示例#1
0
文件: hsm.c 项目: abachrach/csm
void hsm_find_peaks_circ(int n, const double*f, double min_angle_deg, int unidir, int max_peaks,
	int*peaks, int* npeaks)
{
	sm_log_push("hsm_find_peaks_circ");

	assert(max_peaks>0);

	/* Find all local maxima for the function */
	int maxima[n], nmaxima;
	hsm_find_local_maxima_circ(n, f, maxima, &nmaxima);

	sm_debug("Found %d of %d are local maxima.\n", nmaxima, n);

	/* Sort based on value */
	qsort_descending(maxima, (size_t) nmaxima, f);

	*npeaks = 0;

	sm_log_push("For each maximum");
	/* Only retain a subset of these */
	for(int m=0;m<nmaxima;m++) {
		/* Here's a candidate maximum */
		int candidate = maxima[m];
		double candidate_angle = candidate * (2*M_PI/n);
		/* Check that is not too close to the already accepted maxima */
		int acceptable = 1;
		for(int a=0;a<*npeaks;a++) {
			int other = peaks[a];
			double other_angle = other * (2*M_PI/n);

			if(hsm_is_angle_between_smaller_than_deg(candidate_angle,other_angle,min_angle_deg)) {
				acceptable = 0; break;
			}

			/* If unidir, check also +M_PI */
			if(unidir)
			if(hsm_is_angle_between_smaller_than_deg(candidate_angle+M_PI,other_angle,min_angle_deg)) {
				acceptable = 0; break;
			}

		}

		sm_debug("%saccepting candidate %d; lag = %d value = %f\n",
			acceptable?"":"not ", m, maxima[m], f[maxima[m]]);

		if(acceptable) {
			peaks[*npeaks] = candidate;
			(*npeaks) ++;
		}

		if(*npeaks>=max_peaks) break;
	}
	sm_log_pop();

	sm_debug("found %d (max %d) maxima.\n", *npeaks, max_peaks);
	sm_log_pop();
}
示例#2
0
/** 
	If multiple points in laser_sens match to the same point in laser_ref, 
	only the nearest one wins.

	Uses: laser_sens->corr, laser_sens->p
	Modifies: laser_sens->corr
 */
void kill_outliers_double(struct sm_params*params) {
	double threshold = 3; /* TODO: add as configurable */

	LDP laser_ref  = params->laser_ref;
	LDP laser_sens = params->laser_sens;

	double dist2_i[laser_sens->nrays];
	double dist2_j[laser_ref->nrays];
	int j; for(j=0;j<laser_ref->nrays;j++) 
		dist2_j[j]= 1000000;
	
	int i;
	for(i=0;i<laser_sens->nrays;i++) {
		if(!ld_valid_corr(laser_sens, i)) continue;
		int j1 = laser_sens->corr[i].j1;
		dist2_i[i] = laser_sens->corr[i].dist2_j1;
		dist2_j[j1] = GSL_MIN(dist2_j[j1], dist2_i[i]);
	}
	
	int nkilled = 0;
	for(i=0;i<laser_sens->nrays;i++) {
		if(!ld_valid_corr(laser_sens, i)) continue;
		int j1 = laser_sens->corr[i].j1;
		if(dist2_i[i] > (threshold*threshold)*dist2_j[j1]) {
			laser_sens->corr[i].valid=0;
			nkilled ++;
		}
	}
	sm_debug("\tkill_outliers_double: killed %d correspondences\n",nkilled);
}
示例#3
0
文件: hsm.c 项目: abachrach/csm
void hsm_find_peaks_linear(int n, const double*f, double min_dist, int max_peaks,
	int*peaks, int* npeaks)
{
	sm_log_push("hsm_find_peaks_linear");

	assert(max_peaks>0);

	/* Find all local maxima for the function */
	int maxima[n], nmaxima;
	hsm_find_local_maxima_linear(n,f,maxima,&nmaxima);

	sm_debug("Found %d of %d are local maxima.\n", nmaxima, n);

	/* Sort based on value */
	qsort_descending(maxima, (size_t) nmaxima,  f);

	*npeaks = 0;
	sm_log_push("for each maximum");
	/* Only retain a subset of these */
	for(int m=0;m<nmaxima;m++) {
		/* Here's a candidate maximum */
		int candidate = maxima[m];
		/* Check that is not too close to the already accepted maxima */
		int acceptable = 1;
		for(int a=0;a<*npeaks;a++) {
			int other = peaks[a];

			if(abs(other-candidate) < min_dist) {
				acceptable = 0; break;
			}
		}

		sm_debug("%s accepting candidate %d; lag = %d value = %f\n",
			acceptable?"":"not", m, maxima[m], f[maxima[m]]);

		if(acceptable) {
			peaks[*npeaks] = candidate;
			(*npeaks) ++;
		}

		if(*npeaks >= max_peaks) break;
	}
	sm_log_pop("");
	sm_debug("Found %d (max %d) maxima.\n", *npeaks, max_peaks);

	sm_log_pop();
}
示例#4
0
int main(int argc, const char * argv[]) {
    sm_set_program_name(argv[0]);

    const char*input_filename;
    const char*output_pattern_op;

    struct option* ops = options_allocate(3);
    options_string(ops, "in", &input_filename, "stdin", "input file (JSON)");
    options_string(ops, "out", &output_pattern_op, "./ld_split^02d.json", "output pattern; printf() pattern, but write '^' instead of '%'");

    if(!options_parse_args(ops, argc, argv)) {
        fprintf(stderr, "%s : splits a JSON file into many files."
                "\n\nOptions:\n", argv[0]);
        options_print_help(ops, stderr);
        return -1;
    }


    /* Substitute "$" with "%" */

    char output_pattern[256];
    strcpy(output_pattern, output_pattern_op);
    char *f = output_pattern;
    while(*f) {
        if(*f=='^') *f='%';
        f++;
    }

    fputs(output_pattern, stderr);

    FILE * input_stream = open_file_for_reading(input_filename);

    int count = 0;

    JO jo;
    while( (jo = json_read_stream(input_stream)) ) {
        char filename[1000];
        sprintf(filename, output_pattern, count);
        if(!count) {

        }

        sm_debug("Writing to file (%s) %s\n", output_pattern, filename);
        FILE * f = open_file_for_writing(filename);
        if(!f) return -1;
        fputs(json_object_to_json_string(jo), f);
        jo_free(jo);
        fclose(f);

        count++;
    }


    return 0;
}
示例#5
0
/** expects cartesian valid */
void visibilityTest(LDP laser_ref, const gsl_vector*u) {

	double theta_from_u[laser_ref->nrays];
	
	int j;
	for(j=0;j<laser_ref->nrays;j++) {
		if(!ld_valid_ray(laser_ref,j)) continue;
		theta_from_u[j] = 
			atan2(gvg(u,1)-laser_ref->points[j].p[1],
			      gvg(u,0)-laser_ref->points[j].p[0]);
	}
	
	sm_debug("\tvisibility: Found outliers: ");
	int invalid = 0;
	for(j=1;j<laser_ref->nrays;j++) {
		if(!ld_valid_ray(laser_ref,j)||!ld_valid_ray(laser_ref,j-1)) continue;
		if(theta_from_u[j]<theta_from_u[j-1]) {
			laser_ref->valid[j] = 0;
			invalid ++;
			sm_debug("%d ",j);
		}
	}
	sm_debug("\n");
}
示例#6
0
/** Read next FLASER line in file, or NULL on error  */
int ld_read_next_laser_carmen(FILE*file, LDP*ld) {
	*ld = 0;
	#define MAX_LINE_LENGTH 10000
   char line[MAX_LINE_LENGTH];

	while(fgets(line, MAX_LINE_LENGTH-1, file)) {
		if(0 != strncmp(line, carmen_prefix, strlen(carmen_prefix))) {
			sm_debug("Skipping line: \n-> %s\n", line);
			continue;
		}
		
		*ld = ld_from_carmen_string(line);
		if(!*ld) {
			printf("Malformed line? \n-> '%s'", line);
			return 0;
		} else {
			return 1;
		}
	}
	return 1;
}
示例#7
0
/** 
	Trims the corrispondences using an adaptive algorithm 

	Assumes cartesian coordinates computed. (points and points_w)
	 
	So, to disable this:
		outliers_maxPerc = 1
		outliers_adaptive_order = 1 

*/
void kill_outliers_trim(struct sm_params*params,  double*total_error) {
		
	if(JJ) jj_context_enter("kill_outliers_trim");
		
	LDP laser_ref  = params->laser_ref;
	LDP laser_sens = params->laser_sens;
	
	/* dist2, indexed by k, contains the error for the k-th correspondence */
	int k = 0; 
	double dist2[laser_sens->nrays];
		
	int i;
	double dist[laser_sens->nrays];
	/* for each point in laser_sens */
	for(i=0;i<laser_sens->nrays;i++) {
		/* which has a valid correspondence */
		if(!ld_valid_corr(laser_sens, i)) { dist[i]=NAN; continue; }
		double *p_i_w = laser_sens->points_w[i].p;
		
		int j1 = laser_sens->corr[i].j1;
		int j2 = laser_sens->corr[i].j2;
		/* Compute the distance to the corresponding segment */
		dist[i]=  dist_to_segment_d(
			laser_ref->points[j1].p, laser_ref->points[j2].p, p_i_w);
		dist2[k] = dist[i];
		k++;	
	}
	
	
	if(JJ) jj_add_int("num_valid_before", k);
	if(JJ) jj_add_double_array("dist_points", dist2, laser_sens->nrays);
	if(JJ) jj_add_double_array("dist_corr_unsorted", dist2, k);

#if 0	
	double dist2_copy[k]; for(i=0;i<k;i++) dist2_copy[i] = dist2[i];
#endif 

	/* two errors limits are defined: */
		/* In any case, we don't want more than outliers_maxPerc% */
		int order = (int)floor(k*(params->outliers_maxPerc));
			order = GSL_MAX(0, GSL_MIN(order, k-1));

	/* The dists for the correspondence are sorted
	   in ascending order */
		quicksort(dist2, 0, k-1);
		double error_limit1 = dist2[order];
		if(JJ) jj_add_double_array("dist_corr_sorted", dist2, k);
	
		/* Then we take a order statics (o*K) */
		/* And we say that the error must be less than alpha*dist(o*K) */
		int order2 = (int)floor(k*params->outliers_adaptive_order);
			order2 = GSL_MAX(0, GSL_MIN(order2, k-1));
		double error_limit2 = params->outliers_adaptive_mult*dist2[order2];
	
	double error_limit = GSL_MIN(error_limit1, error_limit2);
	
#if 0
	double error_limit1_ho = hoare_selection(dist2_copy, 0, k-1, order);
	double error_limit2_ho = error_limit2;
	if((error_limit1_ho != error_limit1) || (error_limit2_ho != error_limit2)) {
		printf("%f == %f    %f  == %f\n",
			error_limit1_ho, error_limit1, error_limit2_ho, error_limit2);
	}
#endif

	if(JJ) jj_add_double_array("dist_corr_sorted", dist2, k);
	if(JJ) jj_add_double("error_limit_max_perc", error_limit1);
	if(JJ) jj_add_double("error_limit_adaptive", error_limit2);
	if(JJ) jj_add_double("error_limit", error_limit);
	
	sm_debug("\ticp_outliers: maxPerc %f error_limit: fix %f adaptive %f \n",
		params->outliers_maxPerc,error_limit1,error_limit2);

	*total_error = 0;
	int nvalid = 0;
	for(i=0;i<laser_sens->nrays;i++) {
		if(!ld_valid_corr(laser_sens, i)) continue;
		if(dist[i] > error_limit) {
			laser_sens->corr[i].valid = 0;
			laser_sens->corr[i].j1 = -1;
			laser_sens->corr[i].j2 = -1;
		} else {
			nvalid++;
			*total_error += dist[i];
		}
	}
	
	sm_debug("\ticp_outliers: valid %d/%d (limit: %f) mean error = %f \n",nvalid,k,error_limit,
		*total_error/nvalid);	

	if(JJ) jj_add_int("num_valid_after", nvalid);
	if(JJ) jj_add_double("total_error", *total_error);
	if(JJ) jj_add_double("mean_error", *total_error / nvalid);
		
	if(JJ) jj_context_exit();
}
示例#8
0
文件: icp.c 项目: AndreaCensi/csm
void sm_icp(struct sm_params*params, struct sm_result*res) {
	res->valid = 0;

	LDP laser_ref  = params->laser_ref;
	LDP laser_sens = params->laser_sens;
	
	if(!ld_valid_fields(laser_ref) || 
	   !ld_valid_fields(laser_sens)) {
		return;
	}
	
	sm_debug("sm_icp: laser_sens has %d/%d; laser_ref has %d/%d rays valid\n",
		count_equal(laser_sens->valid, laser_sens->nrays, 1), laser_sens->nrays,
		count_equal(laser_ref->valid, laser_ref->nrays, 1), laser_ref->nrays);
	
	
	/** Mark as invalid the rays outside of (min_reading, max_reading] */
	ld_invalid_if_outside(laser_ref, params->min_reading, params->max_reading);
	ld_invalid_if_outside(laser_sens, params->min_reading, params->max_reading);
	
	sm_debug("sm_icp:  laser_sens has %d/%d; laser_ref has %d/%d rays valid (after removing outside interval [%f, %f])\n",
		count_equal(laser_sens->valid, laser_sens->nrays, 1), laser_sens->nrays,
		count_equal(laser_ref->valid, laser_ref->nrays, 1), laser_ref->nrays,
   	   params->min_reading, params->max_reading);
	
	if(JJ) jj_context_enter("sm_icp");
	
	egsl_push_named("sm_icp");
	
			
	if(params->use_corr_tricks || params->debug_verify_tricks)
		ld_create_jump_tables(laser_ref);
		
	ld_compute_cartesian(laser_ref);
	ld_compute_cartesian(laser_sens);

	if(params->do_alpha_test) {
		ld_simple_clustering(laser_ref, params->clustering_threshold);
		ld_compute_orientation(laser_ref, params->orientation_neighbourhood, params->sigma);
		ld_simple_clustering(laser_sens, params->clustering_threshold);
		ld_compute_orientation(laser_sens, params->orientation_neighbourhood, params->sigma);
	}

	if(JJ) jj_add("laser_ref",  ld_to_json(laser_ref));
	if(JJ) jj_add("laser_sens", ld_to_json(laser_sens));
	
	gsl_vector * x_new = gsl_vector_alloc(3);
	gsl_vector * x_old = vector_from_array(3, params->first_guess);
	
	if(params->do_visibility_test) {
		sm_debug("laser_ref:\n");
		visibilityTest(laser_ref, x_old);

		sm_debug("laser_sens:\n");
		gsl_vector * minus_x_old = gsl_vector_alloc(3);
		ominus(x_old,minus_x_old);
		visibilityTest(laser_sens, minus_x_old);
		gsl_vector_free(minus_x_old);
	}
	
	double error;
	int iterations;
	int nvalid;
	if(!icp_loop(params, x_old->data, x_new->data, &error, &nvalid, &iterations)) {
		sm_error("icp: ICP failed for some reason. \n");
		res->valid = 0;
		res->iterations = iterations;
		res->nvalid = 0;
		
	} else {
		/* It was succesfull */

		int restarted = 0;		
		double best_error = error;
		gsl_vector * best_x = gsl_vector_alloc(3);
		gsl_vector_memcpy(best_x, x_new);

		if(params->restart && 
			(error/nvalid)>(params->restart_threshold_mean_error) ) {
			sm_debug("Restarting: %f > %f \n",(error/nvalid),(params->restart_threshold_mean_error));
			restarted = 1;
			double dt  = params->restart_dt;
			double dth = params->restart_dtheta;
			sm_debug("icp_loop: dt = %f dtheta= %f deg\n",dt,rad2deg(dth));
		
			double perturb[6][3] = {
				{dt,0,0}, {-dt,0,0},
				{0,dt,0}, {0,-dt,0},
				{0,0,dth}, {0,0,-dth}
			};

			int a; for(a=0;a<6;a++){
				sm_debug("-- Restarting with perturbation #%d\n", a);
				struct sm_params my_params = *params;
				gsl_vector * start = gsl_vector_alloc(3);
					gvs(start, 0, gvg(x_new,0)+perturb[a][0]);
					gvs(start, 1, gvg(x_new,1)+perturb[a][1]);
					gvs(start, 2, gvg(x_new,2)+perturb[a][2]);
				gsl_vector * x_a = gsl_vector_alloc(3);
				double my_error; int my_valid; int my_iterations;
				if(!icp_loop(&my_params, start->data, x_a->data, &my_error, &my_valid, &my_iterations)){
					sm_error("Error during restart #%d/%d. \n", a, 6);
					break;
				}
				iterations+=my_iterations;
		
				if(my_error < best_error) {
					sm_debug("--Perturbation #%d resulted in error %f < %f\n", a,my_error,best_error);
					gsl_vector_memcpy(best_x, x_a);
					best_error = my_error;
				}
				gsl_vector_free(x_a); gsl_vector_free(start);
			}
		}
	
	
		/* At last, we did it. */
		res->valid = 1;
		vector_to_array(best_x, res->x);
		sm_debug("icp: final x =  %s  \n", gsl_friendly_pose(best_x));
	
		if (restarted) { // recompute correspondences in case of restarts
			ld_compute_world_coords(laser_sens, res->x);
			if(params->use_corr_tricks)
				find_correspondences_tricks(params);
			else
				find_correspondences(params);
		}

		if(params->do_compute_covariance)  {

			val cov0_x, dx_dy1, dx_dy2;
			compute_covariance_exact(
				laser_ref, laser_sens, best_x,
				&cov0_x, &dx_dy1, &dx_dy2);
		
			val cov_x = sc(square(params->sigma), cov0_x); 
/*			egsl_v2da(cov_x, res->cov_x); */
		
			res->cov_x_m = egsl_v2gslm(cov_x);
			res->dx_dy1_m = egsl_v2gslm(dx_dy1);
			res->dx_dy2_m = egsl_v2gslm(dx_dy2);
		
			if(0) {
				egsl_print("cov0_x", cov0_x);
				egsl_print_spectrum("cov0_x", cov0_x);
		
				val fim = ld_fisher0(laser_ref);
				val ifim = inv(fim);
				egsl_print("fim", fim);
				egsl_print_spectrum("ifim", ifim);
			}
		}
	
		res->error = best_error;
		res->iterations = iterations;
		res->nvalid = nvalid;

		gsl_vector_free(best_x);
	}
	gsl_vector_free(x_new);
	gsl_vector_free(x_old);


	egsl_pop_named("sm_icp");

	if(JJ) jj_context_exit();
}
示例#9
0
int compute_next_estimate(struct sm_params*params, 
	const double x_old[3], double x_new[3]) 
{
	LDP laser_ref  = params->laser_ref;
	LDP laser_sens = params->laser_sens;
	
	struct gpc_corr c[laser_sens->nrays];

	int i; int k=0;
	for(i=0;i<laser_sens->nrays;i++) {
		if(!laser_sens->valid[i])
			continue;
			
		if(!ld_valid_corr(laser_sens,i))
			continue;
		
		int j1 = laser_sens->corr[i].j1;
		int j2 = laser_sens->corr[i].j2;

		c[k].valid = 1;
		
		if(laser_sens->corr[i].type == corr_pl) {

			c[k].p[0] = laser_sens->points[i].p[0];
			c[k].p[1] = laser_sens->points[i].p[1];
			c[k].q[0] = laser_ref->points[j1].p[0];
			c[k].q[1] = laser_ref->points[j1].p[1];

			/** TODO: here we could use the estimated alpha */
			double diff[2];
			diff[0] = laser_ref->points[j1].p[0]-laser_ref->points[j2].p[0];
			diff[1] = laser_ref->points[j1].p[1]-laser_ref->points[j2].p[1];
			double one_on_norm = 1 / sqrt(diff[0]*diff[0]+diff[1]*diff[1]);
			double normal[2];
			normal[0] = +diff[1] * one_on_norm;
			normal[1] = -diff[0] * one_on_norm;

			double cos_alpha = normal[0];
			double sin_alpha = normal[1];
						
			c[k].C[0][0] = cos_alpha*cos_alpha;
			c[k].C[1][0] = 
			c[k].C[0][1] = cos_alpha*sin_alpha;
			c[k].C[1][1] = sin_alpha*sin_alpha;
			
/*			sm_debug("k=%d, i=%d sens_phi: %fdeg, j1=%d j2=%d,  alpha_seg=%f, cos=%f sin=%f \n", k,i,
				rad2deg(laser_sens->theta[i]), j1,j2, atan2(sin_alpha,cos_alpha), cos_alpha,sin_alpha);*/
			
#if 0
			/* Note: it seems that because of numerical errors this matrix might be
			   not semidef positive. */
			double det = c[k].C[0][0] * c[k].C[1][1] - c[k].C[0][1] * c[k].C[1][0];
			double trace = c[k].C[0][0] + c[k].C[1][1];
			
			int semidef = (det >= 0) && (trace>0);
			if(!semidef) {
	/*			printf("%d: Adjusting correspondence weights\n",i);*/
				double eps = -det;
				c[k].C[0][0] += 2*sqrt(eps);
				c[k].C[1][1] += 2*sqrt(eps);
			}
#endif			
		} else {
			c[k].p[0] = laser_sens->points[i].p[0];
			c[k].p[1] = laser_sens->points[i].p[1];
			
			projection_on_segment_d(
				laser_ref->points[j1].p,
				laser_ref->points[j2].p,
				laser_sens->points_w[i].p,
				c[k].q);

			/* Identity matrix */
			c[k].C[0][0] = 1;
			c[k].C[1][0] = 0;
			c[k].C[0][1] = 0;
			c[k].C[1][1] = 1;
		}
		
		
		double factor = 1;
		
		/* Scale the correspondence weight by a factor concerning the 
		   information in this reading. */
		if(params->use_ml_weights) {
			int have_alpha = 0;
			double alpha = 0;
			if(!is_nan(laser_ref->true_alpha[j1])) {
				alpha = laser_ref->true_alpha[j1];
				have_alpha = 1;
			} else if(laser_ref->alpha_valid[j1]) {
				alpha = laser_ref->alpha[j1];;
				have_alpha = 1;
			} else have_alpha = 0;
			
			if(have_alpha) {
				double pose_theta = x_old[2];
				/** Incidence of the ray 
					Note that alpha is relative to the first scan (not the world)
					and that pose_theta is the angle of the second scan with 
					respect to the first, hence it's ok. */
				double beta = alpha - (pose_theta + laser_sens->theta[i]);
				factor = 1 / square(cos(beta));
			} else {
				static int warned_before = 0;
				if(!warned_before) {
					sm_error("Param use_ml_weights was active, but not valid alpha[] or true_alpha[]." 
					          "Perhaps, if this is a single ray not having alpha, you should mark it as inactive.\n");						
					sm_error("Writing laser_ref: \n");						
					ld_write_as_json(laser_ref, stderr);
					warned_before = 1;
				}
			}
		} 
		
		/* Weight the points by the sigma in laser_sens */
		if(params->use_sigma_weights) {
			if(!is_nan(laser_sens->readings_sigma[i])) {
				factor *= 1 / square(laser_sens->readings_sigma[i]);
			} else {
				static int warned_before = 0;
				if(!warned_before) {
					sm_error("Param use_sigma_weights was active, but the field readings_sigma[] was not filled in.\n");						
					sm_error("Writing laser_sens: \n");						
					ld_write_as_json(laser_sens, stderr);
				}
			}
		}
		
		c[k].C[0][0] *= factor;
		c[k].C[1][0] *= factor;
		c[k].C[0][1] *= factor;
		c[k].C[1][1] *= factor;
		
		k++;
	}
	
	/* TODO: use prior for odometry */
	double std = 0.11;
	const double inv_cov_x0[9] = 
		{1/(std*std), 0, 0,
		 0, 1/(std*std), 0,
		 0, 0, 0};
	
	
	int ok = gpc_solve(k, c, 0, inv_cov_x0, x_new);
	if(!ok) {
		sm_error("gpc_solve_valid failed\n");
		return 0;
	}

	double old_error = gpc_total_error(c, k, x_old);
	double new_error = gpc_total_error(c, k, x_new);

	sm_debug("\tcompute_next_estimate: old error: %f  x_old= %s \n", old_error, friendly_pose(x_old));
	sm_debug("\tcompute_next_estimate: new error: %f  x_new= %s \n", new_error, friendly_pose(x_new));
	sm_debug("\tcompute_next_estimate: new error - old_error: %g \n", new_error-old_error);

	double epsilon = 0.000001;
	if(new_error > old_error + epsilon) {
		sm_error("\tcompute_next_estimate: something's fishy here! Old error: %lf  new error: %lf  x_old %lf %lf %lf x_new %lf %lf %lf\n",old_error,new_error,x_old[0],x_old[1],x_old[2],x_new[0],x_new[1],x_new[2]);
	}
	
	return 1;
}
示例#10
0
int icp_loop(struct sm_params*params, const double*q0, double*x_new, 
	double*total_error, int*valid, int*iterations) {
	if(any_nan(q0,3)) {
		sm_error("icp_loop: Initial pose contains nan: %s\n", friendly_pose(q0));
		return 0;
	}
		
		
	LDP laser_sens = params->laser_sens;
	double x_old[3], delta[3], delta_old[3] = {0,0,0};
	copy_d(q0, 3, x_old);
	unsigned int hashes[params->max_iterations];
	int iteration;
	
	sm_debug("icp: starting at  q0 =  %s  \n", friendly_pose(x_old));
	
	if(JJ) jj_loop_enter("iterations");
	
	int all_is_okay = 1;
	
	for(iteration=0; iteration<params->max_iterations;iteration++) {
		if(JJ) jj_loop_iteration();
		if(JJ) jj_add_double_array("x_old", x_old, 3);

		egsl_push_named("icp_loop iteration");
		sm_debug("== icp_loop: starting iteration. %d  \n", iteration);

		/** Compute laser_sens's points in laser_ref's coordinates
		    by roto-translating by x_old */
		ld_compute_world_coords(laser_sens, x_old);

		/** Find correspondences (the naif or smart way) */
		if(params->use_corr_tricks)
			find_correspondences_tricks(params);
		else
			find_correspondences(params);

		/** If debug_verify_tricks, make sure that find_correspondences_tricks()
		    and find_correspondences() return the same answer */
			if(params->debug_verify_tricks)
				debug_correspondences(params);

		/* If not many correspondences, bail out */
		int num_corr = ld_num_valid_correspondences(laser_sens);
		double fail_perc = 0.05;
		if(num_corr < fail_perc * laser_sens->nrays) { /* TODO: arbitrary */
			sm_error("	: before trimming, only %d correspondences.\n",num_corr);
			all_is_okay = 0;
			egsl_pop_named("icp_loop iteration"); /* loop context */
			break;
		}

		if(JJ) jj_add("corr0", corr_to_json(laser_sens->corr, laser_sens->nrays));

		/* Kill some correspondences (using dubious algorithm) */
		if(params->outliers_remove_doubles)
			kill_outliers_double(params);
		
		int num_corr2 = ld_num_valid_correspondences(laser_sens);

		if(JJ) jj_add("corr1", corr_to_json(laser_sens->corr, laser_sens->nrays));
		
		double error=0;
		/* Trim correspondences */
		kill_outliers_trim(params, &error);
		int num_corr_after = ld_num_valid_correspondences(laser_sens);
		
		if(JJ) {
			jj_add("corr2", corr_to_json(laser_sens->corr, laser_sens->nrays));
			jj_add_int("num_corr0", num_corr);
			jj_add_int("num_corr1", num_corr2);
			jj_add_int("num_corr2", num_corr_after);
		}

		*total_error = error; 
		*valid = num_corr_after;

		sm_debug("  icp_loop: total error: %f  valid %d   mean = %f\n", *total_error, *valid, *total_error/ *valid);
		
		/* If not many correspondences, bail out */
		if(num_corr_after < fail_perc * laser_sens->nrays){
			sm_error("  icp_loop: failed: after trimming, only %d correspondences.\n",num_corr_after);
			all_is_okay = 0;
			egsl_pop_named("icp_loop iteration"); /* loop context */
			break;
		}

		/* Compute next estimate based on the correspondences */
		if(!compute_next_estimate(params, x_old, x_new)) {
			sm_error("  icp_loop: Cannot compute next estimate.\n");
			all_is_okay = 0;
			egsl_pop_named("icp_loop iteration");
			break;			
		}

		pose_diff_d(x_new, x_old, delta);
		
		{
			sm_debug("  icp_loop: killing. laser_sens has %d/%d rays valid,  %d corr found -> %d after double cut -> %d after adaptive cut \n", count_equal(laser_sens->valid, laser_sens->nrays, 1), laser_sens->nrays, num_corr, num_corr2, num_corr_after);
			if(JJ) {
				jj_add_double_array("x_new", x_new, 3);
				jj_add_double_array("delta", delta, 3);
			}
		}
		/** Checks for oscillations */
		hashes[iteration] = ld_corr_hash(laser_sens);
		
		{
			sm_debug("  icp_loop: it. %d  hash=%d nvalid=%d mean error = %f, x_new= %s\n", 
				iteration, hashes[iteration], *valid, *total_error/ *valid, 
				friendly_pose(x_new));
		}

		
		/** PLICP terminates in a finite number of steps! */
		if(params->use_point_to_line_distance) {
			int loop_detected = 0; /* TODO: make function */
			int a; for(a=iteration-1;a>=0;a--) {
				if(hashes[a]==hashes[iteration]) {
					sm_debug("icpc: oscillation detected (cycle length = %d)\n", iteration-a);
					loop_detected = 1;
					break;
				}
			}
			if(loop_detected) {
				egsl_pop_named("icp_loop iteration");
				break;
			} 
		}
	
		/* This termination criterium is useless when using
		   the point-to-line-distance; however, we put it here because
		   one can choose to use the point-to-point distance. */
		if(termination_criterion(params, delta)) {
			egsl_pop_named("icp_loop iteration");
			break;
		}
		
		copy_d(x_new, 3, x_old);
		copy_d(delta, 3, delta_old);
		
		
		egsl_pop_named("icp_loop iteration");
	}

	if(JJ) jj_loop_exit();
	
	*iterations = iteration+1;
	
	return all_is_okay;
}
示例#11
0
文件: log2pdf.c 项目: AndreaCensi/csm
int log2pdf(log2pdf_params *p) {

	/** First of all, we read the entire map into memory */
	FILE *input_file = open_file_for_reading(p->input_filename);
	if(!input_file) return 0;
	
	LDP*scans; int nscans;
	
	if(!ld_read_some_scans_distance(input_file,  &scans, &nscans,
		 p->use_reference, p->distance_xy, deg2rad(p->distance_th_deg) ) ){
		sm_error("Could not read map from file '%s'.\n", p->input_filename); 
		return 0;
	}
	
	if(nscans == 0) {
		sm_error("I could not read any scan from file '%s'.\n", p->input_filename);
		return 0;
	}
	
	sm_debug("Read map: %d scans in total.\n", nscans);

	/** Let's find the bounding box for the map */
	double bb_min[2], bb_max[2];
	double offset[3] = {0,0,0};
	lda_get_bounding_box(scans, nscans, bb_min, bb_max, offset, p->use_reference, p->laser.horizon);
	
	bb_min[0] -= p->padding;
	bb_min[1] -= p->padding;
	bb_max[0] += p->padding;
	bb_max[1] += p->padding;
	

	sm_debug("Bounding box: %f %f -- %f %f.\n", bb_min[0], bb_min[1],
		bb_max[0], bb_max[1]);

		
	/* Create PDF surface and setup paper size and transformations */
	int max_width_points = p->dimension;
	int max_height_points = p->dimension;
	cairo_surface_t *surface;
	cairo_t *cr;

	if(!create_pdf_surface(p->output_filename, max_width_points, max_height_points, 
		bb_min, bb_max, &surface, &cr)) return 0;

	/* Draw pose path */
	if(p->pose_path.draw) {
		cairo_save(cr);
		
		cr_set_style(cr, &(p->pose_path));
		cr_lda_draw_pose_path(cr, scans, nscans, p->use_reference);

		if(nscans > 0 && p->laser.pose.draw) {
			cairo_set_source_rgb(cr, 0.3, 0.0, 1.0);
			double *pose0 = ld_get_reference_pose(scans[0], p->use_reference);
			cairo_arc(cr, pose0[0], pose0[1], p->start_pose_width, 0.0, 2*M_PI);
			cairo_fill(cr);
		}

		cairo_restore(cr);
	}

	/* Draw map */
	int k; for(k=0;k<nscans;k++) {
		LDP ld = scans[k];
		double *pose = ld_get_reference_pose(ld, p->use_reference);
		if(!pose) continue;
		
		double offset[3] = {0,0, deg2rad(p->offset_theta_deg) };
		double world_pose[3];
		oplus_d(offset, pose, world_pose);
				
		cairo_save(cr);
		cr_set_reference(cr, world_pose);
		cr_ld_draw(cr, ld, &(p->laser));
		cairo_restore(cr);
	}

	cairo_show_page (cr);

	cairo_destroy (cr);
	cairo_surface_destroy (surface);
	return 1;
}
示例#12
0
文件: hsm.c 项目: abachrach/csm
void hsm_match(struct hsm_params*p, hsm_buffer b1, hsm_buffer b2) {
	sm_log_push("hsm_match");
	/* Let's measure the time */
	clock_t hsm_match_start = clock();
	
	assert(b1->num_angular_cells == b2->num_angular_cells);
	assert(p->max_translation > 0);
	assert(b1->linear_cell_size > 0);

	b1->num_valid_results = 0;

	/* Compute cross-correlation of spectra */
	hsm_circular_cross_corr_stupid(b1->num_angular_cells, b2->hs, b1->hs, b1->hs_cross_corr);

	/* Find peaks in cross-correlation */
	int peaks[p->num_angular_hypotheses], npeaks;
	hsm_find_peaks_circ(b1->num_angular_cells, b1->hs_cross_corr, p->angular_hyp_min_distance_deg, 0, p->num_angular_hypotheses, peaks, &npeaks);

	sm_debug("Found %d peaks (max %d) in cross correlation.\n", npeaks, p->num_angular_hypotheses);

	if(npeaks == 0) {
		sm_error("Cross correlation of spectra has 0 peaks.\n");
		sm_log_pop();
		return;
	}

	sm_log_push("loop on theta hypotheses");
	/* lag e' quanto 2 si sposta a destra rispetto a 1 */
	for(int np=0;np<npeaks;np++) {
		int lag = peaks[np];
		double theta_hypothesis = lag * (2*M_PI/b1->num_angular_cells);

		sm_debug("Theta hyp#%d: lag %d, angle %fdeg\n", np, lag, rad2deg(theta_hypothesis));

		/* Superimpose the two spectra */
		double mult[b1->num_angular_cells];
		for(int r=0;r<b1->num_angular_cells;r++)
			mult[r] = b1->hs[r] * b2->hs[pos_mod(r-lag, b1->num_angular_cells)];

		/* Find directions where both are intense */
		int directions[p->xc_ndirections], ndirections;
		hsm_find_peaks_circ(b1->num_angular_cells, b1->hs_cross_corr, p->xc_directions_min_distance_deg, 1, p->xc_ndirections, directions, &ndirections);

		if(ndirections<2) {
			sm_error("Too few directions.\n");
		}
		
		struct {
			/* Direction of cross correlation */
			double angle;
			int nhypotheses;
			struct {
				double delta;
				double value;
			} hypotheses[p->linear_xc_max_npeaks];
		} dirs[ndirections];


		sm_debug("Using %d (max %d) correlations directions.\n", ndirections, p->xc_ndirections);

		int max_lag = (int) ceil(p->max_translation / b1->linear_cell_size);
		int min_lag = -max_lag;
		sm_debug("Max lag: %d cells (max t: %f, cell size: %f)\n",
			max_lag, p->max_translation, b1->linear_cell_size);

		sm_log_push("loop on xc direction");
		/* For each correlation direction */
		for(int cd=0;cd<ndirections;cd++) {

 			dirs[cd].angle =  theta_hypothesis + (directions[cd]) * (2*M_PI/b1->num_angular_cells);

			printf(" cd %d angle = %d deg\n", cd, (int) rad2deg(dirs[cd].angle));

			/* Do correlation */
			int    lags  [2*max_lag + 1];
			double xcorr [2*max_lag + 1];

			int i1 = pos_mod(directions[cd]        , b1->num_angular_cells);
			int i2 = pos_mod(directions[cd] + lag  , b1->num_angular_cells);
			double *f1 = b1->ht[i1];
			double *f2 = b2->ht[i2];

			hsm_linear_cross_corr_stupid(
				b2->num_linear_cells,f2,
				b1->num_linear_cells,f1,
				xcorr, lags, min_lag, max_lag);

			/* Find peaks of cross-correlation */
			int linear_peaks[p->linear_xc_max_npeaks], linear_npeaks;

			hsm_find_peaks_linear(
				2*max_lag + 1, xcorr, p->linear_xc_peaks_min_distance/b1->linear_cell_size,
				p->linear_xc_max_npeaks, linear_peaks, &linear_npeaks);

			sm_debug("theta hyp #%d: Found %d (max %d) peaks for correlation.\n",
				cd, linear_npeaks, p->linear_xc_max_npeaks);

			dirs[cd].nhypotheses = linear_npeaks;
			sm_log_push("Considering each peak of linear xc");
			for(int lp=0;lp<linear_npeaks;lp++) {
				int linear_xc_lag = lags[linear_peaks[lp]];
				double value = xcorr[linear_peaks[lp]];
				double linear_xc_lag_m = linear_xc_lag * b1->linear_cell_size;
				sm_debug("lag: %d  delta: %f  value: %f \n", linear_xc_lag, linear_xc_lag_m, value);
				dirs[cd].hypotheses[lp].delta = linear_xc_lag_m;
				dirs[cd].hypotheses[lp].value = value;
			}
			sm_log_pop();
			
			if(p->debug_true_x_valid) {
				double true_delta = cos(dirs[cd].angle) * p->debug_true_x[0] + 
					sin(dirs[cd].angle) * p->debug_true_x[1];
				sm_debug("true_x    delta = %f \n", true_delta );
			}

		} /* xc direction */
		sm_log_pop();

		sm_debug("Now doing all combinations. How many are there?\n");
		int possible_choices[ndirections];
		int num_combinations = 1;
		for(int cd=0;cd<ndirections;cd++) {
			possible_choices[cd] = dirs[cd].nhypotheses;
			num_combinations *= dirs[cd].nhypotheses;
		}
		sm_debug("Total: %d combinations\n", num_combinations);
		sm_log_push("For each combination..");
		for(int comb=0;comb<num_combinations;comb++) {
			int choices[ndirections];
			hsm_generate_combinations(ndirections, possible_choices, comb, choices);

			/* Linear least squares */
			double M[2][2]={{0,0},{0,0}}; double Z[2]={0,0};
			/* heuristic quality value */
			double sum_values = 0;
			for(int cd=0;cd<ndirections;cd++) {
				double angle = dirs[cd].angle;
				double c = cos(angle), s = sin(angle);
				double w = dirs[cd].hypotheses[choices[cd]].value;
				double y = dirs[cd].hypotheses[choices[cd]].delta;

				M[0][0] += c * c * w;
				M[1][0] += c * s * w;
				M[0][1] += c * s * w;
				M[1][1] += s * s * w;
				Z[0] += w * c * y;
				Z[1] += w * s * y;

				sum_values += w;
			}

			double det = M[0][0]*M[1][1]-M[0][1]*M[1][0];
			double Minv[2][2];
			Minv[0][0] = M[1][1] * (1/det);
			Minv[1][1] = M[0][0] * (1/det);
			Minv[0][1] = -M[0][1] * (1/det);
			Minv[1][0] = -M[1][0] * (1/det);

			double t[2] = {
				Minv[0][0]*Z[0] + Minv[0][1]*Z[1],
				Minv[1][0]*Z[0] + Minv[1][1]*Z[1]};

			/* copy result in results slot */

			int k = b1->num_valid_results;
			b1->results[k][0] = t[0];
			b1->results[k][1] = t[1];
			b1->results[k][2] = theta_hypothesis;
			b1->results_quality[k] = sum_values;
			b1->num_valid_results++;
		}
		sm_log_pop();

	} /* theta hypothesis */
	sm_log_pop();

/*	for(int i=0;i<b1->num_valid_results;i++) {
		printf("#%d %.0fdeg %.1fm %.1fm  quality %f \n",i,
			rad2deg(b1->results[i][2]),
			b1->results[i][0],
			b1->results[i][1],
			b1->results_quality[i]);
	}*/


	/* Sorting based on values */
	int indexes[b1->num_valid_results];
	for(int i=0;i<b1->num_valid_results;i++)
		indexes[i] = i;

	qsort_descending(indexes, (size_t) b1->num_valid_results, b1->results_quality);

	/* copy in the correct order*/
	double*results_tmp[b1->num_valid_results];
	double results_quality_tmp[b1->num_valid_results];
	for(int i=0;i<b1->num_valid_results;i++) {
		results_tmp[i] = b1->results[i];
		results_quality_tmp[i] = b1->results_quality[i];
	}

	for(int i=0;i<b1->num_valid_results;i++) {
		b1->results[i] = results_tmp[indexes[i]];
		b1->results_quality[i] = results_quality_tmp[indexes[i]];
	}

	for(int i=0;i<b1->num_valid_results;i++) {
		char near[256]="";
		double *x = b1->results[i];
		if(p->debug_true_x_valid) {
			double err_th = rad2deg(fabs(angleDiff(p->debug_true_x[2],x[2])));
			double err_m = hypot(p->debug_true_x[0]-x[0],
				p->debug_true_x[1]-x[1]);
			const char * ast = (i == 0) && (err_th > 2) ? "   ***** " : "";
			sprintf(near, "th err %4d  err_m  %5f %s",(int)err_th ,err_m,ast);
		}
		if(i<10)
		printf("after #%d %3.1fm %.1fm %3.0fdeg quality %5.0f \t%s\n",i,
			x[0],
			x[1], rad2deg(x[2]), b1->results_quality[i], near);
	}
	
	
	/* How long did it take? */
	clock_t hsm_match_stop = clock();
	int ticks = hsm_match_stop-hsm_match_start;
	double ctime = ((double)ticks) / CLOCKS_PER_SEC;
	sm_debug("Time: %f sec (%d ticks)\n", ctime, ticks);
	
	sm_log_pop();
}