示例#1
0
文件: if_smc.c 项目: coyizumi/cs111
static int
smc_intr(void *context)
{
	struct smc_softc	*sc;
	
	sc = (struct smc_softc *)context;
	/*
	 * Block interrupts in order to let smc_task_intr to kick in
	 */
	smc_write_1(sc, MSK, 0);
	taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_intr);
	return (FILTER_HANDLED);
}
示例#2
0
static void
smc_task_intr(void *context, int pending)
{
	struct smc_softc	*sc;
	struct ifnet		*ifp;
	u_int			status, packet, counter, tcr;

	(void)pending;
	ifp = (struct ifnet *)context;
	sc = ifp->if_softc;

	SMC_LOCK(sc);
	
	smc_select_bank(sc, 2);

	/*
	 * Get the current mask, and then block all interrupts while we're
	 * working.
	 */
	if ((ifp->if_capenable & IFCAP_POLLING) == 0)
		smc_write_1(sc, MSK, 0);

	/*
	 * Find out what interrupts are flagged.
	 */
	status = smc_read_1(sc, IST) & sc->smc_mask;

	/*
	 * Transmit error
	 */
	if (status & TX_INT) {
		/*
		 * Kill off the packet if there is one and re-enable transmit.
		 */
		packet = smc_read_1(sc, FIFO_TX);
		if ((packet & FIFO_EMPTY) == 0) {
			smc_write_1(sc, PNR, packet);
			smc_write_2(sc, PTR, 0 | PTR_READ | 
			    PTR_AUTO_INCR);
			tcr = smc_read_2(sc, DATA0);
			if ((tcr & EPHSR_TX_SUC) == 0)
				device_printf(sc->smc_dev,
				    "bad packet\n");
			smc_mmu_wait(sc);
			smc_write_2(sc, MMUCR, MMUCR_CMD_RELEASE_PKT);

			smc_select_bank(sc, 0);
			tcr = smc_read_2(sc, TCR);
			tcr |= TCR_TXENA | TCR_PAD_EN;
			smc_write_2(sc, TCR, tcr);
			smc_select_bank(sc, 2);
			taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_tx);
		}

		/*
		 * Ack the interrupt.
		 */
		smc_write_1(sc, ACK, TX_INT);
	}

	/*
	 * Receive
	 */
	if (status & RCV_INT) {
		smc_write_1(sc, ACK, RCV_INT);
		sc->smc_mask &= ~RCV_INT;
		taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_rx);
	}

	/*
	 * Allocation
	 */
	if (status & ALLOC_INT) {
		smc_write_1(sc, ACK, ALLOC_INT);
		sc->smc_mask &= ~ALLOC_INT;
		taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_tx);
	}

	/*
	 * Receive overrun
	 */
	if (status & RX_OVRN_INT) {
		smc_write_1(sc, ACK, RX_OVRN_INT);
		ifp->if_ierrors++;
	}

	/*
	 * Transmit empty
	 */
	if (status & TX_EMPTY_INT) {
		smc_write_1(sc, ACK, TX_EMPTY_INT);
		sc->smc_mask &= ~TX_EMPTY_INT;
		callout_stop(&sc->smc_watchdog);

		/*
		 * Update collision stats.
		 */
		smc_select_bank(sc, 0);
		counter = smc_read_2(sc, ECR);
		smc_select_bank(sc, 2);
		ifp->if_collisions +=
		    (counter & ECR_SNGLCOL_MASK) >> ECR_SNGLCOL_SHIFT;
		ifp->if_collisions +=
		    (counter & ECR_MULCOL_MASK) >> ECR_MULCOL_SHIFT;

		/*
		 * See if there are any packets to transmit.
		 */
		taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_tx);
	}
示例#3
0
static void
smc_task_rx(void *context, int pending)
{
	u_int			packet, status, len;
	uint8_t			*data;
	struct ifnet		*ifp;
	struct smc_softc	*sc;
	struct mbuf		*m, *mhead, *mtail;

	(void)pending;
	ifp = (struct ifnet *)context;
	sc = ifp->if_softc;
	mhead = mtail = NULL;

	SMC_LOCK(sc);

	packet = smc_read_1(sc, FIFO_RX);
	while ((packet & FIFO_EMPTY) == 0) {
		/*
		 * Grab an mbuf and attach a cluster.
		 */
		MGETHDR(m, M_NOWAIT, MT_DATA);
		if (m == NULL) {
			break;
		}
		MCLGET(m, M_NOWAIT);
		if ((m->m_flags & M_EXT) == 0) {
			m_freem(m);
			break;
		}
	
		/*
		 * Point to the start of the packet.
		 */
		smc_select_bank(sc, 2);
		smc_write_1(sc, PNR, packet);
		smc_write_2(sc, PTR, 0 | PTR_READ | PTR_RCV | PTR_AUTO_INCR);

		/*
		 * Grab status and packet length.
		 */
		status = smc_read_2(sc, DATA0);
		len = smc_read_2(sc, DATA0) & RX_LEN_MASK;
		len -= 6;
		if (status & RX_ODDFRM)
			len += 1;

		/*
		 * Check for errors.
		 */
		if (status & (RX_TOOSHORT | RX_TOOLNG | RX_BADCRC | RX_ALGNERR)) {
			smc_mmu_wait(sc);
			smc_write_2(sc, MMUCR, MMUCR_CMD_RELEASE);
			ifp->if_ierrors++;
			m_freem(m);
			break;
		}
	
		/*
		 * Set the mbuf up the way we want it.
		 */
		m->m_pkthdr.rcvif = ifp;
		m->m_pkthdr.len = m->m_len = len + 2; /* XXX: Is this right? */
		m_adj(m, ETHER_ALIGN);
	
		/*
		 * Pull the packet out of the device.  Make sure we're in the
		 * right bank first as things may have changed while we were
		 * allocating our mbuf.
		 */
		smc_select_bank(sc, 2);
		smc_write_1(sc, PNR, packet);
		smc_write_2(sc, PTR, 4 | PTR_READ | PTR_RCV | PTR_AUTO_INCR);
		data = mtod(m, uint8_t *);
		smc_read_multi_2(sc, DATA0, (uint16_t *)data, len >> 1);
		if (len & 1) {
			data += len & ~1;
			*data = smc_read_1(sc, DATA0);
		}

		/*
		 * Tell the device we're done.
		 */
		smc_mmu_wait(sc);
		smc_write_2(sc, MMUCR, MMUCR_CMD_RELEASE);
		if (m == NULL) {
			break;
		}
		
		if (mhead == NULL) {
			mhead = mtail = m;
			m->m_next = NULL;
		} else {
			mtail->m_next = m;
			mtail = m;
		}
		packet = smc_read_1(sc, FIFO_RX);
	}

	sc->smc_mask |= RCV_INT;
	if ((ifp->if_capenable & IFCAP_POLLING) == 0)
		smc_write_1(sc, MSK, sc->smc_mask);

	SMC_UNLOCK(sc);

	while (mhead != NULL) {
		m = mhead;
		mhead = mhead->m_next;
		m->m_next = NULL;
		ifp->if_ipackets++;
		(*ifp->if_input)(ifp, m);
	}
}
示例#4
0
static void
smc_task_tx(void *context, int pending)
{
	struct ifnet		*ifp;
	struct smc_softc	*sc;
	struct mbuf		*m, *m0;
	u_int			packet, len;
	int			last_len;
	uint8_t			*data;

	(void)pending;
	ifp = (struct ifnet *)context;
	sc = ifp->if_softc;

	SMC_LOCK(sc);
	
	if (sc->smc_pending == NULL) {
		SMC_UNLOCK(sc);
		goto next_packet;
	}

	m = m0 = sc->smc_pending;
	sc->smc_pending = NULL;
	smc_select_bank(sc, 2);

	/*
	 * Check the allocation result.
	 */
	packet = smc_read_1(sc, ARR);

	/*
	 * If the allocation failed, requeue the packet and retry.
	 */
	if (packet & ARR_FAILED) {
		IFQ_DRV_PREPEND(&ifp->if_snd, m);
		++ifp->if_oerrors;
		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
		smc_start_locked(ifp);
		SMC_UNLOCK(sc);
		return;
	}

	/*
	 * Tell the device to write to our packet number.
	 */
	smc_write_1(sc, PNR, packet);
	smc_write_2(sc, PTR, 0 | PTR_AUTO_INCR);

	/*
	 * Tell the device how long the packet is (including control data).
	 */
	len = m_length(m, 0);
	len += PKT_CTRL_DATA_LEN;
	smc_write_2(sc, DATA0, 0);
	smc_write_2(sc, DATA0, len);

	/*
	 * Push the data out to the device.
	 */
	data = NULL;
	last_len = 0;
	for (; m != NULL; m = m->m_next) {
		data = mtod(m, uint8_t *);
		smc_write_multi_2(sc, DATA0, (uint16_t *)data, m->m_len / 2);
		last_len = m->m_len;
	}

	/*
	 * Push out the control byte and and the odd byte if needed.
	 */
	if ((len & 1) != 0 && data != NULL)
		smc_write_2(sc, DATA0, (CTRL_ODD << 8) | data[last_len - 1]);
	else
		smc_write_2(sc, DATA0, 0);

	/*
	 * Unmask the TX empty interrupt.
	 */
	sc->smc_mask |= TX_EMPTY_INT;
	if ((ifp->if_capenable & IFCAP_POLLING) == 0)
		smc_write_1(sc, MSK, sc->smc_mask);

	/*
	 * Enqueue the packet.
	 */
	smc_mmu_wait(sc);
	smc_write_2(sc, MMUCR, MMUCR_CMD_ENQUEUE);
	callout_reset(&sc->smc_watchdog, hz * 2, smc_watchdog, sc);

	/*
	 * Finish up.
	 */
	ifp->if_opackets++;
	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
	SMC_UNLOCK(sc);
	BPF_MTAP(ifp, m0);
	m_freem(m0);

next_packet:
	/*
	 * See if there's anything else to do.
	 */
	smc_start(ifp);
}
示例#5
0
static void
smc_start_locked(struct ifnet *ifp)
{
	struct smc_softc	*sc;
	struct mbuf		*m;
	u_int			len, npages, spin_count;

	sc = ifp->if_softc;
	SMC_ASSERT_LOCKED(sc);

	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
		return;
	if (IFQ_IS_EMPTY(&ifp->if_snd))
		return;

	/*
	 * Grab the next packet.  If it's too big, drop it.
	 */
	IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
	len = m_length(m, NULL);
	len += (len & 1);
	if (len > ETHER_MAX_LEN - ETHER_CRC_LEN) {
		if_printf(ifp, "large packet discarded\n");
		++ifp->if_oerrors;
		m_freem(m);
		return; /* XXX readcheck? */
	}

	/*
	 * Flag that we're busy.
	 */
	ifp->if_drv_flags |= IFF_DRV_OACTIVE;
	sc->smc_pending = m;

	/*
	 * Work out how many 256 byte "pages" we need.  We have to include the
	 * control data for the packet in this calculation.
	 */
	npages = (len * PKT_CTRL_DATA_LEN) >> 8;
	if (npages == 0)
		npages = 1;

	/*
	 * Request memory.
	 */
	smc_select_bank(sc, 2);
	smc_mmu_wait(sc);
	smc_write_2(sc, MMUCR, MMUCR_CMD_TX_ALLOC | npages);

	/*
	 * Spin briefly to see if the allocation succeeds.
	 */
	spin_count = TX_ALLOC_WAIT_TIME;
	do {
		if (smc_read_1(sc, IST) & ALLOC_INT) {
			smc_write_1(sc, ACK, ALLOC_INT);
			break;
		}
	} while (--spin_count);

	/*
	 * If the allocation is taking too long, unmask the alloc interrupt
	 * and wait.
	 */
	if (spin_count == 0) {
		sc->smc_mask |= ALLOC_INT;
		if ((ifp->if_capenable & IFCAP_POLLING) == 0)
			smc_write_1(sc, MSK, sc->smc_mask);
		return;
	}

	taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_tx);
}
示例#6
0
int
smc_attach(device_t dev)
{
	int			type, error;
	uint16_t		val;
	u_char			eaddr[ETHER_ADDR_LEN];
	struct smc_softc	*sc;
	struct ifnet		*ifp;

	sc = device_get_softc(dev);
	error = 0;

	sc->smc_dev = dev;

	ifp = sc->smc_ifp = if_alloc(IFT_ETHER);
	if (ifp == NULL) {
		error = ENOSPC;
		goto done;
	}

	mtx_init(&sc->smc_mtx, device_get_nameunit(dev), NULL, MTX_DEF);

	/* Set up watchdog callout. */
	callout_init_mtx(&sc->smc_watchdog, &sc->smc_mtx, 0);

	type = SYS_RES_IOPORT;
	if (sc->smc_usemem)
		type = SYS_RES_MEMORY;

	sc->smc_reg_rid = 0;
	sc->smc_reg = bus_alloc_resource(dev, type, &sc->smc_reg_rid, 0, ~0,
	    16, RF_ACTIVE);
	if (sc->smc_reg == NULL) {
		error = ENXIO;
		goto done;
	}

	sc->smc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->smc_irq_rid, 0,
	    ~0, 1, RF_ACTIVE | RF_SHAREABLE);
	if (sc->smc_irq == NULL) {
		error = ENXIO;
		goto done;
	}

	SMC_LOCK(sc);
	smc_reset(sc);
	SMC_UNLOCK(sc);

	smc_select_bank(sc, 3);
	val = smc_read_2(sc, REV);
	sc->smc_chip = (val & REV_CHIP_MASK) >> REV_CHIP_SHIFT;
	sc->smc_rev = (val * REV_REV_MASK) >> REV_REV_SHIFT;
	if (bootverbose)
		device_printf(dev, "revision %x\n", sc->smc_rev);

	callout_init_mtx(&sc->smc_mii_tick_ch, &sc->smc_mtx,
	    CALLOUT_RETURNUNLOCKED);
	if (sc->smc_chip >= REV_CHIP_91110FD) {
		(void)mii_attach(dev, &sc->smc_miibus, ifp,
		    smc_mii_ifmedia_upd, smc_mii_ifmedia_sts, BMSR_DEFCAPMASK,
		    MII_PHY_ANY, MII_OFFSET_ANY, 0);
		if (sc->smc_miibus != NULL) {
			sc->smc_mii_tick = smc_mii_tick;
			sc->smc_mii_mediachg = smc_mii_mediachg;
			sc->smc_mii_mediaioctl = smc_mii_mediaioctl;
		}
	}

	smc_select_bank(sc, 1);
	eaddr[0] = smc_read_1(sc, IAR0);
	eaddr[1] = smc_read_1(sc, IAR1);
	eaddr[2] = smc_read_1(sc, IAR2);
	eaddr[3] = smc_read_1(sc, IAR3);
	eaddr[4] = smc_read_1(sc, IAR4);
	eaddr[5] = smc_read_1(sc, IAR5);

	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
	ifp->if_softc = sc;
	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
	ifp->if_init = smc_init;
	ifp->if_ioctl = smc_ioctl;
	ifp->if_start = smc_start;
	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
	IFQ_SET_READY(&ifp->if_snd);

	ifp->if_capabilities = ifp->if_capenable = 0;

#ifdef DEVICE_POLLING
	ifp->if_capabilities |= IFCAP_POLLING;
#endif

	ether_ifattach(ifp, eaddr);

	/* Set up taskqueue */
	TASK_INIT(&sc->smc_intr, SMC_INTR_PRIORITY, smc_task_intr, ifp);
	TASK_INIT(&sc->smc_rx, SMC_RX_PRIORITY, smc_task_rx, ifp);
	TASK_INIT(&sc->smc_tx, SMC_TX_PRIORITY, smc_task_tx, ifp);
	sc->smc_tq = taskqueue_create_fast("smc_taskq", M_NOWAIT,
	    taskqueue_thread_enqueue, &sc->smc_tq);
	taskqueue_start_threads(&sc->smc_tq, 1, PI_NET, "%s taskq",
	    device_get_nameunit(sc->smc_dev));

	/* Mask all interrupts. */
	sc->smc_mask = 0;
	smc_write_1(sc, MSK, 0);

	/* Wire up interrupt */
	error = bus_setup_intr(dev, sc->smc_irq,
	    INTR_TYPE_NET|INTR_MPSAFE, smc_intr, NULL, sc, &sc->smc_ih);
	if (error != 0)
		goto done;

done:
	if (error != 0)
		smc_detach(dev);
	return (error);
}