->len, GFP_ATOMIC | GFP_DMA); if (!nskb) { atomic_dec(&skb->users); skb_pull(skb, LL_HEADER_LENGTH + 2); ctcm_clear_busy(ch->netdev); return -ENOMEM; } else { memcpy(skb_put(nskb, skb->len), skb->data, skb->len); atomic_inc(&nskb->users); atomic_dec(&skb->users); dev_kfree_skb_irq(skb); skb = nskb; } } ch->ccw[4].count = block_len; if (set_normalized_cda(&ch->ccw[4], skb->data)) { /* * idal allocation failed, try via copying to * trans_skb. trans_skb usually has a pre-allocated * idal. */ if (ctcm_checkalloc_buffer(ch)) { /* * Remove our header. It gets added * again on retransmit. */ atomic_dec(&skb->users); skb_pull(skb, LL_HEADER_LENGTH + 2); ctcm_clear_busy(ch->netdev); return -ENOMEM; } skb_reset_tail_pointer(ch->trans_skb); ch->trans_skb->len = 0; ch->ccw[1].count = skb->len; skb_copy_from_linear_data(skb, skb_put(ch->trans_skb, skb->len), skb->len); atomic_dec(&skb->users); dev_kfree_skb_irq(skb); ccw_idx = 0; } else { skb_queue_tail(&ch->io_queue, skb); ccw_idx = 3; } if (do_debug_ccw) ctcmpc_dumpit((char *)&ch->ccw[ccw_idx], sizeof(struct ccw1) * 3); ch->retry = 0; fsm_newstate(ch->fsm, CTC_STATE_TX); fsm_addtimer(&ch->timer, CTCM_TIME_5_SEC, CTC_EVENT_TIMER, ch); spin_lock_irqsave(get_ccwdev_lock(ch->cdev), saveflags); ch->prof.send_stamp = current_kernel_time(); /* xtime */ rc = ccw_device_start(ch->cdev, &ch->ccw[ccw_idx], (unsigned long)ch, 0xff, 0); spin_unlock_irqrestore(get_ccwdev_lock(ch->cdev), saveflags); if (ccw_idx == 3) ch->prof.doios_single++; if (rc != 0) { fsm_deltimer(&ch->timer); ctcm_ccw_check_rc(ch, rc, "single skb TX"); if (ccw_idx == 3) skb_dequeue_tail(&ch->io_queue); /* * Remove our header. It gets added * again on retransmit. */ skb_pull(skb, LL_HEADER_LENGTH + 2); } else if (ccw_idx == 0) { struct net_device *dev = ch->netdev; struct ctcm_priv *priv = dev->ml_priv; priv->stats.tx_packets++; priv->stats.tx_bytes += skb->len - LL_HEADER_LENGTH; } done: ctcm_clear_busy(ch->netdev); return rc; }
static void rx_complete(struct usb_ep *ep, struct usb_request *req) { struct sk_buff *skb = req->context; struct eth_dev *dev = ep->driver_data; int status = req->status; bool queue = 0; switch (status) { /* normal completion */ case 0: skb_put(skb, req->actual); if (dev->unwrap) { unsigned long flags; spin_lock_irqsave(&dev->lock, flags); if (dev->port_usb) { status = dev->unwrap(dev->port_usb, skb, &dev->rx_frames); if (status == -EINVAL) dev->net->stats.rx_errors++; else if (status == -EOVERFLOW) dev->net->stats.rx_over_errors++; } else { dev_kfree_skb_any(skb); status = -ENOTCONN; } spin_unlock_irqrestore(&dev->lock, flags); } else { skb_queue_tail(&dev->rx_frames, skb); } if (!status) queue = 1; break; /* software-driven interface shutdown */ case -ECONNRESET: /* unlink */ case -ESHUTDOWN: /* disconnect etc */ VDBG(dev, "rx shutdown, code %d\n", status); goto quiesce; /* for hardware automagic (such as pxa) */ case -ECONNABORTED: /* endpoint reset */ DBG(dev, "rx %s reset\n", ep->name); defer_kevent(dev, WORK_RX_MEMORY); quiesce: dev_kfree_skb_any(skb); goto clean; /* data overrun */ case -EOVERFLOW: dev->net->stats.rx_over_errors++; /* FALLTHROUGH */ default: queue = 1; dev_kfree_skb_any(skb); dev->net->stats.rx_errors++; DBG(dev, "rx status %d\n", status); break; } clean: spin_lock(&dev->req_lock); list_add(&req->list, &dev->rx_reqs); spin_unlock(&dev->req_lock); if (queue) queue_work(uether_wq, &dev->rx_work); }
static void ctcmpc_send_sweep_req(struct channel *rch) { struct net_device *dev = rch->netdev; struct ctcm_priv *priv; struct mpc_group *grp; struct th_sweep *header; struct sk_buff *sweep_skb; struct channel *ch; /* int rc = 0; */ priv = dev->ml_priv; grp = priv->mpcg; ch = priv->channel[CTCM_WRITE]; /* sweep processing is not complete until response and request */ /* has completed for all read channels in group */ if (grp->in_sweep == 0) { grp->in_sweep = 1; grp->sweep_rsp_pend_num = grp->active_channels[CTCM_READ]; grp->sweep_req_pend_num = grp->active_channels[CTCM_READ]; } sweep_skb = __dev_alloc_skb(MPC_BUFSIZE_DEFAULT, GFP_ATOMIC|GFP_DMA); if (sweep_skb == NULL) { /* rc = -ENOMEM; */ goto nomem; } header = kmalloc(TH_SWEEP_LENGTH, gfp_type()); if (!header) { dev_kfree_skb_any(sweep_skb); /* rc = -ENOMEM; */ goto nomem; } header->th.th_seg = 0x00 ; header->th.th_ch_flag = TH_SWEEP_REQ; /* 0x0f */ header->th.th_blk_flag = 0x00; header->th.th_is_xid = 0x00; header->th.th_seq_num = 0x00; header->sw.th_last_seq = ch->th_seq_num; memcpy(skb_put(sweep_skb, TH_SWEEP_LENGTH), header, TH_SWEEP_LENGTH); kfree(header); dev->trans_start = jiffies; skb_queue_tail(&ch->sweep_queue, sweep_skb); fsm_addtimer(&ch->sweep_timer, 100, CTC_EVENT_RSWEEP_TIMER, ch); return; nomem: grp->in_sweep = 0; ctcm_clear_busy(dev); fsm_event(grp->fsm, MPCG_EVENT_INOP, dev); return; }
static void qpolicy_simple_push(struct sock *sk, struct sk_buff *skb) { skb_queue_tail(&sk->sk_write_queue, skb); }
static int hci_sock_sendmsg(struct socket *sock, struct msghdr *msg, int len, struct scm_cookie *scm) { struct sock *sk = sock->sk; struct hci_dev *hdev; struct sk_buff *skb; int err; BT_DBG("sock %p sk %p", sock, sk); if (msg->msg_flags & MSG_OOB) return -EOPNOTSUPP; if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_NOSIGNAL|MSG_ERRQUEUE)) return -EINVAL; if (len < 4) return -EINVAL; lock_sock(sk); if (!(hdev = hci_pi(sk)->hdev)) { err = -EBADFD; goto done; } if (!(skb = bluez_skb_send_alloc(sk, len, msg->msg_flags & MSG_DONTWAIT, &err))) goto done; if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) { err = -EFAULT; goto drop; } skb->pkt_type = *((unsigned char *) skb->data); skb_pull(skb, 1); skb->dev = (void *) hdev; if (skb->pkt_type == HCI_COMMAND_PKT) { u16 opcode = __le16_to_cpu(get_unaligned((u16 *)skb->data)); u16 ogf = cmd_opcode_ogf(opcode); u16 ocf = cmd_opcode_ocf(opcode); if (((ogf > HCI_SFLT_MAX_OGF) || !hci_test_bit(ocf & HCI_FLT_OCF_BITS, &hci_sec_filter.ocf_mask[ogf])) && !capable(CAP_NET_RAW)) { err = -EPERM; goto drop; } if (test_bit(HCI_RAW, &hdev->flags) || (ogf == OGF_VENDOR_CMD)) { skb_queue_tail(&hdev->raw_q, skb); hci_sched_tx(hdev); } else { skb_queue_tail(&hdev->cmd_q, skb); hci_sched_cmd(hdev); } } else { if (!capable(CAP_NET_RAW)) { err = -EPERM; goto drop; } skb_queue_tail(&hdev->raw_q, skb); hci_sched_tx(hdev); } err = len; done: release_sock(sk); return err; drop: kfree_skb(skb); goto done; }
/* * State machine for state 3, Connected State. * The handling of the timer(s) is in file nr_timer.c * Handling of state 0 and connection release is in netrom.c. */ static int nr_state3_machine(struct sock *sk, struct sk_buff *skb, int frametype) { struct sk_buff_head temp_queue; struct sk_buff *skbn; unsigned short save_vr; unsigned short nr, ns; int queued = 0; nr = skb->data[18]; ns = skb->data[17]; switch (frametype) { case NR_CONNREQ: nr_write_internal(sk, NR_CONNACK); break; case NR_DISCREQ: nr_write_internal(sk, NR_DISCACK); nr_disconnect(sk, 0); break; case NR_CONNACK | NR_CHOKE_FLAG: case NR_DISCACK: nr_disconnect(sk, ECONNRESET); break; case NR_INFOACK: case NR_INFOACK | NR_CHOKE_FLAG: case NR_INFOACK | NR_NAK_FLAG: case NR_INFOACK | NR_NAK_FLAG | NR_CHOKE_FLAG: if (frametype & NR_CHOKE_FLAG) { sk->protinfo.nr->condition |= NR_COND_PEER_RX_BUSY; nr_start_t4timer(sk); } else { sk->protinfo.nr->condition &= ~NR_COND_PEER_RX_BUSY; nr_stop_t4timer(sk); } if (!nr_validate_nr(sk, nr)) { break; } if (frametype & NR_NAK_FLAG) { nr_frames_acked(sk, nr); nr_send_nak_frame(sk); } else { if (sk->protinfo.nr->condition & NR_COND_PEER_RX_BUSY) { nr_frames_acked(sk, nr); } else { nr_check_iframes_acked(sk, nr); } } break; case NR_INFO: case NR_INFO | NR_NAK_FLAG: case NR_INFO | NR_CHOKE_FLAG: case NR_INFO | NR_MORE_FLAG: case NR_INFO | NR_NAK_FLAG | NR_CHOKE_FLAG: case NR_INFO | NR_CHOKE_FLAG | NR_MORE_FLAG: case NR_INFO | NR_NAK_FLAG | NR_MORE_FLAG: case NR_INFO | NR_NAK_FLAG | NR_CHOKE_FLAG | NR_MORE_FLAG: if (frametype & NR_CHOKE_FLAG) { sk->protinfo.nr->condition |= NR_COND_PEER_RX_BUSY; nr_start_t4timer(sk); } else { sk->protinfo.nr->condition &= ~NR_COND_PEER_RX_BUSY; nr_stop_t4timer(sk); } if (nr_validate_nr(sk, nr)) { if (frametype & NR_NAK_FLAG) { nr_frames_acked(sk, nr); nr_send_nak_frame(sk); } else { if (sk->protinfo.nr->condition & NR_COND_PEER_RX_BUSY) { nr_frames_acked(sk, nr); } else { nr_check_iframes_acked(sk, nr); } } } queued = 1; skb_queue_head(&sk->protinfo.nr->reseq_queue, skb); if (sk->protinfo.nr->condition & NR_COND_OWN_RX_BUSY) break; skb_queue_head_init(&temp_queue); do { save_vr = sk->protinfo.nr->vr; while ((skbn = skb_dequeue(&sk->protinfo.nr->reseq_queue)) != NULL) { ns = skbn->data[17]; if (ns == sk->protinfo.nr->vr) { if (nr_queue_rx_frame(sk, skbn, frametype & NR_MORE_FLAG) == 0) { sk->protinfo.nr->vr = (sk->protinfo.nr->vr + 1) % NR_MODULUS; } else { sk->protinfo.nr->condition |= NR_COND_OWN_RX_BUSY; skb_queue_tail(&temp_queue, skbn); } } else if (nr_in_rx_window(sk, ns)) { skb_queue_tail(&temp_queue, skbn); } else { kfree_skb(skbn); } } while ((skbn = skb_dequeue(&temp_queue)) != NULL) { skb_queue_tail(&sk->protinfo.nr->reseq_queue, skbn); } } while (save_vr != sk->protinfo.nr->vr); /* * Window is full, ack it immediately. */ if (((sk->protinfo.nr->vl + sk->protinfo.nr->window) % NR_MODULUS) == sk->protinfo.nr->vr) { nr_enquiry_response(sk); } else { if (!(sk->protinfo.nr->condition & NR_COND_ACK_PENDING)) { sk->protinfo.nr->condition |= NR_COND_ACK_PENDING; nr_start_t2timer(sk); } } break; default: break; } return queued; }
/* This function prepare data packet to be send under usb tx aggregation * protocol, check current usb aggregation status, link packet to aggrgation * list if possible, work flow as below: * (1) if only 1 packet available, add usb tx aggregation header and send. * (2) if packet is able to aggregated, link it to current aggregation list. * (3) if packet is not able to aggregated, aggregate and send exist packets * in aggrgation list. Then, link packet in the list if there is more * packet in transmit queue, otherwise try to transmit single packet. */ static int mwifiex_usb_aggr_tx_data(struct mwifiex_adapter *adapter, u8 ep, struct sk_buff *skb, struct mwifiex_tx_param *tx_param, struct usb_tx_data_port *port) { u8 *payload, pad; u16 align = adapter->bus_aggr.tx_aggr_align; struct sk_buff *skb_send = NULL; struct urb_context *context = NULL; struct txpd *local_tx_pd = (struct txpd *)((u8 *)skb->data + adapter->intf_hdr_len); u8 f_send_aggr_buf = 0; u8 f_send_cur_buf = 0; u8 f_precopy_cur_buf = 0; u8 f_postcopy_cur_buf = 0; u32 timeout; int ret; /* padding to ensure each packet alginment */ pad = (align - (skb->len & (align - 1))) % align; if (tx_param && tx_param->next_pkt_len) { /* next packet available in tx queue*/ if (port->tx_aggr.aggr_len + skb->len + pad > adapter->bus_aggr.tx_aggr_max_size) { f_send_aggr_buf = 1; f_postcopy_cur_buf = 1; } else { /* current packet could be aggregated*/ f_precopy_cur_buf = 1; if (port->tx_aggr.aggr_len + skb->len + pad + tx_param->next_pkt_len > adapter->bus_aggr.tx_aggr_max_size || port->tx_aggr.aggr_num + 2 > adapter->bus_aggr.tx_aggr_max_num) { /* next packet could not be aggregated * send current aggregation buffer */ f_send_aggr_buf = 1; } } } else { /* last packet in tx queue */ if (port->tx_aggr.aggr_num > 0) { /* pending packets in aggregation buffer*/ if (port->tx_aggr.aggr_len + skb->len + pad > adapter->bus_aggr.tx_aggr_max_size) { /* current packet not be able to aggregated, * send aggr buffer first, then send packet. */ f_send_cur_buf = 1; } else { /* last packet, Aggregation and send */ f_precopy_cur_buf = 1; } f_send_aggr_buf = 1; } else { /* no pending packets in aggregation buffer, * send current packet immediately */ f_send_cur_buf = 1; } } if (local_tx_pd->flags & MWIFIEX_TxPD_POWER_MGMT_NULL_PACKET) { /* Send NULL packet immediately*/ if (f_precopy_cur_buf) { if (skb_queue_empty(&port->tx_aggr.aggr_list)) { f_precopy_cur_buf = 0; f_send_aggr_buf = 0; f_send_cur_buf = 1; } else { f_send_aggr_buf = 1; } } else if (f_postcopy_cur_buf) { f_send_cur_buf = 1; f_postcopy_cur_buf = 0; } } if (f_precopy_cur_buf) { skb_queue_tail(&port->tx_aggr.aggr_list, skb); port->tx_aggr.aggr_len += (skb->len + pad); port->tx_aggr.aggr_num++; if (f_send_aggr_buf) goto send_aggr_buf; /* packet will not been send immediately, * set a timer to make sure it will be sent under * strict time limit. Dynamically fit the timeout * value, according to packets number in aggr_list */ if (!port->tx_aggr.timer_cnxt.is_hold_timer_set) { port->tx_aggr.timer_cnxt.hold_tmo_msecs = MWIFIEX_USB_TX_AGGR_TMO_MIN; timeout = port->tx_aggr.timer_cnxt.hold_tmo_msecs; mod_timer(&port->tx_aggr.timer_cnxt.hold_timer, jiffies + msecs_to_jiffies(timeout)); port->tx_aggr.timer_cnxt.is_hold_timer_set = true; } else { if (port->tx_aggr.timer_cnxt.hold_tmo_msecs < MWIFIEX_USB_TX_AGGR_TMO_MAX) { /* Dyanmic fit timeout */ timeout = ++port->tx_aggr.timer_cnxt.hold_tmo_msecs; mod_timer(&port->tx_aggr.timer_cnxt.hold_timer, jiffies + msecs_to_jiffies(timeout)); } } } send_aggr_buf: if (f_send_aggr_buf) { ret = mwifiex_usb_prepare_tx_aggr_skb(adapter, port, &skb_send); if (!ret) { context = &port->tx_data_list[port->tx_data_ix++]; ret = mwifiex_usb_construct_send_urb(adapter, port, ep, context, skb_send); if (ret == -1) mwifiex_write_data_complete(adapter, skb_send, 0, -1); } } if (f_send_cur_buf) { if (f_send_aggr_buf) { if (atomic_read(&port->tx_data_urb_pending) >= MWIFIEX_TX_DATA_URB) { port->block_status = true; adapter->data_sent = mwifiex_usb_data_sent(adapter); /* no available urb, postcopy packet*/ f_postcopy_cur_buf = 1; goto postcopy_cur_buf; } if (port->tx_data_ix >= MWIFIEX_TX_DATA_URB) port->tx_data_ix = 0; } payload = skb->data; *(u16 *)&payload[2] = cpu_to_le16(MWIFIEX_TYPE_AGGR_DATA_V2 | 0x80); *(u16 *)payload = cpu_to_le16(skb->len); skb_send = skb; context = &port->tx_data_list[port->tx_data_ix++]; return mwifiex_usb_construct_send_urb(adapter, port, ep, context, skb_send); } postcopy_cur_buf: if (f_postcopy_cur_buf) { skb_queue_tail(&port->tx_aggr.aggr_list, skb); port->tx_aggr.aggr_len += (skb->len + pad); port->tx_aggr.aggr_num++; /* New aggregation begin, start timer */ if (!port->tx_aggr.timer_cnxt.is_hold_timer_set) { port->tx_aggr.timer_cnxt.hold_tmo_msecs = MWIFIEX_USB_TX_AGGR_TMO_MIN; timeout = port->tx_aggr.timer_cnxt.hold_tmo_msecs; mod_timer(&port->tx_aggr.timer_cnxt.hold_timer, jiffies + msecs_to_jiffies(timeout)); port->tx_aggr.timer_cnxt.is_hold_timer_set = true; } } return -EINPROGRESS; }
void main_irq_hfc(struct BCState *bcs) { struct IsdnCardState *cs = bcs->cs; int z1, z2, rcnt; u_char f1, f2, cip; int receive, transmit, count = 5; struct sk_buff *skb; Begin: count--; cip = HFC_CIP | HFC_F1 | HFC_REC | HFC_CHANNEL(bcs->channel); if ((cip & 0xc3) != (cs->hw.hfc.cip & 0xc3)) { cs->BC_Write_Reg(cs, HFC_STATUS, cip, cip); WaitForBusy(cs); } WaitNoBusy(cs); receive = 0; if (bcs->mode == L1_MODE_HDLC) { f1 = cs->BC_Read_Reg(cs, HFC_DATA, cip); cip = HFC_CIP | HFC_F2 | HFC_REC | HFC_CHANNEL(bcs->channel); WaitNoBusy(cs); f2 = cs->BC_Read_Reg(cs, HFC_DATA, cip); if (f1 != f2) { if (cs->debug & L1_DEB_HSCX) debugl1(cs, "hfc rec %d f1(%d) f2(%d)", bcs->channel, f1, f2); receive = 1; } } if (receive || (bcs->mode == L1_MODE_TRANS)) { WaitForBusy(cs); z1 = ReadZReg(bcs, HFC_Z1 | HFC_REC | HFC_CHANNEL(bcs->channel)); z2 = ReadZReg(bcs, HFC_Z2 | HFC_REC | HFC_CHANNEL(bcs->channel)); rcnt = z1 - z2; if (rcnt < 0) rcnt += cs->hw.hfc.fifosize; if ((bcs->mode == L1_MODE_HDLC) || (rcnt)) { rcnt++; if (cs->debug & L1_DEB_HSCX) debugl1(cs, "hfc rec %d z1(%x) z2(%x) cnt(%d)", bcs->channel, z1, z2, rcnt); /* sti(); */ if ((skb = hfc_empty_fifo(bcs, rcnt))) { skb_queue_tail(&bcs->rqueue, skb); schedule_event(bcs, B_RCVBUFREADY); } } receive = 1; } if (bcs->tx_skb) { transmit = 1; test_and_set_bit(BC_FLG_BUSY, &bcs->Flag); hfc_fill_fifo(bcs); if (test_bit(BC_FLG_BUSY, &bcs->Flag)) transmit = 0; } else { if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) { transmit = 1; test_and_set_bit(BC_FLG_BUSY, &bcs->Flag); hfc_fill_fifo(bcs); if (test_bit(BC_FLG_BUSY, &bcs->Flag)) transmit = 0; } else { transmit = 0; schedule_event(bcs, B_XMTBUFREADY); } } if ((receive || transmit) && count) goto Begin; return; }
int x25_output(struct sock *sk, struct sk_buff *skb) { struct sk_buff *skbn; unsigned char header[X25_EXT_MIN_LEN]; int err, frontlen, len; int sent=0, noblock = X25_SKB_CB(skb)->flags & MSG_DONTWAIT; struct x25_sock *x25 = x25_sk(sk); int header_len = x25->neighbour->extended ? X25_EXT_MIN_LEN : X25_STD_MIN_LEN; int max_len = x25_pacsize_to_bytes(x25->facilities.pacsize_out); if (skb->len - header_len > max_len) { skb_copy_from_linear_data(skb, header, header_len); skb_pull(skb, header_len); frontlen = skb_headroom(skb); while (skb->len > 0) { release_sock(sk); skbn = sock_alloc_send_skb(sk, frontlen + max_len, noblock, &err); lock_sock(sk); if (!skbn) { if (err == -EWOULDBLOCK && noblock){ kfree_skb(skb); return sent; } SOCK_DEBUG(sk, "x25_output: fragment alloc" " failed, err=%d, %d bytes " "sent\n", err, sent); return err; } skb_reserve(skbn, frontlen); len = max_len > skb->len ? skb->len : max_len; skb_copy_from_linear_data(skb, skb_put(skbn, len), len); skb_pull(skb, len); skb_push(skbn, header_len); skb_copy_to_linear_data(skbn, header, header_len); if (skb->len > 0) { if (x25->neighbour->extended) skbn->data[3] |= X25_EXT_M_BIT; else skbn->data[2] |= X25_STD_M_BIT; } skb_queue_tail(&sk->sk_write_queue, skbn); sent += len; } kfree_skb(skb); } else { skb_queue_tail(&sk->sk_write_queue, skb); sent = skb->len - header_len; } return sent; }
/* * segment the img and use the ptr and length to remember info on each segment * */ bool fw_download_code(struct net_device *dev, u8 *code_virtual_address, u32 buffer_len) { struct r8192_priv *priv = ieee80211_priv(dev); bool rt_status = true; u16 frag_threshold; u16 frag_length, frag_offset = 0; //u16 total_size; int i; rt_firmware *pfirmware = priv->pFirmware; struct sk_buff *skb; unsigned char *seg_ptr; cb_desc *tcb_desc; u8 bLastIniPkt; firmware_init_param(dev); //Fragmentation might be required frag_threshold = pfirmware->cmdpacket_frag_thresold; do { if((buffer_len - frag_offset) > frag_threshold) { frag_length = frag_threshold ; bLastIniPkt = 0; } else { frag_length = buffer_len - frag_offset; bLastIniPkt = 1; } /* Allocate skb buffer to contain firmware info and tx descriptor info * add 4 to avoid packet appending overflow. * */ #ifdef RTL8192U skb = dev_alloc_skb(USB_HWDESC_HEADER_LEN + frag_length + 4); #else skb = dev_alloc_skb(frag_length + 4); #endif memcpy((unsigned char *)(skb->cb),&dev,sizeof(dev)); tcb_desc = (cb_desc*)(skb->cb + MAX_DEV_ADDR_SIZE); tcb_desc->queue_index = TXCMD_QUEUE; tcb_desc->bCmdOrInit = DESC_PACKET_TYPE_INIT; tcb_desc->bLastIniPkt = bLastIniPkt; #ifdef RTL8192U skb_reserve(skb, USB_HWDESC_HEADER_LEN); #endif seg_ptr = skb->data; /* * Transform from little endian to big endian * and pending zero */ for(i=0 ; i < frag_length; i+=4) { *seg_ptr++ = ((i+0)<frag_length)?code_virtual_address[i+3]:0; *seg_ptr++ = ((i+1)<frag_length)?code_virtual_address[i+2]:0; *seg_ptr++ = ((i+2)<frag_length)?code_virtual_address[i+1]:0; *seg_ptr++ = ((i+3)<frag_length)?code_virtual_address[i+0]:0; } tcb_desc->txbuf_size= (u16)i; skb_put(skb, i); if(!priv->ieee80211->check_nic_enough_desc(dev,tcb_desc->queue_index)|| (!skb_queue_empty(&priv->ieee80211->skb_waitQ[tcb_desc->queue_index]))||\ (priv->ieee80211->queue_stop) ) { RT_TRACE(COMP_FIRMWARE,"=====================================================> tx full!\n"); skb_queue_tail(&priv->ieee80211->skb_waitQ[tcb_desc->queue_index], skb); } else { priv->ieee80211->softmac_hard_start_xmit(skb,dev); } code_virtual_address += frag_length; frag_offset += frag_length; }while(frag_offset < buffer_len); return rt_status; }
int rtl8188eu_init_recv_priv(_adapter *padapter) { struct recv_priv *precvpriv = &padapter->recvpriv; int i, res = _SUCCESS; struct recv_buf *precvbuf; #ifdef CONFIG_RECV_THREAD_MODE _rtw_init_sema(&precvpriv->recv_sema, 0);//will be removed _rtw_init_sema(&precvpriv->terminate_recvthread_sema, 0);//will be removed #endif #ifdef PLATFORM_LINUX tasklet_init(&precvpriv->recv_tasklet, (void(*)(unsigned long))rtl8188eu_recv_tasklet, (unsigned long)padapter); #endif #ifdef CONFIG_USB_INTERRUPT_IN_PIPE #ifdef PLATFORM_LINUX precvpriv->int_in_urb = usb_alloc_urb(0, GFP_KERNEL); if(precvpriv->int_in_urb == NULL) { DBG_8192C("alloc_urb for interrupt in endpoint fail !!!!\n"); } #endif precvpriv->int_in_buf = rtw_zmalloc(sizeof(INTERRUPT_MSG_FORMAT_EX)); if(precvpriv->int_in_buf == NULL) { DBG_8192C("alloc_mem for interrupt in endpoint fail !!!!\n"); } #endif //init recv_buf _rtw_init_queue(&precvpriv->free_recv_buf_queue); #ifdef CONFIG_USE_USB_BUFFER_ALLOC_RX _rtw_init_queue(&precvpriv->recv_buf_pending_queue); #endif // CONFIG_USE_USB_BUFFER_ALLOC_RX precvpriv->pallocated_recv_buf = rtw_zmalloc(NR_RECVBUFF *sizeof(struct recv_buf) + 4); if(precvpriv->pallocated_recv_buf==NULL) { res= _FAIL; RT_TRACE(_module_rtl871x_recv_c_,_drv_err_,("alloc recv_buf fail!\n")); goto exit; } _rtw_memset(precvpriv->pallocated_recv_buf, 0, NR_RECVBUFF *sizeof(struct recv_buf) + 4); precvpriv->precv_buf = (u8 *)N_BYTE_ALIGMENT((SIZE_PTR)(precvpriv->pallocated_recv_buf), 4); //precvpriv->precv_buf = precvpriv->pallocated_recv_buf + 4 - // ((uint) (precvpriv->pallocated_recv_buf) &(4-1)); precvbuf = (struct recv_buf*)precvpriv->precv_buf; for(i=0; i < NR_RECVBUFF ; i++) { _rtw_init_listhead(&precvbuf->list); _rtw_spinlock_init(&precvbuf->recvbuf_lock); precvbuf->alloc_sz = MAX_RECVBUF_SZ; res = rtw_os_recvbuf_resource_alloc(padapter, precvbuf); if(res==_FAIL) break; precvbuf->ref_cnt = 0; precvbuf->adapter =padapter; //rtw_list_insert_tail(&precvbuf->list, &(precvpriv->free_recv_buf_queue.queue)); precvbuf++; } precvpriv->free_recv_buf_queue_cnt = NR_RECVBUFF; #ifdef PLATFORM_LINUX skb_queue_head_init(&precvpriv->rx_skb_queue); #ifdef CONFIG_PREALLOC_RECV_SKB { int i; SIZE_PTR tmpaddr=0; SIZE_PTR alignment=0; struct sk_buff *pskb=NULL; skb_queue_head_init(&precvpriv->free_recv_skb_queue); for(i=0; i<NR_PREALLOC_RECV_SKB; i++) { #if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,18)) // http://www.mail-archive.com/[email protected]/msg17214.html pskb = dev_alloc_skb(MAX_RECVBUF_SZ + RECVBUFF_ALIGN_SZ); #else pskb = netdev_alloc_skb(padapter->pnetdev, MAX_RECVBUF_SZ + RECVBUFF_ALIGN_SZ); #endif if(pskb) { pskb->dev = padapter->pnetdev; tmpaddr = (SIZE_PTR)pskb->data; alignment = tmpaddr & (RECVBUFF_ALIGN_SZ-1); skb_reserve(pskb, (RECVBUFF_ALIGN_SZ - alignment)); skb_queue_tail(&precvpriv->free_recv_skb_queue, pskb); } pskb=NULL; } } #endif #endif exit: return res; }
void iwm_tx_worker(struct work_struct *work) { struct iwm_priv *iwm; struct iwm_tx_info *tx_info = NULL; struct sk_buff *skb; struct iwm_tx_queue *txq; struct iwm_sta_info *sta_info; struct iwm_tid_info *tid_info; int cmdlen, ret, pool_id; txq = container_of(work, struct iwm_tx_queue, worker); iwm = container_of(txq, struct iwm_priv, txq[txq->id]); pool_id = queue_to_pool_id(txq->id); while (!test_bit(pool_id, &iwm->tx_credit.full_pools_map) && !skb_queue_empty(&txq->queue)) { spin_lock_bh(&txq->lock); skb = skb_dequeue(&txq->queue); spin_unlock_bh(&txq->lock); tx_info = skb_to_tx_info(skb); sta_info = &iwm->sta_table[tx_info->sta]; if (!sta_info->valid) { IWM_ERR(iwm, "Trying to send a frame to unknown STA\n"); kfree_skb(skb); continue; } tid_info = &sta_info->tid_info[tx_info->tid]; mutex_lock(&tid_info->mutex); /* * If the RAxTID is stopped, we queue the skb to the stopped * queue. * Whenever we'll get a UMAC notification to resume the tx flow * for this RAxTID, we'll merge back the stopped queue into the * regular queue. See iwm_ntf_stop_resume_tx() from rx.c. */ if (tid_info->stopped) { IWM_DBG_TX(iwm, DBG, "%dx%d stopped\n", tx_info->sta, tx_info->tid); spin_lock_bh(&txq->lock); skb_queue_tail(&txq->stopped_queue, skb); spin_unlock_bh(&txq->lock); mutex_unlock(&tid_info->mutex); continue; } cmdlen = IWM_UDMA_HDR_LEN + skb->len; IWM_DBG_TX(iwm, DBG, "Tx frame on queue %d: skb: 0x%p, sta: " "%d, color: %d\n", txq->id, skb, tx_info->sta, tx_info->color); if (txq->concat_count + cmdlen > IWM_HAL_CONCATENATE_BUF_SIZE) iwm_tx_send_concat_packets(iwm, txq); ret = iwm_tx_credit_alloc(iwm, pool_id, cmdlen); if (ret) { IWM_DBG_TX(iwm, DBG, "not enough tx_credit for queue " "%d, Tx worker stopped\n", txq->id); spin_lock_bh(&txq->lock); skb_queue_head(&txq->queue, skb); spin_unlock_bh(&txq->lock); mutex_unlock(&tid_info->mutex); break; } txq->concat_ptr = txq->concat_buf + txq->concat_count; tid_info->last_seq_num = iwm_tx_build_packet(iwm, skb, pool_id, txq->concat_ptr); txq->concat_count += ALIGN(cmdlen, 16); mutex_unlock(&tid_info->mutex); kfree_skb(skb); } iwm_tx_send_concat_packets(iwm, txq); if (__netif_subqueue_stopped(iwm_to_ndev(iwm), txq->id) && !test_bit(pool_id, &iwm->tx_credit.full_pools_map) && (skb_queue_len(&txq->queue) < IWM_TX_LIST_SIZE / 2)) { IWM_DBG_TX(iwm, DBG, "LINK: start netif_subqueue[%d]", txq->id); netif_wake_subqueue(iwm_to_ndev(iwm), txq->id); } }
static void capi_signal(u16 applid, void *param) { struct capidev *cdev = (struct capidev *)param; #ifdef CONFIG_ISDN_CAPI_MIDDLEWARE struct capiminor *mp; u16 datahandle; #endif /* CONFIG_ISDN_CAPI_MIDDLEWARE */ struct capincci *np; struct sk_buff *skb = 0; u32 ncci; (void) (*capifuncs->capi_get_message) (applid, &skb); if (!skb) { printk(KERN_ERR "BUG: capi_signal: no skb\n"); return; } if (CAPIMSG_COMMAND(skb->data) != CAPI_DATA_B3) { skb_queue_tail(&cdev->recvqueue, skb); wake_up_interruptible(&cdev->recvwait); return; } ncci = CAPIMSG_CONTROL(skb->data); for (np = cdev->nccis; np && np->ncci != ncci; np = np->next) ; if (!np) { printk(KERN_ERR "BUG: capi_signal: ncci not found\n"); skb_queue_tail(&cdev->recvqueue, skb); wake_up_interruptible(&cdev->recvwait); return; } #ifndef CONFIG_ISDN_CAPI_MIDDLEWARE skb_queue_tail(&cdev->recvqueue, skb); wake_up_interruptible(&cdev->recvwait); #else /* CONFIG_ISDN_CAPI_MIDDLEWARE */ mp = np->minorp; if (!mp) { skb_queue_tail(&cdev->recvqueue, skb); wake_up_interruptible(&cdev->recvwait); return; } if (CAPIMSG_SUBCOMMAND(skb->data) == CAPI_IND) { datahandle = CAPIMSG_U16(skb->data, CAPIMSG_BASELEN+4+4+2); #ifdef _DEBUG_DATAFLOW printk(KERN_DEBUG "capi_signal: DATA_B3_IND %u len=%d\n", datahandle, skb->len-CAPIMSG_LEN(skb->data)); #endif skb_queue_tail(&mp->inqueue, skb); mp->inbytes += skb->len; handle_minor_recv(mp); } else if (CAPIMSG_SUBCOMMAND(skb->data) == CAPI_CONF) { datahandle = CAPIMSG_U16(skb->data, CAPIMSG_BASELEN+4); #ifdef _DEBUG_DATAFLOW printk(KERN_DEBUG "capi_signal: DATA_B3_CONF %u 0x%x\n", datahandle, CAPIMSG_U16(skb->data, CAPIMSG_BASELEN+4+2)); #endif kfree_skb(skb); (void)capiminor_del_ack(mp, datahandle); if (mp->tty) { if (mp->tty->ldisc.write_wakeup) mp->tty->ldisc.write_wakeup(mp->tty); } else { wake_up_interruptible(&mp->sendwait); } (void)handle_minor_send(mp); } else { /* ups, let capi application handle it :-) */ skb_queue_tail(&cdev->recvqueue, skb); wake_up_interruptible(&cdev->recvwait); } #endif /* CONFIG_ISDN_CAPI_MIDDLEWARE */ }
int iwm_xmit_frame(struct sk_buff *skb, struct net_device *netdev) { struct iwm_priv *iwm = ndev_to_iwm(netdev); struct net_device *ndev = iwm_to_ndev(iwm); struct wireless_dev *wdev = iwm_to_wdev(iwm); struct iwm_tx_info *tx_info; struct iwm_tx_queue *txq; struct iwm_sta_info *sta_info; u8 *dst_addr, sta_id; u16 queue; int ret; if (!test_bit(IWM_STATUS_ASSOCIATED, &iwm->status)) { IWM_DBG_TX(iwm, DBG, "LINK: stop netif_all_queues: " "not associated\n"); netif_tx_stop_all_queues(netdev); goto drop; } queue = skb_get_queue_mapping(skb); BUG_ON(queue >= IWM_TX_DATA_QUEUES); /* no iPAN yet */ txq = &iwm->txq[queue]; /* No free space for Tx, tx_worker is too slow */ if ((skb_queue_len(&txq->queue) > IWM_TX_LIST_SIZE) || (skb_queue_len(&txq->stopped_queue) > IWM_TX_LIST_SIZE)) { IWM_DBG_TX(iwm, DBG, "LINK: stop netif_subqueue[%d]\n", queue); netif_stop_subqueue(netdev, queue); return NETDEV_TX_BUSY; } ret = ieee80211_data_from_8023(skb, netdev->dev_addr, wdev->iftype, iwm->bssid, 0); if (ret) { IWM_ERR(iwm, "build wifi header failed\n"); goto drop; } dst_addr = ((struct ieee80211_hdr *)(skb->data))->addr1; for (sta_id = 0; sta_id < IWM_STA_TABLE_NUM; sta_id++) { sta_info = &iwm->sta_table[sta_id]; if (sta_info->valid && !memcmp(dst_addr, sta_info->addr, ETH_ALEN)) break; } if (sta_id == IWM_STA_TABLE_NUM) { IWM_ERR(iwm, "STA %pM not found in sta_table, Tx ignored\n", dst_addr); goto drop; } tx_info = skb_to_tx_info(skb); tx_info->sta = sta_id; tx_info->color = sta_info->color; /* UMAC uses TID 8 (vs. 0) for non QoS packets */ if (sta_info->qos) tx_info->tid = skb->priority; else tx_info->tid = IWM_UMAC_MGMT_TID; spin_lock_bh(&iwm->txq[queue].lock); skb_queue_tail(&iwm->txq[queue].queue, skb); spin_unlock_bh(&iwm->txq[queue].lock); queue_work(iwm->txq[queue].wq, &iwm->txq[queue].worker); ndev->stats.tx_packets++; ndev->stats.tx_bytes += skb->len; return NETDEV_TX_OK; drop: ndev->stats.tx_dropped++; dev_kfree_skb_any(skb); return NETDEV_TX_OK; }
static void rx_complete(struct usb_ep *ep, struct usb_request *req) { struct sk_buff *skb = req->context, *skb2; struct eth_dev *dev = ep->driver_data; int status = req->status; switch (status) { /* normal completion */ case 0: skb_put(skb, req->actual); if (dev->unwrap) { unsigned long flags; spin_lock_irqsave(&dev->lock, flags); if (dev->port_usb) { status = dev->unwrap(dev->port_usb, skb, &dev->rx_frames); } else { dev_kfree_skb_any(skb); status = -ENOTCONN; } spin_unlock_irqrestore(&dev->lock, flags); } else { skb_queue_tail(&dev->rx_frames, skb); } skb = NULL; skb2 = skb_dequeue(&dev->rx_frames); while (skb2) { if (status < 0 || ETH_HLEN > skb2->len || skb2->len > VLAN_ETH_FRAME_LEN) { dev->net->stats.rx_errors++; dev->net->stats.rx_length_errors++; DBG(dev, "rx length %d\n", skb2->len); dev_kfree_skb_any(skb2); goto next_frame; } skb2->protocol = eth_type_trans(skb2, dev->net); dev->net->stats.rx_packets++; dev->net->stats.rx_bytes += skb2->len; /* no buffer copies needed, unless hardware can't * use skb buffers. */ status = netif_rx(skb2); next_frame: skb2 = skb_dequeue(&dev->rx_frames); } break; /* software-driven interface shutdown */ case -ECONNRESET: /* unlink */ case -ESHUTDOWN: /* disconnect etc */ VDBG(dev, "rx shutdown, code %d\n", status); goto quiesce; /* for hardware automagic (such as pxa) */ case -ECONNABORTED: /* endpoint reset */ DBG(dev, "rx %s reset\n", ep->name); defer_kevent(dev, WORK_RX_MEMORY); quiesce: dev_kfree_skb_any(skb); goto clean; /* data overrun */ case -EOVERFLOW: dev->net->stats.rx_over_errors++; /* FALLTHROUGH */ default: dev->net->stats.rx_errors++; DBG(dev, "rx status %d\n", status); break; } if (skb) dev_kfree_skb_any(skb); if (!netif_running(dev->net)) { clean: spin_lock(&dev->req_lock); list_add(&req->list, &dev->rx_reqs); spin_unlock(&dev->req_lock); req = NULL; } if (req) rx_submit(dev, req, GFP_ATOMIC); }
static void wl18xx_tx_complete_packet(struct wl1271 *wl, u8 tx_stat_byte) { struct ieee80211_tx_info *info; struct sk_buff *skb; int id = tx_stat_byte & WL18XX_TX_STATUS_DESC_ID_MASK; bool tx_success; /* check for id legality */ if (unlikely(id >= wl->num_tx_desc || wl->tx_frames[id] == NULL)) { wl1271_warning("illegal id in tx completion: %d", id); return; } /* a zero bit indicates Tx success */ tx_success = !(tx_stat_byte & BIT(WL18XX_TX_STATUS_STAT_BIT_IDX)); skb = wl->tx_frames[id]; info = IEEE80211_SKB_CB(skb); if (wl12xx_is_dummy_packet(wl, skb)) { wl1271_free_tx_id(wl, id); return; } /* update the TX status info */ if (tx_success && !(info->flags & IEEE80211_TX_CTL_NO_ACK)) info->flags |= IEEE80211_TX_STAT_ACK; /* * first pass info->control.vif while it's valid, and then fill out * the info->status structures */ wl18xx_get_last_tx_rate(wl, info->control.vif, &info->status.rates[0]); info->status.rates[0].count = 1; /* no data about retries */ info->status.ack_signal = -1; if (!tx_success) wl->stats.retry_count++; /* * TODO: update sequence number for encryption? seems to be * unsupported for now. needed for recovery with encryption. */ /* remove private header from packet */ skb_pull(skb, sizeof(struct wl1271_tx_hw_descr)); /* remove TKIP header space if present */ if ((wl->quirks & WLCORE_QUIRK_TKIP_HEADER_SPACE) && info->control.hw_key && info->control.hw_key->cipher == WLAN_CIPHER_SUITE_TKIP) { int hdrlen = ieee80211_get_hdrlen_from_skb(skb); memmove(skb->data + WL1271_EXTRA_SPACE_TKIP, skb->data, hdrlen); skb_pull(skb, WL1271_EXTRA_SPACE_TKIP); } wl1271_debug(DEBUG_TX, "tx status id %u skb 0x%p success %d", id, skb, tx_success); /* return the packet to the stack */ skb_queue_tail(&wl->deferred_tx_queue, skb); queue_work(wl->freezable_wq, &wl->netstack_work); wl1271_free_tx_id(wl, id); }