示例#1
0
/* Subroutine */ int ssbevx_(char *jobz, char *range, char *uplo, integer *n, 
	integer *kd, real *ab, integer *ldab, real *q, integer *ldq, real *vl, 
	 real *vu, integer *il, integer *iu, real *abstol, integer *m, real *
	w, real *z__, integer *ldz, real *work, integer *iwork, integer *
	ifail, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, q_dim1, q_offset, z_dim1, z_offset, i__1, 
	    i__2;
    real r__1, r__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__, j, jj;
    real eps, vll, vuu, tmp1;
    integer indd, inde;
    real anrm;
    integer imax;
    real rmin, rmax;
    logical test;
    integer itmp1, indee;
    real sigma;
    extern logical lsame_(char *, char *);
    integer iinfo;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    char order[1];
    extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *, 
	    real *, integer *, real *, integer *, real *, real *, integer *);
    logical lower;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *), sswap_(integer *, real *, integer *, real *, integer *
);
    logical wantz, alleig, indeig;
    integer iscale, indibl;
    logical valeig;
    extern doublereal slamch_(char *);
    real safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    real abstll, bignum;
    extern doublereal slansb_(char *, char *, integer *, integer *, real *, 
	    integer *, real *);
    extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, 
	    real *, integer *, integer *, real *, integer *, integer *);
    integer indisp, indiwo;
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *);
    integer indwrk;
    extern /* Subroutine */ int ssbtrd_(char *, char *, integer *, integer *, 
	    real *, integer *, real *, real *, real *, integer *, real *, 
	    integer *), sstein_(integer *, real *, real *, 
	    integer *, real *, integer *, integer *, real *, integer *, real *
, integer *, integer *, integer *), ssterf_(integer *, real *, 
	    real *, integer *);
    integer nsplit;
    real smlnum;
    extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *, 
	    real *, integer *, integer *, real *, real *, real *, integer *, 
	    integer *, real *, integer *, integer *, real *, integer *, 
	    integer *), ssteqr_(char *, integer *, real *, 
	    real *, real *, integer *, real *, integer *);


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SSBEVX computes selected eigenvalues and, optionally, eigenvectors */
/*  of a real symmetric band matrix A.  Eigenvalues and eigenvectors can */
/*  be selected by specifying either a range of values or a range of */
/*  indices for the desired eigenvalues. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  RANGE   (input) CHARACTER*1 */
/*          = 'A': all eigenvalues will be found; */
/*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
/*                 will be found; */
/*          = 'I': the IL-th through IU-th eigenvalues will be found. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  KD      (input) INTEGER */
/*          The number of superdiagonals of the matrix A if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */

/*  AB      (input/output) REAL array, dimension (LDAB, N) */
/*          On entry, the upper or lower triangle of the symmetric band */
/*          matrix A, stored in the first KD+1 rows of the array.  The */
/*          j-th column of A is stored in the j-th column of the array AB */
/*          as follows: */
/*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */

/*          On exit, AB is overwritten by values generated during the */
/*          reduction to tridiagonal form.  If UPLO = 'U', the first */
/*          superdiagonal and the diagonal of the tridiagonal matrix T */
/*          are returned in rows KD and KD+1 of AB, and if UPLO = 'L', */
/*          the diagonal and first subdiagonal of T are returned in the */
/*          first two rows of AB. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KD + 1. */

/*  Q       (output) REAL array, dimension (LDQ, N) */
/*          If JOBZ = 'V', the N-by-N orthogonal matrix used in the */
/*                         reduction to tridiagonal form. */
/*          If JOBZ = 'N', the array Q is not referenced. */

/*  LDQ     (input) INTEGER */
/*          The leading dimension of the array Q.  If JOBZ = 'V', then */
/*          LDQ >= max(1,N). */

/*  VL      (input) REAL */
/*  VU      (input) REAL */
/*          If RANGE='V', the lower and upper bounds of the interval to */
/*          be searched for eigenvalues. VL < VU. */
/*          Not referenced if RANGE = 'A' or 'I'. */

/*  IL      (input) INTEGER */
/*  IU      (input) INTEGER */
/*          If RANGE='I', the indices (in ascending order) of the */
/*          smallest and largest eigenvalues to be returned. */
/*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/*          Not referenced if RANGE = 'A' or 'V'. */

/*  ABSTOL  (input) REAL */
/*          The absolute error tolerance for the eigenvalues. */
/*          An approximate eigenvalue is accepted as converged */
/*          when it is determined to lie in an interval [a,b] */
/*          of width less than or equal to */

/*                  ABSTOL + EPS *   max( |a|,|b| ) , */

/*          where EPS is the machine precision.  If ABSTOL is less than */
/*          or equal to zero, then  EPS*|T|  will be used in its place, */
/*          where |T| is the 1-norm of the tridiagonal matrix obtained */
/*          by reducing AB to tridiagonal form. */

/*          Eigenvalues will be computed most accurately when ABSTOL is */
/*          set to twice the underflow threshold 2*SLAMCH('S'), not zero. */
/*          If this routine returns with INFO>0, indicating that some */
/*          eigenvectors did not converge, try setting ABSTOL to */
/*          2*SLAMCH('S'). */

/*          See "Computing Small Singular Values of Bidiagonal Matrices */
/*          with Guaranteed High Relative Accuracy," by Demmel and */
/*          Kahan, LAPACK Working Note #3. */

/*  M       (output) INTEGER */
/*          The total number of eigenvalues found.  0 <= M <= N. */
/*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */

/*  W       (output) REAL array, dimension (N) */
/*          The first M elements contain the selected eigenvalues in */
/*          ascending order. */

/*  Z       (output) REAL array, dimension (LDZ, max(1,M)) */
/*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
/*          contain the orthonormal eigenvectors of the matrix A */
/*          corresponding to the selected eigenvalues, with the i-th */
/*          column of Z holding the eigenvector associated with W(i). */
/*          If an eigenvector fails to converge, then that column of Z */
/*          contains the latest approximation to the eigenvector, and the */
/*          index of the eigenvector is returned in IFAIL. */
/*          If JOBZ = 'N', then Z is not referenced. */
/*          Note: the user must ensure that at least max(1,M) columns are */
/*          supplied in the array Z; if RANGE = 'V', the exact value of M */
/*          is not known in advance and an upper bound must be used. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  WORK    (workspace) REAL array, dimension (7*N) */

/*  IWORK   (workspace) INTEGER array, dimension (5*N) */

/*  IFAIL   (output) INTEGER array, dimension (N) */
/*          If JOBZ = 'V', then if INFO = 0, the first M elements of */
/*          IFAIL are zero.  If INFO > 0, then IFAIL contains the */
/*          indices of the eigenvectors that failed to converge. */
/*          If JOBZ = 'N', then IFAIL is not referenced. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  if INFO = i, then i eigenvectors failed to converge. */
/*                Their indices are stored in array IFAIL. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --iwork;
    --ifail;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");
    lower = lsame_(uplo, "L");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (lower || lsame_(uplo, "U"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*kd < 0) {
	*info = -5;
    } else if (*ldab < *kd + 1) {
	*info = -7;
    } else if (wantz && *ldq < max(1,*n)) {
	*info = -9;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -11;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > max(1,*n)) {
		*info = -12;
	    } else if (*iu < min(*n,*il) || *iu > *n) {
		*info = -13;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -18;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SSBEVX", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	*m = 1;
	if (lower) {
	    tmp1 = ab[ab_dim1 + 1];
	} else {
	    tmp1 = ab[*kd + 1 + ab_dim1];
	}
	if (valeig) {
	    if (! (*vl < tmp1 && *vu >= tmp1)) {
		*m = 0;
	    }
	}
	if (*m == 1) {
	    w[1] = tmp1;
	    if (wantz) {
		z__[z_dim1 + 1] = 1.f;
	    }
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
/* Computing MIN */
    r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
    rmax = dmin(r__1,r__2);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    abstll = *abstol;
    if (valeig) {
	vll = *vl;
	vuu = *vu;
    } else {
	vll = 0.f;
	vuu = 0.f;
    }
    anrm = slansb_("M", uplo, n, kd, &ab[ab_offset], ldab, &work[1]);
    if (anrm > 0.f && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	if (lower) {
	    slascl_("B", kd, kd, &c_b14, &sigma, n, n, &ab[ab_offset], ldab, 
		    info);
	} else {
	    slascl_("Q", kd, kd, &c_b14, &sigma, n, n, &ab[ab_offset], ldab, 
		    info);
	}
	if (*abstol > 0.f) {
	    abstll = *abstol * sigma;
	}
	if (valeig) {
	    vll = *vl * sigma;
	    vuu = *vu * sigma;
	}
    }

/*     Call SSBTRD to reduce symmetric band matrix to tridiagonal form. */

    indd = 1;
    inde = indd + *n;
    indwrk = inde + *n;
    ssbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &work[indd], &work[inde], 
	     &q[q_offset], ldq, &work[indwrk], &iinfo);

/*     If all eigenvalues are desired and ABSTOL is less than or equal */
/*     to zero, then call SSTERF or SSTEQR.  If this fails for some */
/*     eigenvalue, then try SSTEBZ. */

    test = FALSE_;
    if (indeig) {
	if (*il == 1 && *iu == *n) {
	    test = TRUE_;
	}
    }
    if ((alleig || test) && *abstol <= 0.f) {
	scopy_(n, &work[indd], &c__1, &w[1], &c__1);
	indee = indwrk + (*n << 1);
	if (! wantz) {
	    i__1 = *n - 1;
	    scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
	    ssterf_(n, &w[1], &work[indee], info);
	} else {
	    slacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz);
	    i__1 = *n - 1;
	    scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
	    ssteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[
		    indwrk], info);
	    if (*info == 0) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    ifail[i__] = 0;
/* L10: */
		}
	    }
	}
	if (*info == 0) {
	    *m = *n;
	    goto L30;
	}
	*info = 0;
    }

/*     Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    indibl = 1;
    indisp = indibl + *n;
    indiwo = indisp + *n;
    sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[
	    inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[
	    indwrk], &iwork[indiwo], info);

    if (wantz) {
	sstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
		indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], &
		ifail[1], info);

/*        Apply orthogonal matrix used in reduction to tridiagonal */
/*        form to eigenvectors returned by SSTEIN. */

	i__1 = *m;
	for (j = 1; j <= i__1; ++j) {
	    scopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1);
	    sgemv_("N", n, n, &c_b14, &q[q_offset], ldq, &work[1], &c__1, &
		    c_b34, &z__[j * z_dim1 + 1], &c__1);
/* L20: */
	}
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

L30:
    if (iscale == 1) {
	if (*info == 0) {
	    imax = *m;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &w[1], &c__1);
    }

/*     If eigenvalues are not in order, then sort them, along with */
/*     eigenvectors. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__ = 0;
	    tmp1 = w[j];
	    i__2 = *m;
	    for (jj = j + 1; jj <= i__2; ++jj) {
		if (w[jj] < tmp1) {
		    i__ = jj;
		    tmp1 = w[jj];
		}
/* L40: */
	    }

	    if (i__ != 0) {
		itmp1 = iwork[indibl + i__ - 1];
		w[i__] = w[j];
		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
		w[j] = tmp1;
		iwork[indibl + j - 1] = itmp1;
		sswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 
			 &c__1);
		if (*info != 0) {
		    itmp1 = ifail[i__];
		    ifail[i__] = ifail[j];
		    ifail[j] = itmp1;
		}
	    }
/* L50: */
	}
    }

    return 0;

/*     End of SSBEVX */

} /* ssbevx_ */
示例#2
0
/* Subroutine */ int spbsvx_(char *fact, char *uplo, integer *n, integer *kd, 
	integer *nrhs, real *ab, integer *ldab, real *afb, integer *ldafb, 
	char *equed, real *s, real *b, integer *ldb, real *x, integer *ldx, 
	real *rcond, real *ferr, real *berr, real *work, integer *iwork, 
	integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset, 
	    x_dim1, x_offset, i__1, i__2;
    real r__1, r__2;

    /* Local variables */
    integer i__, j, j1, j2;
    real amax, smin, smax;
    real scond, anorm;
    logical equil, rcequ, upper;
    logical nofact;
    real bignum;
    integer infequ;
    real smlnum;

/*  -- LAPACK driver routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  SPBSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to */
/*  compute the solution to a real system of linear equations */
/*     A * X = B, */
/*  where A is an N-by-N symmetric positive definite band matrix and X */
/*  and B are N-by-NRHS matrices. */

/*  Error bounds on the solution and a condition estimate are also */
/*  provided. */

/*  Description */
/*  =========== */

/*  The following steps are performed: */

/*  1. If FACT = 'E', real scaling factors are computed to equilibrate */
/*     the system: */
/*        diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B */
/*     Whether or not the system will be equilibrated depends on the */
/*     scaling of the matrix A, but if equilibration is used, A is */
/*     overwritten by diag(S)*A*diag(S) and B by diag(S)*B. */

/*  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to */
/*     factor the matrix A (after equilibration if FACT = 'E') as */
/*        A = U**T * U,  if UPLO = 'U', or */
/*        A = L * L**T,  if UPLO = 'L', */
/*     where U is an upper triangular band matrix, and L is a lower */
/*     triangular band matrix. */

/*  3. If the leading i-by-i principal minor is not positive definite, */
/*     then the routine returns with INFO = i. Otherwise, the factored */
/*     form of A is used to estimate the condition number of the matrix */
/*     A.  If the reciprocal of the condition number is less than machine */
/*     precision, INFO = N+1 is returned as a warning, but the routine */
/*     still goes on to solve for X and compute error bounds as */
/*     described below. */

/*  4. The system of equations is solved for X using the factored form */
/*     of A. */

/*  5. Iterative refinement is applied to improve the computed solution */
/*     matrix and calculate error bounds and backward error estimates */
/*     for it. */

/*  6. If equilibration was used, the matrix X is premultiplied by */
/*     diag(S) so that it solves the original system before */
/*     equilibration. */

/*  Arguments */
/*  ========= */

/*  FACT    (input) CHARACTER*1 */
/*          Specifies whether or not the factored form of the matrix A is */
/*          supplied on entry, and if not, whether the matrix A should be */
/*          equilibrated before it is factored. */
/*          = 'F':  On entry, AFB contains the factored form of A. */
/*                  If EQUED = 'Y', the matrix A has been equilibrated */
/*                  with scaling factors given by S.  AB and AFB will not */
/*                  be modified. */
/*          = 'N':  The matrix A will be copied to AFB and factored. */
/*          = 'E':  The matrix A will be equilibrated if necessary, then */
/*                  copied to AFB and factored. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The number of linear equations, i.e., the order of the */
/*          matrix A.  N >= 0. */

/*  KD      (input) INTEGER */
/*          The number of superdiagonals of the matrix A if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right-hand sides, i.e., the number of columns */
/*          of the matrices B and X.  NRHS >= 0. */

/*  AB      (input/output) REAL array, dimension (LDAB,N) */
/*          On entry, the upper or lower triangle of the symmetric band */
/*          matrix A, stored in the first KD+1 rows of the array, except */
/*          if FACT = 'F' and EQUED = 'Y', then A must contain the */
/*          equilibrated matrix diag(S)*A*diag(S).  The j-th column of A */
/*          is stored in the j-th column of the array AB as follows: */
/*          if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD). */
/*          See below for further details. */

/*          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by */
/*          diag(S)*A*diag(S). */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array A.  LDAB >= KD+1. */

/*  AFB     (input or output) REAL array, dimension (LDAFB,N) */
/*          If FACT = 'F', then AFB is an input argument and on entry */
/*          contains the triangular factor U or L from the Cholesky */
/*          factorization A = U**T*U or A = L*L**T of the band matrix */
/*          A, in the same storage format as A (see AB).  If EQUED = 'Y', */
/*          then AFB is the factored form of the equilibrated matrix A. */

/*          If FACT = 'N', then AFB is an output argument and on exit */
/*          returns the triangular factor U or L from the Cholesky */
/*          factorization A = U**T*U or A = L*L**T. */

/*          If FACT = 'E', then AFB is an output argument and on exit */
/*          returns the triangular factor U or L from the Cholesky */
/*          factorization A = U**T*U or A = L*L**T of the equilibrated */
/*          matrix A (see the description of A for the form of the */
/*          equilibrated matrix). */

/*  LDAFB   (input) INTEGER */
/*          The leading dimension of the array AFB.  LDAFB >= KD+1. */

/*  EQUED   (input or output) CHARACTER*1 */
/*          Specifies the form of equilibration that was done. */
/*          = 'N':  No equilibration (always true if FACT = 'N'). */
/*          = 'Y':  Equilibration was done, i.e., A has been replaced by */
/*                  diag(S) * A * diag(S). */
/*          EQUED is an input argument if FACT = 'F'; otherwise, it is an */
/*          output argument. */

/*  S       (input or output) REAL array, dimension (N) */
/*          The scale factors for A; not accessed if EQUED = 'N'.  S is */
/*          an input argument if FACT = 'F'; otherwise, S is an output */
/*          argument.  If FACT = 'F' and EQUED = 'Y', each element of S */
/*          must be positive. */

/*  B       (input/output) REAL array, dimension (LDB,NRHS) */
/*          On entry, the N-by-NRHS right hand side matrix B. */
/*          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y', */
/*          B is overwritten by diag(S) * B. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  X       (output) REAL array, dimension (LDX,NRHS) */
/*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to */
/*          the original system of equations.  Note that if EQUED = 'Y', */
/*          A and B are modified on exit, and the solution to the */
/*          equilibrated system is inv(diag(S))*X. */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the array X.  LDX >= max(1,N). */

/*  RCOND   (output) REAL */
/*          The estimate of the reciprocal condition number of the matrix */
/*          A after equilibration (if done).  If RCOND is less than the */
/*          machine precision (in particular, if RCOND = 0), the matrix */
/*          is singular to working precision.  This condition is */
/*          indicated by a return code of INFO > 0. */

/*  FERR    (output) REAL array, dimension (NRHS) */
/*          The estimated forward error bound for each solution vector */
/*          X(j) (the j-th column of the solution matrix X). */
/*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
/*          is an estimated upper bound for the magnitude of the largest */
/*          element in (X(j) - XTRUE) divided by the magnitude of the */
/*          largest element in X(j).  The estimate is as reliable as */
/*          the estimate for RCOND, and is almost always a slight */
/*          overestimate of the true error. */

/*  BERR    (output) REAL array, dimension (NRHS) */
/*          The componentwise relative backward error of each solution */
/*          vector X(j) (i.e., the smallest relative change in */
/*          any element of A or B that makes X(j) an exact solution). */

/*  WORK    (workspace) REAL array, dimension (3*N) */

/*  IWORK   (workspace) INTEGER array, dimension (N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, and i is */
/*                <= N:  the leading minor of order i of A is */
/*                       not positive definite, so the factorization */
/*                       could not be completed, and the solution has not */
/*                       been computed. RCOND = 0 is returned. */
/*                = N+1: U is nonsingular, but RCOND is less than machine */
/*                       precision, meaning that the matrix is singular */
/*                       to working precision.  Nevertheless, the */
/*                       solution and error bounds are computed because */
/*                       there are a number of situations where the */
/*                       computed solution can be more accurate than the */
/*                       value of RCOND would suggest. */

/*  Further Details */
/*  =============== */

/*  The band storage scheme is illustrated by the following example, when */
/*  N = 6, KD = 2, and UPLO = 'U': */

/*  Two-dimensional storage of the symmetric matrix A: */

/*     a11  a12  a13 */
/*          a22  a23  a24 */
/*               a33  a34  a35 */
/*                    a44  a45  a46 */
/*                         a55  a56 */
/*     (aij=conjg(aji))         a66 */

/*  Band storage of the upper triangle of A: */

/*      *    *   a13  a24  a35  a46 */
/*      *   a12  a23  a34  a45  a56 */
/*     a11  a22  a33  a44  a55  a66 */

/*  Similarly, if UPLO = 'L' the format of A is as follows: */

/*     a11  a22  a33  a44  a55  a66 */
/*     a21  a32  a43  a54  a65   * */
/*     a31  a42  a53  a64   *    * */

/*  Array elements marked * are not used by the routine. */

/*  ===================================================================== */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    afb_dim1 = *ldafb;
    afb_offset = 1 + afb_dim1;
    afb -= afb_offset;
    --s;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    --ferr;
    --berr;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    nofact = lsame_(fact, "N");
    equil = lsame_(fact, "E");
    upper = lsame_(uplo, "U");
    if (nofact || equil) {
	*(unsigned char *)equed = 'N';
	rcequ = FALSE_;
    } else {
	rcequ = lsame_(equed, "Y");
	smlnum = slamch_("Safe minimum");
	bignum = 1.f / smlnum;
    }

/*     Test the input parameters. */

    if (! nofact && ! equil && ! lsame_(fact, "F")) {
	*info = -1;
    } else if (! upper && ! lsame_(uplo, "L")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*kd < 0) {
	*info = -4;
    } else if (*nrhs < 0) {
	*info = -5;
    } else if (*ldab < *kd + 1) {
	*info = -7;
    } else if (*ldafb < *kd + 1) {
	*info = -9;
    } else if (lsame_(fact, "F") && ! (rcequ || lsame_(
	    equed, "N"))) {
	*info = -10;
    } else {
	if (rcequ) {
	    smin = bignum;
	    smax = 0.f;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		r__1 = smin, r__2 = s[j];
		smin = dmin(r__1,r__2);
/* Computing MAX */
		r__1 = smax, r__2 = s[j];
		smax = dmax(r__1,r__2);
	    }
	    if (smin <= 0.f) {
		*info = -11;
	    } else if (*n > 0) {
		scond = dmax(smin,smlnum) / dmin(smax,bignum);
	    } else {
		scond = 1.f;
	    }
	}
	if (*info == 0) {
	    if (*ldb < max(1,*n)) {
		*info = -13;
	    } else if (*ldx < max(1,*n)) {
		*info = -15;
	    }
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SPBSVX", &i__1);
	return 0;
    }

    if (equil) {

/*        Compute row and column scalings to equilibrate the matrix A. */

	spbequ_(uplo, n, kd, &ab[ab_offset], ldab, &s[1], &scond, &amax, &
		infequ);
	if (infequ == 0) {

/*           Equilibrate the matrix. */

	    slaqsb_(uplo, n, kd, &ab[ab_offset], ldab, &s[1], &scond, &amax, 
		    equed);
	    rcequ = lsame_(equed, "Y");
	}
    }

/*     Scale the right-hand side. */

    if (rcequ) {
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *n;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		b[i__ + j * b_dim1] = s[i__] * b[i__ + j * b_dim1];
	    }
	}
    }

    if (nofact || equil) {

/*        Compute the Cholesky factorization A = U'*U or A = L*L'. */

	if (upper) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
		i__2 = j - *kd;
		j1 = max(i__2,1);
		i__2 = j - j1 + 1;
		scopy_(&i__2, &ab[*kd + 1 - j + j1 + j * ab_dim1], &c__1, &
			afb[*kd + 1 - j + j1 + j * afb_dim1], &c__1);
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		i__2 = j + *kd;
		j2 = min(i__2,*n);
		i__2 = j2 - j + 1;
		scopy_(&i__2, &ab[j * ab_dim1 + 1], &c__1, &afb[j * afb_dim1 
			+ 1], &c__1);
	    }
	}

	spbtrf_(uplo, n, kd, &afb[afb_offset], ldafb, info);

/*        Return if INFO is non-zero. */

	if (*info > 0) {
	    *rcond = 0.f;
	    return 0;
	}
    }

/*     Compute the norm of the matrix A. */

    anorm = slansb_("1", uplo, n, kd, &ab[ab_offset], ldab, &work[1]);

/*     Compute the reciprocal of the condition number of A. */

    spbcon_(uplo, n, kd, &afb[afb_offset], ldafb, &anorm, rcond, &work[1], &
	    iwork[1], info);

/*     Compute the solution matrix X. */

    slacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
    spbtrs_(uplo, n, kd, nrhs, &afb[afb_offset], ldafb, &x[x_offset], ldx, 
	    info);

/*     Use iterative refinement to improve the computed solution and */
/*     compute error bounds and backward error estimates for it. */

    spbrfs_(uplo, n, kd, nrhs, &ab[ab_offset], ldab, &afb[afb_offset], ldafb, 
	    &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[1]
, &iwork[1], info);

/*     Transform the solution matrix X to a solution of the original */
/*     system. */

    if (rcequ) {
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *n;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		x[i__ + j * x_dim1] = s[i__] * x[i__ + j * x_dim1];
	    }
	}
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    ferr[j] /= scond;
	}
    }

/*     Set INFO = N+1 if the matrix is singular to working precision. */

    if (*rcond < slamch_("Epsilon")) {
	*info = *n + 1;
    }

    return 0;

/*     End of SPBSVX */

} /* spbsvx_ */
示例#3
0
文件: spbt02.c 项目: zangel/uquad
/* Subroutine */ int spbt02_(char *uplo, integer *n, integer *kd, integer *
	nrhs, real *a, integer *lda, real *x, integer *ldx, real *b, integer *
	ldb, real *rwork, real *resid)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1;
    real r__1, r__2;

    /* Local variables */
    static integer j;
    static real anorm, bnorm;
    extern doublereal sasum_(integer *, real *, integer *);
    extern /* Subroutine */ int ssbmv_(char *, integer *, integer *, real *, 
	    real *, integer *, real *, integer *, real *, real *, integer *);
    static real xnorm;
    extern doublereal slamch_(char *), slansb_(char *, char *, 
	    integer *, integer *, real *, integer *, real *);
    static real eps;


#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define x_ref(a_1,a_2) x[(a_2)*x_dim1 + a_1]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       February 29, 1992   


    Purpose   
    =======   

    SPBT02 computes the residual for a solution of a symmetric banded   
    system of equations  A*x = b:   
       RESID = norm( B - A*X ) / ( norm(A) * norm(X) * EPS)   
    where EPS is the machine precision.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            Specifies whether the upper or lower triangular part of the   
            symmetric matrix A is stored:   
            = 'U':  Upper triangular   
            = 'L':  Lower triangular   

    N       (input) INTEGER   
            The number of rows and columns of the matrix A.  N >= 0.   

    KD      (input) INTEGER   
            The number of super-diagonals of the matrix A if UPLO = 'U',   
            or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.   

    A       (input) REAL array, dimension (LDA,N)   
            The original symmetric band matrix A.  If UPLO = 'U', the   
            upper triangular part of A is stored as a band matrix; if   
            UPLO = 'L', the lower triangular part of A is stored.  The   
            columns of the appropriate triangle are stored in the columns   
            of A and the diagonals of the triangle are stored in the rows   
            of A.  See SPBTRF for further details.   

    LDA     (input) INTEGER.   
            The leading dimension of the array A.  LDA >= max(1,KD+1).   

    X       (input) REAL array, dimension (LDX,NRHS)   
            The computed solution vectors for the system of linear   
            equations.   

    LDX     (input) INTEGER   
            The leading dimension of the array X.   LDX >= max(1,N).   

    B       (input/output) REAL array, dimension (LDB,NRHS)   
            On entry, the right hand side vectors for the system of   
            linear equations.   
            On exit, B is overwritten with the difference B - A*X.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    RWORK   (workspace) REAL array, dimension (N)   

    RESID   (output) REAL   
            The maximum over the number of right hand sides of   
            norm(B - A*X) / ( norm(A) * norm(X) * EPS ).   

    =====================================================================   


       Quick exit if N = 0 or NRHS = 0.   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1 * 1;
    x -= x_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    --rwork;

    /* Function Body */
    if (*n <= 0 || *nrhs <= 0) {
	*resid = 0.f;
	return 0;
    }

/*     Exit with RESID = 1/EPS if ANORM = 0. */

    eps = slamch_("Epsilon");
    anorm = slansb_("1", uplo, n, kd, &a[a_offset], lda, &rwork[1]);
    if (anorm <= 0.f) {
	*resid = 1.f / eps;
	return 0;
    }

/*     Compute  B - A*X */

    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
	ssbmv_(uplo, n, kd, &c_b5, &a[a_offset], lda, &x_ref(1, j), &c__1, &
		c_b7, &b_ref(1, j), &c__1);
/* L10: */
    }

/*     Compute the maximum over the number of right hand sides of   
            norm( B - A*X ) / ( norm(A) * norm(X) * EPS ) */

    *resid = 0.f;
    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
	bnorm = sasum_(n, &b_ref(1, j), &c__1);
	xnorm = sasum_(n, &x_ref(1, j), &c__1);
	if (xnorm <= 0.f) {
	    *resid = 1.f / eps;
	} else {
/* Computing MAX */
	    r__1 = *resid, r__2 = bnorm / anorm / xnorm / eps;
	    *resid = dmax(r__1,r__2);
	}
/* L20: */
    }

    return 0;

/*     End of SPBT02 */

} /* spbt02_ */
示例#4
0
 int ssbev_(char *jobz, char *uplo, int *n, int *kd, 
	float *ab, int *ldab, float *w, float *z__, int *ldz, float *work, 
	 int *info)
{
    /* System generated locals */
    int ab_dim1, ab_offset, z_dim1, z_offset, i__1;
    float r__1;

    /* Builtin functions */
    double sqrt(double);

    /* Local variables */
    float eps;
    int inde;
    float anrm;
    int imax;
    float rmin, rmax, sigma;
    extern int lsame_(char *, char *);
    int iinfo;
    extern  int sscal_(int *, float *, float *, int *);
    int lower, wantz;
    int iscale;
    extern double slamch_(char *);
    float safmin;
    extern  int xerbla_(char *, int *);
    float bignum;
    extern double slansb_(char *, char *, int *, int *, float *, 
	    int *, float *);
    extern  int slascl_(char *, int *, int *, float *, 
	    float *, int *, int *, float *, int *, int *);
    int indwrk;
    extern  int ssbtrd_(char *, char *, int *, int *, 
	    float *, int *, float *, float *, float *, int *, float *, 
	    int *), ssterf_(int *, float *, float *, 
	    int *);
    float smlnum;
    extern  int ssteqr_(char *, int *, float *, float *, 
	    float *, int *, float *, int *);


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SSBEV computes all the eigenvalues and, optionally, eigenvectors of */
/*  a float symmetric band matrix A. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  KD      (input) INTEGER */
/*          The number of superdiagonals of the matrix A if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */

/*  AB      (input/output) REAL array, dimension (LDAB, N) */
/*          On entry, the upper or lower triangle of the symmetric band */
/*          matrix A, stored in the first KD+1 rows of the array.  The */
/*          j-th column of A is stored in the j-th column of the array AB */
/*          as follows: */
/*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for MAX(1,j-kd)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=MIN(n,j+kd). */

/*          On exit, AB is overwritten by values generated during the */
/*          reduction to tridiagonal form.  If UPLO = 'U', the first */
/*          superdiagonal and the diagonal of the tridiagonal matrix T */
/*          are returned in rows KD and KD+1 of AB, and if UPLO = 'L', */
/*          the diagonal and first subdiagonal of T are returned in the */
/*          first two rows of AB. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KD + 1. */

/*  W       (output) REAL array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  Z       (output) REAL array, dimension (LDZ, N) */
/*          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
/*          eigenvectors of the matrix A, with the i-th column of Z */
/*          holding the eigenvector associated with W(i). */
/*          If JOBZ = 'N', then Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= MAX(1,N). */

/*  WORK    (workspace) REAL array, dimension (MAX(1,3*N-2)) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, the algorithm failed to converge; i */
/*                off-diagonal elements of an intermediate tridiagonal */
/*                form did not converge to zero. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    lower = lsame_(uplo, "L");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (lower || lsame_(uplo, "U"))) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*kd < 0) {
	*info = -4;
    } else if (*ldab < *kd + 1) {
	*info = -6;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -9;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SSBEV ", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (lower) {
	    w[1] = ab[ab_dim1 + 1];
	} else {
	    w[1] = ab[*kd + 1 + ab_dim1];
	}
	if (wantz) {
	    z__[z_dim1 + 1] = 1.f;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);

/*     Scale matrix to allowable range, if necessary. */

    anrm = slansb_("M", uplo, n, kd, &ab[ab_offset], ldab, &work[1]);
    iscale = 0;
    if (anrm > 0.f && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	if (lower) {
	    slascl_("B", kd, kd, &c_b11, &sigma, n, n, &ab[ab_offset], ldab, 
		    info);
	} else {
	    slascl_("Q", kd, kd, &c_b11, &sigma, n, n, &ab[ab_offset], ldab, 
		    info);
	}
    }

/*     Call SSBTRD to reduce symmetric band matrix to tridiagonal form. */

    inde = 1;
    indwrk = inde + *n;
    ssbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &w[1], &work[inde], &z__[
	    z_offset], ldz, &work[indwrk], &iinfo);

/*     For eigenvalues only, call SSTERF.  For eigenvectors, call SSTEQR. */

    if (! wantz) {
	ssterf_(n, &w[1], &work[inde], info);
    } else {
	ssteqr_(jobz, n, &w[1], &work[inde], &z__[z_offset], ldz, &work[
		indwrk], info);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

    if (iscale == 1) {
	if (*info == 0) {
	    imax = *n;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &w[1], &c__1);
    }

    return 0;

/*     End of SSBEV */

} /* ssbev_ */
示例#5
0
/* Subroutine */ int ssbt21_(char *uplo, integer *n, integer *ka, integer *ks, 
	 real *a, integer *lda, real *d__, real *e, real *u, integer *ldu, 
	real *work, real *result)
{
    /* System generated locals */
    integer a_dim1, a_offset, u_dim1, u_offset, i__1, i__2, i__3, i__4;
    real r__1, r__2;

    /* Local variables */
    integer j, jc, jr, lw, ika;
    real ulp, unfl;
    extern /* Subroutine */ int sspr_(char *, integer *, real *, real *, 
	    integer *, real *), sspr2_(char *, integer *, real *, 
	    real *, integer *, real *, integer *, real *);
    extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 
	    integer *, real *, real *, integer *, real *, integer *, real *, 
	    real *, integer *);
    real anorm;
    char cuplo[1];
    logical lower;
    real wnorm;
    extern doublereal slamch_(char *), slange_(char *, integer *, 
	    integer *, real *, integer *, real *), slansb_(char *, 
	    char *, integer *, integer *, real *, integer *, real *), slansp_(char *, char *, integer *, real *, real *);


/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SSBT21  generally checks a decomposition of the form */

/*          A = U S U' */

/*  where ' means transpose, A is symmetric banded, U is */
/*  orthogonal, and S is diagonal (if KS=0) or symmetric */
/*  tridiagonal (if KS=1). */

/*  Specifically: */

/*          RESULT(1) = | A - U S U' | / ( |A| n ulp ) *and* */
/*          RESULT(2) = | I - UU' | / ( n ulp ) */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER */
/*          If UPLO='U', the upper triangle of A and V will be used and */
/*          the (strictly) lower triangle will not be referenced. */
/*          If UPLO='L', the lower triangle of A and V will be used and */
/*          the (strictly) upper triangle will not be referenced. */

/*  N       (input) INTEGER */
/*          The size of the matrix.  If it is zero, SSBT21 does nothing. */
/*          It must be at least zero. */

/*  KA      (input) INTEGER */
/*          The bandwidth of the matrix A.  It must be at least zero.  If */
/*          it is larger than N-1, then max( 0, N-1 ) will be used. */

/*  KS      (input) INTEGER */
/*          The bandwidth of the matrix S.  It may only be zero or one. */
/*          If zero, then S is diagonal, and E is not referenced.  If */
/*          one, then S is symmetric tri-diagonal. */

/*  A       (input) REAL array, dimension (LDA, N) */
/*          The original (unfactored) matrix.  It is assumed to be */
/*          symmetric, and only the upper (UPLO='U') or only the lower */
/*          (UPLO='L') will be referenced. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of A.  It must be at least 1 */
/*          and at least min( KA, N-1 ). */

/*  D       (input) REAL array, dimension (N) */
/*          The diagonal of the (symmetric tri-) diagonal matrix S. */

/*  E       (input) REAL array, dimension (N-1) */
/*          The off-diagonal of the (symmetric tri-) diagonal matrix S. */
/*          E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and */
/*          (3,2) element, etc. */
/*          Not referenced if KS=0. */

/*  U       (input) REAL array, dimension (LDU, N) */
/*          The orthogonal matrix in the decomposition, expressed as a */
/*          dense matrix (i.e., not as a product of Householder */
/*          transformations, Givens transformations, etc.) */

/*  LDU     (input) INTEGER */
/*          The leading dimension of U.  LDU must be at least N and */
/*          at least 1. */

/*  WORK    (workspace) REAL array, dimension (N**2+N) */

/*  RESULT  (output) REAL array, dimension (2) */
/*          The values computed by the two tests described above.  The */
/*          values are currently limited to 1/ulp, to avoid overflow. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Constants */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --d__;
    --e;
    u_dim1 = *ldu;
    u_offset = 1 + u_dim1;
    u -= u_offset;
    --work;
    --result;

    /* Function Body */
    result[1] = 0.f;
    result[2] = 0.f;
    if (*n <= 0) {
	return 0;
    }

/* Computing MAX */
/* Computing MIN */
    i__3 = *n - 1;
    i__1 = 0, i__2 = min(i__3,*ka);
    ika = max(i__1,i__2);
    lw = *n * (*n + 1) / 2;

    if (lsame_(uplo, "U")) {
	lower = FALSE_;
	*(unsigned char *)cuplo = 'U';
    } else {
	lower = TRUE_;
	*(unsigned char *)cuplo = 'L';
    }

    unfl = slamch_("Safe minimum");
    ulp = slamch_("Epsilon") * slamch_("Base");

/*     Some Error Checks */

/*     Do Test 1 */

/*     Norm of A: */

/* Computing MAX */
    r__1 = slansb_("1", cuplo, n, &ika, &a[a_offset], lda, &work[1]);
    anorm = dmax(r__1,unfl);

/*     Compute error matrix:    Error = A - U S U' */

/*     Copy A from SB to SP storage format. */

    j = 0;
    i__1 = *n;
    for (jc = 1; jc <= i__1; ++jc) {
	if (lower) {
/* Computing MIN */
	    i__3 = ika + 1, i__4 = *n + 1 - jc;
	    i__2 = min(i__3,i__4);
	    for (jr = 1; jr <= i__2; ++jr) {
		++j;
		work[j] = a[jr + jc * a_dim1];
/* L10: */
	    }
	    i__2 = *n + 1 - jc;
	    for (jr = ika + 2; jr <= i__2; ++jr) {
		++j;
		work[j] = 0.f;
/* L20: */
	    }
	} else {
	    i__2 = jc;
	    for (jr = ika + 2; jr <= i__2; ++jr) {
		++j;
		work[j] = 0.f;
/* L30: */
	    }
/* Computing MIN */
	    i__2 = ika, i__3 = jc - 1;
	    for (jr = min(i__2,i__3); jr >= 0; --jr) {
		++j;
		work[j] = a[ika + 1 - jr + jc * a_dim1];
/* L40: */
	    }
	}
/* L50: */
    }

    i__1 = *n;
    for (j = 1; j <= i__1; ++j) {
	r__1 = -d__[j];
	sspr_(cuplo, n, &r__1, &u[j * u_dim1 + 1], &c__1, &work[1])
		;
/* L60: */
    }

    if (*n > 1 && *ks == 1) {
	i__1 = *n - 1;
	for (j = 1; j <= i__1; ++j) {
	    r__1 = -e[j];
	    sspr2_(cuplo, n, &r__1, &u[j * u_dim1 + 1], &c__1, &u[(j + 1) * 
		    u_dim1 + 1], &c__1, &work[1]);
/* L70: */
	}
    }
    wnorm = slansp_("1", cuplo, n, &work[1], &work[lw + 1]);

    if (anorm > wnorm) {
	result[1] = wnorm / anorm / (*n * ulp);
    } else {
	if (anorm < 1.f) {
/* Computing MIN */
	    r__1 = wnorm, r__2 = *n * anorm;
	    result[1] = dmin(r__1,r__2) / anorm / (*n * ulp);
	} else {
/* Computing MIN */
	    r__1 = wnorm / anorm, r__2 = (real) (*n);
	    result[1] = dmin(r__1,r__2) / (*n * ulp);
	}
    }

/*     Do Test 2 */

/*     Compute  UU' - I */

    sgemm_("N", "C", n, n, n, &c_b22, &u[u_offset], ldu, &u[u_offset], ldu, &
	    c_b23, &work[1], n);

    i__1 = *n;
    for (j = 1; j <= i__1; ++j) {
	work[(*n + 1) * (j - 1) + 1] += -1.f;
/* L80: */
    }

/* Computing MIN */
/* Computing 2nd power */
    i__1 = *n;
    r__1 = slange_("1", n, n, &work[1], n, &work[i__1 * i__1 + 1]),
	     r__2 = (real) (*n);
    result[2] = dmin(r__1,r__2) / (*n * ulp);

    return 0;

/*     End of SSBT21 */

} /* ssbt21_ */
示例#6
0
/* Subroutine */ int sdrvpb_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, real *thresh, logical *tsterr, integer *nmax, real *a, 
	real *afac, real *asav, real *b, real *bsav, real *x, real *xact, 
	real *s, real *work, real *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char facts[1*3] = "F" "N" "E";
    static char equeds[1*2] = "N" "Y";

    /* Format strings */
    static char fmt_9999[] = "(1x,a,\002, UPLO='\002,a1,\002', N =\002,i5"
	    ",\002, KD =\002,i5,\002, type \002,i1,\002, test(\002,i1,\002)"
	    "=\002,g12.5)";
    static char fmt_9997[] = "(1x,a,\002( '\002,a1,\002', '\002,a1,\002',"
	    " \002,i5,\002, \002,i5,\002, ... ), EQUED='\002,a1,\002', type"
	    " \002,i1,\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9998[] = "(1x,a,\002( '\002,a1,\002', '\002,a1,\002',"
	    " \002,i5,\002, \002,i5,\002, ... ), type \002,i1,\002, test(\002"
	    ",i1,\002)=\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5, i__6, i__7[2];
    char ch__1[2];

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    integer i__, k, n, i1, i2, k1, kd, nb, in, kl, iw, ku, nt, lda, ikd, nkd, 
	    ldab;
    char fact[1];
    integer ioff, mode, koff;
    real amax;
    char path[3];
    integer imat, info;
    char dist[1], uplo[1], type__[1];
    integer nrun, ifact, nfail, iseed[4], nfact, kdval[4];
    extern logical lsame_(char *, char *);
    char equed[1];
    integer nbmin;
    real rcond, roldc, scond;
    integer nimat;
    extern doublereal sget06_(real *, real *);
    extern /* Subroutine */ int sget04_(integer *, integer *, real *, integer 
	    *, real *, integer *, real *, real *), spbt01_(char *, integer *, 
	    integer *, real *, integer *, real *, integer *, real *, real *);
    real anorm;
    extern /* Subroutine */ int spbt02_(char *, integer *, integer *, integer 
	    *, real *, integer *, real *, integer *, real *, integer *, real *
, real *), spbt05_(char *, integer *, integer *, integer *
, real *, integer *, real *, integer *, real *, integer *, real *, 
	     integer *, real *, real *, real *);
    logical equil;
    integer iuplo, izero, nerrs;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *), spbsv_(char *, integer *, integer *, integer *, real *
, integer *, real *, integer *, integer *), sswap_(
	    integer *, real *, integer *, real *, integer *);
    logical zerot;
    char xtype[1];
    extern /* Subroutine */ int slatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, real *, integer *, real *, char *
), aladhd_(integer *, char *), 
	    alaerh_(char *, char *, integer *, integer *, char *, integer *, 
	    integer *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *);
    logical prefac;
    real rcondc;
    extern doublereal slange_(char *, integer *, integer *, real *, integer *, 
	     real *);
    logical nofact;
    char packit[1];
    integer iequed;
    extern doublereal slansb_(char *, char *, integer *, integer *, real *, 
	    integer *, real *);
    real cndnum;
    extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer 
	    *, integer *), slaqsb_(char *, integer *, integer *, real 
	    *, integer *, real *, real *, real *, char *);
    real ainvnm;
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *), slarhs_(char *, char *, 
	    char *, char *, integer *, integer *, integer *, integer *, 
	    integer *, real *, integer *, real *, integer *, real *, integer *
, integer *, integer *), slaset_(
	    char *, integer *, integer *, real *, real *, real *, integer *), spbequ_(char *, integer *, integer *, real *, integer *, 
	    real *, real *, real *, integer *), spbtrf_(char *, 
	    integer *, integer *, real *, integer *, integer *), 
	    xlaenv_(integer *, integer *), slatms_(integer *, integer *, char 
	    *, integer *, char *, real *, integer *, real *, real *, integer *
, integer *, char *, real *, integer *, real *, integer *), spbtrs_(char *, integer *, integer *, integer *, 
	     real *, integer *, real *, integer *, integer *);
    real result[6];
    extern /* Subroutine */ int spbsvx_(char *, char *, integer *, integer *, 
	    integer *, real *, integer *, real *, integer *, char *, real *, 
	    real *, integer *, real *, integer *, real *, real *, real *, 
	    real *, integer *, integer *), serrvx_(
	    char *, integer *);

    /* Fortran I/O blocks */
    static cilist io___57 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___60 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___61 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SDRVPB tests the driver routines SPBSV and -SVX. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for N, used in dimensioning the */
/*          work arrays. */

/*  A       (workspace) REAL array, dimension (NMAX*NMAX) */

/*  AFAC    (workspace) REAL array, dimension (NMAX*NMAX) */

/*  ASAV    (workspace) REAL array, dimension (NMAX*NMAX) */

/*  B       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  BSAV    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  X       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  S       (workspace) REAL array, dimension (NMAX) */

/*  WORK    (workspace) REAL array, dimension */
/*                      (NMAX*max(3,NRHS)) */

/*  RWORK   (workspace) REAL array, dimension (NMAX+2*NRHS) */

/*  IWORK   (workspace) INTEGER array, dimension (NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --s;
    --xact;
    --x;
    --bsav;
    --b;
    --asav;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "PB", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	serrvx_(path, nout);
    }
    infoc_1.infot = 0;
    kdval[0] = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';

/*        Set limits on the number of loop iterations. */

/* Computing MAX */
	i__2 = 1, i__3 = min(n,4);
	nkd = max(i__2,i__3);
	nimat = 8;
	if (n == 0) {
	    nimat = 1;
	}

	kdval[1] = n + (n + 1) / 4;
	kdval[2] = (n * 3 - 1) / 4;
	kdval[3] = (n + 1) / 4;

	i__2 = nkd;
	for (ikd = 1; ikd <= i__2; ++ikd) {

/*           Do for KD = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This order */
/*           makes it easier to skip redundant values for small values */
/*           of N. */

	    kd = kdval[ikd - 1];
	    ldab = kd + 1;

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		koff = 1;
		if (iuplo == 1) {
		    *(unsigned char *)uplo = 'U';
		    *(unsigned char *)packit = 'Q';
/* Computing MAX */
		    i__3 = 1, i__4 = kd + 2 - n;
		    koff = max(i__3,i__4);
		} else {
		    *(unsigned char *)uplo = 'L';
		    *(unsigned char *)packit = 'B';
		}

		i__3 = nimat;
		for (imat = 1; imat <= i__3; ++imat) {

/*                 Do the tests only if DOTYPE( IMAT ) is true. */

		    if (! dotype[imat]) {
			goto L80;
		    }

/*                 Skip types 2, 3, or 4 if the matrix size is too small. */

		    zerot = imat >= 2 && imat <= 4;
		    if (zerot && n < imat - 1) {
			goto L80;
		    }

		    if (! zerot || ! dotype[1]) {

/*                    Set up parameters with SLATB4 and generate a test */
/*                    matrix with SLATMS. */

			slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, 
				 &mode, &cndnum, dist);

			s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)32, (ftnlen)
				6);
			slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, 
				 &cndnum, &anorm, &kd, &kd, packit, &a[koff], 
				&ldab, &work[1], &info);

/*                    Check error code from SLATMS. */

			if (info != 0) {
			    alaerh_(path, "SLATMS", &info, &c__0, uplo, &n, &
				    n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &
				    nerrs, nout);
			    goto L80;
			}
		    } else if (izero > 0) {

/*                    Use the same matrix for types 3 and 4 as for type */
/*                    2 by copying back the zeroed out column, */

			iw = (lda << 1) + 1;
			if (iuplo == 1) {
			    ioff = (izero - 1) * ldab + kd + 1;
			    i__4 = izero - i1;
			    scopy_(&i__4, &work[iw], &c__1, &a[ioff - izero + 
				    i1], &c__1);
			    iw = iw + izero - i1;
			    i__4 = i2 - izero + 1;
/* Computing MAX */
			    i__6 = ldab - 1;
			    i__5 = max(i__6,1);
			    scopy_(&i__4, &work[iw], &c__1, &a[ioff], &i__5);
			} else {
			    ioff = (i1 - 1) * ldab + 1;
			    i__4 = izero - i1;
/* Computing MAX */
			    i__6 = ldab - 1;
			    i__5 = max(i__6,1);
			    scopy_(&i__4, &work[iw], &c__1, &a[ioff + izero - 
				    i1], &i__5);
			    ioff = (izero - 1) * ldab + 1;
			    iw = iw + izero - i1;
			    i__4 = i2 - izero + 1;
			    scopy_(&i__4, &work[iw], &c__1, &a[ioff], &c__1);
			}
		    }

/*                 For types 2-4, zero one row and column of the matrix */
/*                 to test that INFO is returned correctly. */

		    izero = 0;
		    if (zerot) {
			if (imat == 2) {
			    izero = 1;
			} else if (imat == 3) {
			    izero = n;
			} else {
			    izero = n / 2 + 1;
			}

/*                    Save the zeroed out row and column in WORK(*,3) */

			iw = lda << 1;
/* Computing MIN */
			i__5 = (kd << 1) + 1;
			i__4 = min(i__5,n);
			for (i__ = 1; i__ <= i__4; ++i__) {
			    work[iw + i__] = 0.f;
/* L20: */
			}
			++iw;
/* Computing MAX */
			i__4 = izero - kd;
			i1 = max(i__4,1);
/* Computing MIN */
			i__4 = izero + kd;
			i2 = min(i__4,n);

			if (iuplo == 1) {
			    ioff = (izero - 1) * ldab + kd + 1;
			    i__4 = izero - i1;
			    sswap_(&i__4, &a[ioff - izero + i1], &c__1, &work[
				    iw], &c__1);
			    iw = iw + izero - i1;
			    i__4 = i2 - izero + 1;
/* Computing MAX */
			    i__6 = ldab - 1;
			    i__5 = max(i__6,1);
			    sswap_(&i__4, &a[ioff], &i__5, &work[iw], &c__1);
			} else {
			    ioff = (i1 - 1) * ldab + 1;
			    i__4 = izero - i1;
/* Computing MAX */
			    i__6 = ldab - 1;
			    i__5 = max(i__6,1);
			    sswap_(&i__4, &a[ioff + izero - i1], &i__5, &work[
				    iw], &c__1);
			    ioff = (izero - 1) * ldab + 1;
			    iw = iw + izero - i1;
			    i__4 = i2 - izero + 1;
			    sswap_(&i__4, &a[ioff], &c__1, &work[iw], &c__1);
			}
		    }

/*                 Save a copy of the matrix A in ASAV. */

		    i__4 = kd + 1;
		    slacpy_("Full", &i__4, &n, &a[1], &ldab, &asav[1], &ldab);

		    for (iequed = 1; iequed <= 2; ++iequed) {
			*(unsigned char *)equed = *(unsigned char *)&equeds[
				iequed - 1];
			if (iequed == 1) {
			    nfact = 3;
			} else {
			    nfact = 1;
			}

			i__4 = nfact;
			for (ifact = 1; ifact <= i__4; ++ifact) {
			    *(unsigned char *)fact = *(unsigned char *)&facts[
				    ifact - 1];
			    prefac = lsame_(fact, "F");
			    nofact = lsame_(fact, "N");
			    equil = lsame_(fact, "E");

			    if (zerot) {
				if (prefac) {
				    goto L60;
				}
				rcondc = 0.f;

			    } else if (! lsame_(fact, "N")) {

/*                          Compute the condition number for comparison */
/*                          with the value returned by SPBSVX (FACT = */
/*                          'N' reuses the condition number from the */
/*                          previous iteration with FACT = 'F'). */

				i__5 = kd + 1;
				slacpy_("Full", &i__5, &n, &asav[1], &ldab, &
					afac[1], &ldab);
				if (equil || iequed > 1) {

/*                             Compute row and column scale factors to */
/*                             equilibrate the matrix A. */

				    spbequ_(uplo, &n, &kd, &afac[1], &ldab, &
					    s[1], &scond, &amax, &info);
				    if (info == 0 && n > 0) {
					if (iequed > 1) {
					    scond = 0.f;
					}

/*                                Equilibrate the matrix. */

					slaqsb_(uplo, &n, &kd, &afac[1], &
						ldab, &s[1], &scond, &amax, 
						equed);
				    }
				}

/*                          Save the condition number of the */
/*                          non-equilibrated system for use in SGET04. */

				if (equil) {
				    roldc = rcondc;
				}

/*                          Compute the 1-norm of A. */

				anorm = slansb_("1", uplo, &n, &kd, &afac[1], 
					&ldab, &rwork[1]);

/*                          Factor the matrix A. */

				spbtrf_(uplo, &n, &kd, &afac[1], &ldab, &info);

/*                          Form the inverse of A. */

				slaset_("Full", &n, &n, &c_b45, &c_b46, &a[1], 
					 &lda);
				s_copy(srnamc_1.srnamt, "SPBTRS", (ftnlen)32, 
					(ftnlen)6);
				spbtrs_(uplo, &n, &kd, &n, &afac[1], &ldab, &
					a[1], &lda, &info);

/*                          Compute the 1-norm condition number of A. */

				ainvnm = slange_("1", &n, &n, &a[1], &lda, &
					rwork[1]);
				if (anorm <= 0.f || ainvnm <= 0.f) {
				    rcondc = 1.f;
				} else {
				    rcondc = 1.f / anorm / ainvnm;
				}
			    }

/*                       Restore the matrix A. */

			    i__5 = kd + 1;
			    slacpy_("Full", &i__5, &n, &asav[1], &ldab, &a[1], 
				     &ldab);

/*                       Form an exact solution and set the right hand */
/*                       side. */

			    s_copy(srnamc_1.srnamt, "SLARHS", (ftnlen)32, (
				    ftnlen)6);
			    slarhs_(path, xtype, uplo, " ", &n, &n, &kd, &kd, 
				    nrhs, &a[1], &ldab, &xact[1], &lda, &b[1], 
				     &lda, iseed, &info);
			    *(unsigned char *)xtype = 'C';
			    slacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &
				    lda);

			    if (nofact) {

/*                          --- Test SPBSV  --- */

/*                          Compute the L*L' or U'*U factorization of the */
/*                          matrix and solve the system. */

				i__5 = kd + 1;
				slacpy_("Full", &i__5, &n, &a[1], &ldab, &
					afac[1], &ldab);
				slacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], 
					&lda);

				s_copy(srnamc_1.srnamt, "SPBSV ", (ftnlen)32, 
					(ftnlen)6);
				spbsv_(uplo, &n, &kd, nrhs, &afac[1], &ldab, &
					x[1], &lda, &info);

/*                          Check error code from SPBSV . */

				if (info != izero) {
				    alaerh_(path, "SPBSV ", &info, &izero, 
					    uplo, &n, &n, &kd, &kd, nrhs, &
					    imat, &nfail, &nerrs, nout);
				    goto L40;
				} else if (info != 0) {
				    goto L40;
				}

/*                          Reconstruct matrix from factors and compute */
/*                          residual. */

				spbt01_(uplo, &n, &kd, &a[1], &ldab, &afac[1], 
					 &ldab, &rwork[1], result);

/*                          Compute residual of the computed solution. */

				slacpy_("Full", &n, nrhs, &b[1], &lda, &work[
					1], &lda);
				spbt02_(uplo, &n, &kd, nrhs, &a[1], &ldab, &x[
					1], &lda, &work[1], &lda, &rwork[1], &
					result[1]);

/*                          Check solution from generated exact solution. */

				sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &rcondc, &result[2]);
				nt = 3;

/*                          Print information about the tests that did */
/*                          not pass the threshold. */

				i__5 = nt;
				for (k = 1; k <= i__5; ++k) {
				    if (result[k - 1] >= *thresh) {
					if (nfail == 0 && nerrs == 0) {
					    aladhd_(nout, path);
					}
					io___57.ciunit = *nout;
					s_wsfe(&io___57);
					do_fio(&c__1, "SPBSV ", (ftnlen)6);
					do_fio(&c__1, uplo, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&kd, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(real));
					e_wsfe();
					++nfail;
				    }
/* L30: */
				}
				nrun += nt;
L40:
				;
			    }

/*                       --- Test SPBSVX --- */

			    if (! prefac) {
				i__5 = kd + 1;
				slaset_("Full", &i__5, &n, &c_b45, &c_b45, &
					afac[1], &ldab);
			    }
			    slaset_("Full", &n, nrhs, &c_b45, &c_b45, &x[1], &
				    lda);
			    if (iequed > 1 && n > 0) {

/*                          Equilibrate the matrix if FACT='F' and */
/*                          EQUED='Y' */

				slaqsb_(uplo, &n, &kd, &a[1], &ldab, &s[1], &
					scond, &amax, equed);
			    }

/*                       Solve the system and compute the condition */
/*                       number and error bounds using SPBSVX. */

			    s_copy(srnamc_1.srnamt, "SPBSVX", (ftnlen)32, (
				    ftnlen)6);
			    spbsvx_(fact, uplo, &n, &kd, nrhs, &a[1], &ldab, &
				    afac[1], &ldab, equed, &s[1], &b[1], &lda, 
				     &x[1], &lda, &rcond, &rwork[1], &rwork[*
				    nrhs + 1], &work[1], &iwork[1], &info);

/*                       Check the error code from SPBSVX. */

			    if (info != izero) {
/* Writing concatenation */
				i__7[0] = 1, a__1[0] = fact;
				i__7[1] = 1, a__1[1] = uplo;
				s_cat(ch__1, a__1, i__7, &c__2, (ftnlen)2);
				alaerh_(path, "SPBSVX", &info, &izero, ch__1, 
					&n, &n, &kd, &kd, nrhs, &imat, &nfail, 
					 &nerrs, nout);
				goto L60;
			    }

			    if (info == 0) {
				if (! prefac) {

/*                             Reconstruct matrix from factors and */
/*                             compute residual. */

				    spbt01_(uplo, &n, &kd, &a[1], &ldab, &
					    afac[1], &ldab, &rwork[(*nrhs << 
					    1) + 1], result);
				    k1 = 1;
				} else {
				    k1 = 2;
				}

/*                          Compute residual of the computed solution. */

				slacpy_("Full", &n, nrhs, &bsav[1], &lda, &
					work[1], &lda);
				spbt02_(uplo, &n, &kd, nrhs, &asav[1], &ldab, 
					&x[1], &lda, &work[1], &lda, &rwork[(*
					nrhs << 1) + 1], &result[1]);

/*                          Check solution from generated exact solution. */

				if (nofact || prefac && lsame_(equed, "N")) {
				    sget04_(&n, nrhs, &x[1], &lda, &xact[1], &
					    lda, &rcondc, &result[2]);
				} else {
				    sget04_(&n, nrhs, &x[1], &lda, &xact[1], &
					    lda, &roldc, &result[2]);
				}

/*                          Check the error bounds from iterative */
/*                          refinement. */

				spbt05_(uplo, &n, &kd, nrhs, &asav[1], &ldab, 
					&b[1], &lda, &x[1], &lda, &xact[1], &
					lda, &rwork[1], &rwork[*nrhs + 1], &
					result[3]);
			    } else {
				k1 = 6;
			    }

/*                       Compare RCOND from SPBSVX with the computed */
/*                       value in RCONDC. */

			    result[5] = sget06_(&rcond, &rcondc);

/*                       Print information about the tests that did not */
/*                       pass the threshold. */

			    for (k = k1; k <= 6; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					aladhd_(nout, path);
				    }
				    if (prefac) {
					io___60.ciunit = *nout;
					s_wsfe(&io___60);
					do_fio(&c__1, "SPBSVX", (ftnlen)6);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, uplo, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&kd, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, equed, (ftnlen)1);
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(real));
					e_wsfe();
				    } else {
					io___61.ciunit = *nout;
					s_wsfe(&io___61);
					do_fio(&c__1, "SPBSVX", (ftnlen)6);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, uplo, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&kd, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(real));
					e_wsfe();
				    }
				    ++nfail;
				}
/* L50: */
			    }
			    nrun = nrun + 7 - k1;
L60:
			    ;
			}
/* L70: */
		    }
L80:
		    ;
		}
/* L90: */
	    }
/* L100: */
	}
/* L110: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of SDRVPB */

} /* sdrvpb_ */
示例#7
0
文件: spbt01.c 项目: kstraube/hysim
/* Subroutine */ int spbt01_(char *uplo, integer *n, integer *kd, real *a,
                             integer *lda, real *afac, integer *ldafac, real *rwork, real *resid)
{
    /* System generated locals */
    integer a_dim1, a_offset, afac_dim1, afac_offset, i__1, i__2, i__3;

    /* Local variables */
    integer i__, j, k;
    real t;
    integer kc, ml, mu;
    real eps;
    integer klen;
    extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
    extern /* Subroutine */ int ssyr_(char *, integer *, real *, real *,
                                      integer *, real *, integer *);
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    real anorm;
    extern /* Subroutine */ int strmv_(char *, char *, char *, integer *,
                                       real *, integer *, real *, integer *);
    extern doublereal slamch_(char *), slansb_(char *, char *,
            integer *, integer *, real *, integer *, real *);


    /*  -- LAPACK test routine (version 3.1) -- */
    /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
    /*     November 2006 */

    /*     .. Scalar Arguments .. */
    /*     .. */
    /*     .. Array Arguments .. */
    /*     .. */

    /*  Purpose */
    /*  ======= */

    /*  SPBT01 reconstructs a symmetric positive definite band matrix A from */
    /*  its L*L' or U'*U factorization and computes the residual */
    /*     norm( L*L' - A ) / ( N * norm(A) * EPS ) or */
    /*     norm( U'*U - A ) / ( N * norm(A) * EPS ), */
    /*  where EPS is the machine epsilon, L' is the conjugate transpose of */
    /*  L, and U' is the conjugate transpose of U. */

    /*  Arguments */
    /*  ========= */

    /*  UPLO    (input) CHARACTER*1 */
    /*          Specifies whether the upper or lower triangular part of the */
    /*          symmetric matrix A is stored: */
    /*          = 'U':  Upper triangular */
    /*          = 'L':  Lower triangular */

    /*  N       (input) INTEGER */
    /*          The number of rows and columns of the matrix A.  N >= 0. */

    /*  KD      (input) INTEGER */
    /*          The number of super-diagonals of the matrix A if UPLO = 'U', */
    /*          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0. */

    /*  A       (input) REAL array, dimension (LDA,N) */
    /*          The original symmetric band matrix A.  If UPLO = 'U', the */
    /*          upper triangular part of A is stored as a band matrix; if */
    /*          UPLO = 'L', the lower triangular part of A is stored.  The */
    /*          columns of the appropriate triangle are stored in the columns */
    /*          of A and the diagonals of the triangle are stored in the rows */
    /*          of A.  See SPBTRF for further details. */

    /*  LDA     (input) INTEGER. */
    /*          The leading dimension of the array A.  LDA >= max(1,KD+1). */

    /*  AFAC    (input) REAL array, dimension (LDAFAC,N) */
    /*          The factored form of the matrix A.  AFAC contains the factor */
    /*          L or U from the L*L' or U'*U factorization in band storage */
    /*          format, as computed by SPBTRF. */

    /*  LDAFAC  (input) INTEGER */
    /*          The leading dimension of the array AFAC. */
    /*          LDAFAC >= max(1,KD+1). */

    /*  RWORK   (workspace) REAL array, dimension (N) */

    /*  RESID   (output) REAL */
    /*          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS ) */
    /*          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS ) */

    /*  ===================================================================== */


    /*     .. Parameters .. */
    /*     .. */
    /*     .. Local Scalars .. */
    /*     .. */
    /*     .. External Functions .. */
    /*     .. */
    /*     .. External Subroutines .. */
    /*     .. */
    /*     .. Intrinsic Functions .. */
    /*     .. */
    /*     .. Executable Statements .. */

    /*     Quick exit if N = 0. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    afac_dim1 = *ldafac;
    afac_offset = 1 + afac_dim1;
    afac -= afac_offset;
    --rwork;

    /* Function Body */
    if (*n <= 0) {
        *resid = 0.f;
        return 0;
    }

    /*     Exit with RESID = 1/EPS if ANORM = 0. */

    eps = slamch_("Epsilon");
    anorm = slansb_("1", uplo, n, kd, &a[a_offset], lda, &rwork[1]);
    if (anorm <= 0.f) {
        *resid = 1.f / eps;
        return 0;
    }

    /*     Compute the product U'*U, overwriting U. */

    if (lsame_(uplo, "U")) {
        for (k = *n; k >= 1; --k) {
            /* Computing MAX */
            i__1 = 1, i__2 = *kd + 2 - k;
            kc = max(i__1,i__2);
            klen = *kd + 1 - kc;

            /*           Compute the (K,K) element of the result. */

            i__1 = klen + 1;
            t = sdot_(&i__1, &afac[kc + k * afac_dim1], &c__1, &afac[kc + k *
                      afac_dim1], &c__1);
            afac[*kd + 1 + k * afac_dim1] = t;

            /*           Compute the rest of column K. */

            if (klen > 0) {
                i__1 = *ldafac - 1;
                strmv_("Upper", "Transpose", "Non-unit", &klen, &afac[*kd + 1
                        + (k - klen) * afac_dim1], &i__1, &afac[kc + k *
                                afac_dim1], &c__1);
            }

            /* L10: */
        }

        /*     UPLO = 'L':  Compute the product L*L', overwriting L. */

    } else {
        for (k = *n; k >= 1; --k) {
            /* Computing MIN */
            i__1 = *kd, i__2 = *n - k;
            klen = min(i__1,i__2);

            /*           Add a multiple of column K of the factor L to each of */
            /*           columns K+1 through N. */

            if (klen > 0) {
                i__1 = *ldafac - 1;
                ssyr_("Lower", &klen, &c_b14, &afac[k * afac_dim1 + 2], &c__1,
                      &afac[(k + 1) * afac_dim1 + 1], &i__1);
            }

            /*           Scale column K by the diagonal element. */

            t = afac[k * afac_dim1 + 1];
            i__1 = klen + 1;
            sscal_(&i__1, &t, &afac[k * afac_dim1 + 1], &c__1);

            /* L20: */
        }
    }

    /*     Compute the difference  L*L' - A  or  U'*U - A. */

    if (lsame_(uplo, "U")) {
        i__1 = *n;
        for (j = 1; j <= i__1; ++j) {
            /* Computing MAX */
            i__2 = 1, i__3 = *kd + 2 - j;
            mu = max(i__2,i__3);
            i__2 = *kd + 1;
            for (i__ = mu; i__ <= i__2; ++i__) {
                afac[i__ + j * afac_dim1] -= a[i__ + j * a_dim1];
                /* L30: */
            }
            /* L40: */
        }
    } else {
        i__1 = *n;
        for (j = 1; j <= i__1; ++j) {
            /* Computing MIN */
            i__2 = *kd + 1, i__3 = *n - j + 1;
            ml = min(i__2,i__3);
            i__2 = ml;
            for (i__ = 1; i__ <= i__2; ++i__) {
                afac[i__ + j * afac_dim1] -= a[i__ + j * a_dim1];
                /* L50: */
            }
            /* L60: */
        }
    }

    /*     Compute norm( L*L' - A ) / ( N * norm(A) * EPS ) */

    *resid = slansb_("I", uplo, n, kd, &afac[afac_offset], ldafac, &rwork[1]);

    *resid = *resid / (real) (*n) / anorm / eps;

    return 0;

    /*     End of SPBT01 */

} /* spbt01_ */
示例#8
0
/* Subroutine */ int ssbevx_(char *jobz, char *range, char *uplo, integer *n, 
	integer *kd, real *ab, integer *ldab, real *q, integer *ldq, real *vl,
	 real *vu, integer *il, integer *iu, real *abstol, integer *m, real *
	w, real *z, integer *ldz, real *work, integer *iwork, integer *ifail, 
	integer *info)
{
/*  -- LAPACK driver routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    SSBEVX computes selected eigenvalues and, optionally, eigenvectors   
    of a real symmetric band matrix A.  Eigenvalues and eigenvectors can 
  
    be selected by specifying either a range of values or a range of   
    indices for the desired eigenvalues.   

    Arguments   
    =========   

    JOBZ    (input) CHARACTER*1   
            = 'N':  Compute eigenvalues only;   
            = 'V':  Compute eigenvalues and eigenvectors.   

    RANGE   (input) CHARACTER*1   
            = 'A': all eigenvalues will be found;   
            = 'V': all eigenvalues in the half-open interval (VL,VU]   
                   will be found;   
            = 'I': the IL-th through IU-th eigenvalues will be found.   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    KD      (input) INTEGER   
            The number of superdiagonals of the matrix A if UPLO = 'U',   
            or the number of subdiagonals if UPLO = 'L'.  KD >= 0.   

    AB      (input/output) REAL array, dimension (LDAB, N)   
            On entry, the upper or lower triangle of the symmetric band   
            matrix A, stored in the first KD+1 rows of the array.  The   
            j-th column of A is stored in the j-th column of the array AB 
  
            as follows:   
            if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; 
  
            if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). 
  

            On exit, AB is overwritten by values generated during the   
            reduction to tridiagonal form.  If UPLO = 'U', the first   
            superdiagonal and the diagonal of the tridiagonal matrix T   
            are returned in rows KD and KD+1 of AB, and if UPLO = 'L',   
            the diagonal and first subdiagonal of T are returned in the   
            first two rows of AB.   

    LDAB    (input) INTEGER   
            The leading dimension of the array AB.  LDAB >= KD + 1.   

    Q       (output) REAL array, dimension (LDQ, N)   
            If JOBZ = 'V', the N-by-N orthogonal matrix used in the   
                           reduction to tridiagonal form.   
            If JOBZ = 'N', the array Q is not referenced.   

    LDQ     (input) INTEGER   
            The leading dimension of the array Q.  If JOBZ = 'V', then   
            LDQ >= max(1,N).   

    VL      (input) REAL   
    VU      (input) REAL   
            If RANGE='V', the lower and upper bounds of the interval to   
            be searched for eigenvalues. VL < VU.   
            Not referenced if RANGE = 'A' or 'I'.   

    IL      (input) INTEGER   
    IU      (input) INTEGER   
            If RANGE='I', the indices (in ascending order) of the   
            smallest and largest eigenvalues to be returned.   
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.   
            Not referenced if RANGE = 'A' or 'V'.   

    ABSTOL  (input) REAL   
            The absolute error tolerance for the eigenvalues.   
            An approximate eigenvalue is accepted as converged   
            when it is determined to lie in an interval [a,b]   
            of width less than or equal to   

                    ABSTOL + EPS *   max( |a|,|b| ) ,   

            where EPS is the machine precision.  If ABSTOL is less than   
            or equal to zero, then  EPS*|T|  will be used in its place,   
            where |T| is the 1-norm of the tridiagonal matrix obtained   
            by reducing AB to tridiagonal form.   

            Eigenvalues will be computed most accurately when ABSTOL is   
            set to twice the underflow threshold 2*SLAMCH('S'), not zero. 
  
            If this routine returns with INFO>0, indicating that some   
            eigenvectors did not converge, try setting ABSTOL to   
            2*SLAMCH('S').   

            See "Computing Small Singular Values of Bidiagonal Matrices   
            with Guaranteed High Relative Accuracy," by Demmel and   
            Kahan, LAPACK Working Note #3.   

    M       (output) INTEGER   
            The total number of eigenvalues found.  0 <= M <= N.   
            If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.   

    W       (output) REAL array, dimension (N)   
            The first M elements contain the selected eigenvalues in   
            ascending order.   

    Z       (output) REAL array, dimension (LDZ, max(1,M))   
            If JOBZ = 'V', then if INFO = 0, the first M columns of Z   
            contain the orthonormal eigenvectors of the matrix A   
            corresponding to the selected eigenvalues, with the i-th   
            column of Z holding the eigenvector associated with W(i).   
            If an eigenvector fails to converge, then that column of Z   
            contains the latest approximation to the eigenvector, and the 
  
            index of the eigenvector is returned in IFAIL.   
            If JOBZ = 'N', then Z is not referenced.   
            Note: the user must ensure that at least max(1,M) columns are 
  
            supplied in the array Z; if RANGE = 'V', the exact value of M 
  
            is not known in advance and an upper bound must be used.   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z.  LDZ >= 1, and if   
            JOBZ = 'V', LDZ >= max(1,N).   

    WORK    (workspace) REAL array, dimension (7*N)   

    IWORK   (workspace) INTEGER array, dimension (5*N)   

    IFAIL   (output) INTEGER array, dimension (N)   
            If JOBZ = 'V', then if INFO = 0, the first M elements of   
            IFAIL are zero.  If INFO > 0, then IFAIL contains the   
            indices of the eigenvectors that failed to converge.   
            If JOBZ = 'N', then IFAIL is not referenced.   

    INFO    (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  if INFO = i, then i eigenvectors failed to converge.   
                  Their indices are stored in array IFAIL.   

    ===================================================================== 
  


       Test the input parameters.   

    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static real c_b14 = 1.f;
    static integer c__1 = 1;
    static real c_b34 = 0.f;
    
    /* System generated locals */
    integer ab_dim1, ab_offset, q_dim1, q_offset, z_dim1, z_offset, i__1, 
	    i__2;
    real r__1, r__2;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    static integer indd, inde;
    static real anrm;
    static integer imax;
    static real rmin, rmax;
    static integer itmp1, i, j, indee;
    static real sigma;
    extern logical lsame_(char *, char *);
    static integer iinfo;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    static char order[1];
    extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *, 
	    real *, integer *, real *, integer *, real *, real *, integer *);
    static logical lower;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *), sswap_(integer *, real *, integer *, real *, integer *
	    );
    static logical wantz;
    static integer jj;
    static logical alleig, indeig;
    static integer iscale, indibl;
    static logical valeig;
    extern doublereal slamch_(char *);
    static real safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static real abstll, bignum;
    extern doublereal slansb_(char *, char *, integer *, integer *, real *, 
	    integer *, real *);
    extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, 
	    real *, integer *, integer *, real *, integer *, integer *);
    static integer indisp, indiwo;
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *);
    static integer indwrk;
    extern /* Subroutine */ int ssbtrd_(char *, char *, integer *, integer *, 
	    real *, integer *, real *, real *, real *, integer *, real *, 
	    integer *), sstein_(integer *, real *, real *, 
	    integer *, real *, integer *, integer *, real *, integer *, real *
	    , integer *, integer *, integer *), ssterf_(integer *, real *, 
	    real *, integer *);
    static integer nsplit;
    static real smlnum;
    extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *, 
	    real *, integer *, integer *, real *, real *, real *, integer *, 
	    integer *, real *, integer *, integer *, real *, integer *, 
	    integer *), ssteqr_(char *, integer *, real *, 
	    real *, real *, integer *, real *, integer *);
    static real eps, vll, vuu, tmp1;



#define W(I) w[(I)-1]
#define WORK(I) work[(I)-1]
#define IWORK(I) iwork[(I)-1]
#define IFAIL(I) ifail[(I)-1]

#define AB(I,J) ab[(I)-1 + ((J)-1)* ( *ldab)]
#define Q(I,J) q[(I)-1 + ((J)-1)* ( *ldq)]
#define Z(I,J) z[(I)-1 + ((J)-1)* ( *ldz)]

    wantz = lsame_(jobz, "V");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");
    lower = lsame_(uplo, "L");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (lower || lsame_(uplo, "U"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*kd < 0) {
	*info = -5;
    } else if (*ldab < *kd + 1) {
	*info = -7;
    } else if (*ldq < *n) {
	*info = -9;
    } else if (valeig && *n > 0 && *vu <= *vl) {
	*info = -11;
    } else if (indeig && *il < 1) {
	*info = -12;
    } else if (indeig && (*iu < min(*n,*il) || *iu > *n)) {
	*info = -13;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -18;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SSBEVX", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (alleig || indeig) {
	    *m = 1;
	    W(1) = AB(1,1);
	} else {
	    if (*vl < AB(1,1) && *vu >= AB(1,1)) {
		*m = 1;
		W(1) = AB(1,1);
	    }
	}
	if (wantz) {
	    Z(1,1) = 1.f;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
/* Computing MIN */
    r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
    rmax = dmin(r__1,r__2);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    abstll = *abstol;
    if (valeig) {
	vll = *vl;
	vuu = *vu;
    }
    anrm = slansb_("M", uplo, n, kd, &AB(1,1), ldab, &WORK(1));
    if (anrm > 0.f && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	if (lower) {
	    slascl_("B", kd, kd, &c_b14, &sigma, n, n, &AB(1,1), ldab, 
		    info);
	} else {
	    slascl_("Q", kd, kd, &c_b14, &sigma, n, n, &AB(1,1), ldab, 
		    info);
	}
	if (*abstol > 0.f) {
	    abstll = *abstol * sigma;
	}
	if (valeig) {
	    vll = *vl * sigma;
	    vuu = *vu * sigma;
	}
    }

/*     Call SSBTRD to reduce symmetric band matrix to tridiagonal form. */

    indd = 1;
    inde = indd + *n;
    indwrk = inde + *n;
    ssbtrd_(jobz, uplo, n, kd, &AB(1,1), ldab, &WORK(indd), &WORK(inde),
	     &Q(1,1), ldq, &WORK(indwrk), &iinfo);

/*     If all eigenvalues are desired and ABSTOL is less than or equal   
       to zero, then call SSTERF or SSTEQR.  If this fails for some   
       eigenvalue, then try SSTEBZ. */

    if ((alleig || indeig && *il == 1 && *iu == *n) && *abstol <= 0.f) {
	scopy_(n, &WORK(indd), &c__1, &W(1), &c__1);
	indee = indwrk + (*n << 1);
	if (! wantz) {
	    i__1 = *n - 1;
	    scopy_(&i__1, &WORK(inde), &c__1, &WORK(indee), &c__1);
	    ssterf_(n, &W(1), &WORK(indee), info);
	} else {
	    slacpy_("A", n, n, &Q(1,1), ldq, &Z(1,1), ldz);
	    i__1 = *n - 1;
	    scopy_(&i__1, &WORK(inde), &c__1, &WORK(indee), &c__1);
	    ssteqr_(jobz, n, &W(1), &WORK(indee), &Z(1,1), ldz, &WORK(
		    indwrk), info);
	    if (*info == 0) {
		i__1 = *n;
		for (i = 1; i <= *n; ++i) {
		    IFAIL(i) = 0;
/* L10: */
		}
	    }
	}
	if (*info == 0) {
	    *m = *n;
	    goto L30;
	}
	*info = 0;
    }

/*     Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    indibl = 1;
    indisp = indibl + *n;
    indiwo = indisp + *n;
    sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &WORK(indd), &WORK(
	    inde), m, &nsplit, &W(1), &IWORK(indibl), &IWORK(indisp), &WORK(
	    indwrk), &IWORK(indiwo), info);

    if (wantz) {
	sstein_(n, &WORK(indd), &WORK(inde), m, &W(1), &IWORK(indibl), &IWORK(
		indisp), &Z(1,1), ldz, &WORK(indwrk), &IWORK(indiwo), &
		IFAIL(1), info);

/*        Apply orthogonal matrix used in reduction to tridiagonal   
          form to eigenvectors returned by SSTEIN. */

	i__1 = *m;
	for (j = 1; j <= *m; ++j) {
	    scopy_(n, &Z(1,j), &c__1, &WORK(1), &c__1);
	    sgemv_("N", n, n, &c_b14, &Q(1,1), ldq, &WORK(1), &c__1, &
		    c_b34, &Z(1,j), &c__1);
/* L20: */
	}
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

L30:
    if (iscale == 1) {
	if (*info == 0) {
	    imax = *m;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &W(1), &c__1);
    }

/*     If eigenvalues are not in order, then sort them, along with   
       eigenvectors. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= *m-1; ++j) {
	    i = 0;
	    tmp1 = W(j);
	    i__2 = *m;
	    for (jj = j + 1; jj <= *m; ++jj) {
		if (W(jj) < tmp1) {
		    i = jj;
		    tmp1 = W(jj);
		}
/* L40: */
	    }

	    if (i != 0) {
		itmp1 = IWORK(indibl + i - 1);
		W(i) = W(j);
		IWORK(indibl + i - 1) = IWORK(indibl + j - 1);
		W(j) = tmp1;
		IWORK(indibl + j - 1) = itmp1;
		sswap_(n, &Z(1,i), &c__1, &Z(1,j), &
			c__1);
		if (*info != 0) {
		    itmp1 = IFAIL(i);
		    IFAIL(i) = IFAIL(j);
		    IFAIL(j) = itmp1;
		}
	    }
/* L50: */
	}
    }

    return 0;

/*     End of SSBEVX */

} /* ssbevx_ */
示例#9
0
/* Subroutine */ int spbt02_(char *uplo, integer *n, integer *kd, integer *
	nrhs, real *a, integer *lda, real *x, integer *ldx, real *b, integer *
	ldb, real *rwork, real *resid)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1;
    real r__1, r__2;

    /* Local variables */
    integer j;
    real eps, anorm, bnorm;
    real xnorm;


/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SPBT02 computes the residual for a solution of a symmetric banded */
/*  system of equations  A*x = b: */
/*     RESID = norm( B - A*X ) / ( norm(A) * norm(X) * EPS) */
/*  where EPS is the machine precision. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the upper or lower triangular part of the */
/*          symmetric matrix A is stored: */
/*          = 'U':  Upper triangular */
/*          = 'L':  Lower triangular */

/*  N       (input) INTEGER */
/*          The number of rows and columns of the matrix A.  N >= 0. */

/*  KD      (input) INTEGER */
/*          The number of super-diagonals of the matrix A if UPLO = 'U', */
/*          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0. */

/*  A       (input) REAL array, dimension (LDA,N) */
/*          The original symmetric band matrix A.  If UPLO = 'U', the */
/*          upper triangular part of A is stored as a band matrix; if */
/*          UPLO = 'L', the lower triangular part of A is stored.  The */
/*          columns of the appropriate triangle are stored in the columns */
/*          of A and the diagonals of the triangle are stored in the rows */
/*          of A.  See SPBTRF for further details. */

/*  LDA     (input) INTEGER. */
/*          The leading dimension of the array A.  LDA >= max(1,KD+1). */

/*  X       (input) REAL array, dimension (LDX,NRHS) */
/*          The computed solution vectors for the system of linear */
/*          equations. */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the array X.   LDX >= max(1,N). */

/*  B       (input/output) REAL array, dimension (LDB,NRHS) */
/*          On entry, the right hand side vectors for the system of */
/*          linear equations. */
/*          On exit, B is overwritten with the difference B - A*X. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  RWORK   (workspace) REAL array, dimension (N) */

/*  RESID   (output) REAL */
/*          The maximum over the number of right hand sides of */
/*          norm(B - A*X) / ( norm(A) * norm(X) * EPS ). */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Quick exit if N = 0 or NRHS = 0. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --rwork;

    /* Function Body */
    if (*n <= 0 || *nrhs <= 0) {
	*resid = 0.f;
	return 0;
    }

/*     Exit with RESID = 1/EPS if ANORM = 0. */

    eps = slamch_("Epsilon");
    anorm = slansb_("1", uplo, n, kd, &a[a_offset], lda, &rwork[1]);
    if (anorm <= 0.f) {
	*resid = 1.f / eps;
	return 0;
    }

/*     Compute  B - A*X */

    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
	ssbmv_(uplo, n, kd, &c_b5, &a[a_offset], lda, &x[j * x_dim1 + 1], &
		c__1, &c_b7, &b[j * b_dim1 + 1], &c__1);
/* L10: */
    }

/*     Compute the maximum over the number of right hand sides of */
/*          norm( B - A*X ) / ( norm(A) * norm(X) * EPS ) */

    *resid = 0.f;
    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
	bnorm = sasum_(n, &b[j * b_dim1 + 1], &c__1);
	xnorm = sasum_(n, &x[j * x_dim1 + 1], &c__1);
	if (xnorm <= 0.f) {
	    *resid = 1.f / eps;
	} else {
/* Computing MAX */
	    r__1 = *resid, r__2 = bnorm / anorm / xnorm / eps;
	    *resid = dmax(r__1,r__2);
	}
/* L20: */
    }

    return 0;

/*     End of SPBT02 */

} /* spbt02_ */