示例#1
0
  void operator()(MatrixT& A, VectorT& b, VectorT& x)
  {
    row_normalize_system(A, b); 

    //
    // Determine the linear solver kernel and forward to an internal solve method
    // which determines the preconditioner and actually calls the solver backend
    //
    if(solver_id_ == viennafvm::linsolv::viennacl::solver_ids::bicgstab)
    {
//      std::cout << "using solver: bicgstab .. " << std::endl;
      ::viennacl::linalg::bicgstab_tag  solver_tag(break_tolerance_, max_iterations_);
      solve_intern(A, b, x, solver_tag);
    }
    else
    if(solver_id_ == viennafvm::linsolv::viennacl::solver_ids::gmres)
    {
//      std::cout << "using solver: gmres .. " << std::endl;
      ::viennacl::linalg::gmres_tag     solver_tag(break_tolerance_, max_iterations_);
      solve_intern(A, b, x, solver_tag);
    }
    else
    if(solver_id_ == viennafvm::linsolv::viennacl::solver_ids::cg)
    {
//      std::cout << "using solver: cg .. " << std::endl;
      ::viennacl::linalg::cg_tag        solver_tag(break_tolerance_, max_iterations_);
      solve_intern(A, b, x, solver_tag);
    }
    else
    {
      std::cerr << "[ERROR] ViennaFVM::LinearSolver: solver not supported .. " << std::endl;
    }
  }
    VectorType solve(MatrixType const & system_matrix,
                     VectorType const & rhs,
                     viennashe::solvers::linear_solver_config const & config,
                     viennashe::solvers::serial_linear_solver_tag
                    )
    {
      typedef typename VectorType::value_type     NumericT;

      //
      // Step 1: Convert data to ViennaCL types:
      //
      viennacl::compressed_matrix<NumericT> A(system_matrix.size1(), system_matrix.size2());
      viennacl::vector<NumericT>            b(system_matrix.size1());

      viennacl::fast_copy(&(rhs[0]), &(rhs[0]) + rhs.size(), b.begin());
      detail::copy(system_matrix, A);


      //
      // Step 2: Setup preconditioner and run solver
      //
      log::info<log_linear_solver>() << "* solve(): Computing preconditioner (single-threaded)... " << std::endl;
      //viennacl::linalg::ilut_tag precond_tag(config.ilut_entries(),
      //                                        config.ilut_drop_tolerance());
      viennacl::linalg::ilu0_tag precond_tag;
      viennacl::linalg::ilu0_precond<viennacl::compressed_matrix<NumericT> > preconditioner(A, precond_tag);

      log::info<log_linear_solver>() << "* solve(): Solving system (single-threaded)... " << std::endl;
      viennacl::linalg::bicgstab_tag  solver_tag(config.tolerance(), config.max_iters());

      //log::debug<log_linear_solver>() << "Compressed matrix: " << system_matrix << std::endl;
      //log::debug<log_linear_solver>() << "Compressed rhs: " << rhs << std::endl;
      viennacl::vector<NumericT> vcl_result = viennacl::linalg::solve(A,
                                                                       b,
                                                                       solver_tag,
                                                                       preconditioner);
      //log::debug<log_linear_solver>() << "Number of iterations (ILUT): " << solver_tag.iters() << std::endl;

      //
      // Step 3: Convert data back:
      //
      VectorType result(vcl_result.size());
      viennacl::fast_copy(vcl_result.begin(), vcl_result.end(), &(result[0]));

      viennashe::util::check_vector_for_valid_entries(result);

      //
      // As a check, compute residual:
      //
      log::info<log_linear_solver>() << "* solve(): residual: "
                << viennacl::linalg::norm_2(viennacl::linalg::prod(A, vcl_result) - b) / viennacl::linalg::norm_2(b)
                << " after " << solver_tag.iters() << " iterations." << std::endl;
      //log::debug<log_linear_solver>() << "SHE result (compressed): " << compressed_result << std::endl;

      return result;
    }
示例#3
0
/**
*  The main steps in this tutorial are the following:
*  - Setup the systems
*  - Run solvers without preconditioner and with ILUT preconditioner for comparison
*  - Run solver with SPAI preconditioner on CPU
*  - Run solver with SPAI preconditioner on GPU
*  - Run solver with factored SPAI preconditioner on CPU
*  - Run solver with factored SPAI preconditioner on GPU
*
**/
int main (int, const char **)
{
  typedef float               ScalarType;
  typedef boost::numeric::ublas::compressed_matrix<ScalarType>        MatrixType;
  typedef boost::numeric::ublas::vector<ScalarType>                   VectorType;
  typedef viennacl::compressed_matrix<ScalarType>                     GPUMatrixType;
  typedef viennacl::vector<ScalarType>                                GPUVectorType;

  /**
  *  If you have multiple OpenCL-capable devices in your system, we pick the second device for this tutorial.
  **/
#ifdef VIENNACL_WITH_OPENCL
  // Optional: Customize OpenCL backend
  viennacl::ocl::platform pf = viennacl::ocl::get_platforms()[0];
  std::vector<viennacl::ocl::device> const & devices = pf.devices();

  // Optional: Set first device to first context:
  viennacl::ocl::setup_context(0, devices[0]);

  // Optional: Set second device for second context (use the same device for the second context if only one device available):
  if (devices.size() > 1)
    viennacl::ocl::setup_context(1, devices[1]);
  else
    viennacl::ocl::setup_context(1, devices[0]);

  std::cout << viennacl::ocl::current_device().info() << std::endl;
  viennacl::context ctx(viennacl::ocl::get_context(1));
#else
  viennacl::context ctx;
#endif

  /**
  * Create uBLAS-based sparse matrix and read system matrix from file
  **/
  MatrixType M;

  if (!viennacl::io::read_matrix_market_file(M, "../examples/testdata/mat65k.mtx"))
  {
    std::cerr<<"ERROR: Could not read matrix file " << std::endl;
    exit(EXIT_FAILURE);
  }

  std::cout << "Size of matrix: " << M.size1() << std::endl;
  std::cout << "Avg. Entries per row: " << double(M.nnz()) / static_cast<double>(M.size1()) << std::endl;

  /**
  *   Use a constant load vector for simplicity
  **/
  VectorType rhs(M.size2());
  for (std::size_t i=0; i<rhs.size(); ++i)
    rhs(i) = ScalarType(1);

  /**
  *   Create the ViennaCL matrix and vector and initialize with uBLAS data:
  **/
  GPUMatrixType  gpu_M(M.size1(), M.size2(), ctx);
  GPUVectorType  gpu_rhs(M.size1(), ctx);
  viennacl::copy(M, gpu_M);
  viennacl::copy(rhs, gpu_rhs);

  /**
  *  <h2>Solver Runs</h2>
  *  We use a relative tolerance of \f$ 10^{-10} \f$ with a maximum of 50 iterations for each use case.
  *  Usually more than 50 solver iterations are required for convergence, but this choice ensures shorter execution times and suffices for this tutorial.
  **/

  viennacl::linalg::bicgstab_tag solver_tag(1e-10, 50); //for simplicity and reasonably short execution times we use only 50 iterations here

  /**
  *  The first reference is to use no preconditioner (CPU and GPU):
  **/
  std::cout << "--- Reference 1: Pure BiCGStab on CPU ---" << std::endl;
  VectorType result = viennacl::linalg::solve(M, rhs, solver_tag);
  std::cout << " * Solver iterations: " << solver_tag.iters() << std::endl;
  VectorType residual = viennacl::linalg::prod(M, result) - rhs;
  std::cout << " * Rel. Residual: " << viennacl::linalg::norm_2(residual) / viennacl::linalg::norm_2(rhs) << std::endl;

  std::cout << "--- Reference 2: Pure BiCGStab on GPU ---" << std::endl;
  GPUVectorType gpu_result = viennacl::linalg::solve(gpu_M, gpu_rhs, solver_tag);
  std::cout << " * Solver iterations: " << solver_tag.iters() << std::endl;
  GPUVectorType gpu_residual = viennacl::linalg::prod(gpu_M, gpu_result);
  gpu_residual -= gpu_rhs;
  std::cout << " * Rel. Residual: " << viennacl::linalg::norm_2(gpu_residual) / viennacl::linalg::norm_2(gpu_rhs) << std::endl;


  /**
  * The second reference is a standard ILUT preconditioner (only CPU):
  **/
  std::cout << "--- Reference 2: BiCGStab with ILUT on CPU ---" << std::endl;
  std::cout << " * Preconditioner setup..." << std::endl;
  viennacl::linalg::ilut_precond<MatrixType> ilut(M, viennacl::linalg::ilut_tag());
  std::cout << " * Iterative solver run..." << std::endl;
  run_solver(M, rhs, solver_tag, ilut);


  /**
  * <h2>Step 1: SPAI with CPU</h2>
  **/
  std::cout << "--- Test 1: CPU-based SPAI ---" << std::endl;
  std::cout << " * Preconditioner setup..." << std::endl;
  viennacl::linalg::spai_precond<MatrixType> spai_cpu(M, viennacl::linalg::spai_tag(1e-3, 3, 5e-2));
  std::cout << " * Iterative solver run..." << std::endl;
  run_solver(M, rhs, solver_tag, spai_cpu);

  /**
  * <h2>Step 2: FSPAI with CPU</h2>
  **/
  std::cout << "--- Test 2: CPU-based FSPAI ---" << std::endl;
  std::cout << " * Preconditioner setup..." << std::endl;
  viennacl::linalg::fspai_precond<MatrixType> fspai_cpu(M, viennacl::linalg::fspai_tag());
  std::cout << " * Iterative solver run..." << std::endl;
  run_solver(M, rhs, solver_tag, fspai_cpu);

  /**
  * <h2>Step 3: SPAI with GPU</h2>
  **/
  std::cout << "--- Test 3: GPU-based SPAI ---" << std::endl;
  std::cout << " * Preconditioner setup..." << std::endl;
  viennacl::linalg::spai_precond<GPUMatrixType> spai_gpu(gpu_M, viennacl::linalg::spai_tag(1e-3, 3, 5e-2));
  std::cout << " * Iterative solver run..." << std::endl;
  run_solver(gpu_M, gpu_rhs, solver_tag, spai_gpu);

  /**
  * <h2>Step 4: FSPAI with GPU</h2>
  **/
  std::cout << "--- Test 4: GPU-based FSPAI ---" << std::endl;
  std::cout << " * Preconditioner setup..." << std::endl;
  viennacl::linalg::fspai_precond<GPUMatrixType> fspai_gpu(gpu_M, viennacl::linalg::fspai_tag());
  std::cout << " * Iterative solver run..." << std::endl;
  run_solver(gpu_M, gpu_rhs, solver_tag, fspai_gpu);

  /**
  *   That's it! Print success message and exit.
  **/
  std::cout << "!!!! TUTORIAL COMPLETED SUCCESSFULLY !!!!" << std::endl;

  return EXIT_SUCCESS;
}
示例#4
0
int main (int argc, const char * argv[])
{
    typedef float               ScalarType;
    typedef boost::numeric::ublas::compressed_matrix<ScalarType>        MatrixType;
    typedef boost::numeric::ublas::vector<ScalarType>                   VectorType;
    typedef viennacl::compressed_matrix<ScalarType>                     GPUMatrixType;
    typedef viennacl::vector<ScalarType>                                GPUVectorType;
  
    MatrixType M;

    //
    // Read system matrix from file
    //
    #ifdef _MSC_VER
    if (!viennacl::io::read_matrix_market_file(M, "../../examples/testdata/mat65k.mtx"))
    #else
    if (!viennacl::io::read_matrix_market_file(M, "../examples/testdata/mat65k.mtx"))
    #endif
    {
      std::cerr<<"ERROR: Could not read matrix file " << std::endl;
      exit(EXIT_FAILURE);
    }
    
    std::cout << "Size of matrix: " << M.size1() << std::endl;
    std::cout << "Avg. Entries per row: " << M.nnz() / static_cast<double>(M.size1()) << std::endl;
    
    //
    // Use uniform load vector:
    //
    VectorType rhs(M.size2());
    for (size_t i=0; i<rhs.size(); ++i)
      rhs(i) = 1;

    GPUMatrixType  gpu_M(M.size1(), M.size2());
    GPUVectorType  gpu_rhs(M.size1());
    viennacl::copy(M, gpu_M);
    viennacl::copy(rhs, gpu_rhs);
    
    ///////////////////////////////// Tests to follow /////////////////////////////

    viennacl::linalg::bicgstab_tag solver_tag(1e-10, 50); //for simplicity and reasonably short execution times we use only 50 iterations here

    //
    // Reference: No preconditioner:
    //
    std::cout << "--- Reference 1: Pure BiCGStab on CPU ---" << std::endl;
    VectorType result = viennacl::linalg::solve(M, rhs, solver_tag);
    std::cout << " * Solver iterations: " << solver_tag.iters() << std::endl;
    VectorType residual = viennacl::linalg::prod(M, result) - rhs;
    std::cout << " * Rel. Residual: " << viennacl::linalg::norm_2(residual) / viennacl::linalg::norm_2(rhs) << std::endl;

    std::cout << "--- Reference 2: Pure BiCGStab on GPU ---" << std::endl;
    GPUVectorType gpu_result = viennacl::linalg::solve(gpu_M, gpu_rhs, solver_tag);
    std::cout << " * Solver iterations: " << solver_tag.iters() << std::endl;
    GPUVectorType gpu_residual = viennacl::linalg::prod(gpu_M, gpu_result) - gpu_rhs;
    std::cout << " * Rel. Residual: " << viennacl::linalg::norm_2(gpu_residual) / viennacl::linalg::norm_2(gpu_rhs) << std::endl;
    
    
    //
    // Reference: ILUT preconditioner:
    //
    std::cout << "--- Reference 2: BiCGStab with ILUT on CPU ---" << std::endl;
    std::cout << " * Preconditioner setup..." << std::endl;
    viennacl::linalg::ilut_precond<MatrixType> ilut(M, viennacl::linalg::ilut_tag());
    std::cout << " * Iterative solver run..." << std::endl;
    run_solver(M, rhs, solver_tag, ilut);
    
    
    //
    // Test 1: SPAI with CPU:
    //
    std::cout << "--- Test 1: CPU-based SPAI ---" << std::endl;  
    std::cout << " * Preconditioner setup..." << std::endl;
    viennacl::linalg::spai_precond<MatrixType> spai_cpu(M, viennacl::linalg::spai_tag(1e-3, 3, 5e-2));
    std::cout << " * Iterative solver run..." << std::endl;
    run_solver(M, rhs, solver_tag, spai_cpu);
    
    //
    // Test 2: FSPAI with CPU:
    //      
    std::cout << "--- Test 2: CPU-based FSPAI ---" << std::endl;  
    std::cout << " * Preconditioner setup..." << std::endl;
    viennacl::linalg::fspai_precond<MatrixType> fspai_cpu(M, viennacl::linalg::fspai_tag());
    std::cout << " * Iterative solver run..." << std::endl;
    run_solver(M, rhs, solver_tag, fspai_cpu);
    
    //
    // Test 3: SPAI with GPU:
    //      
    std::cout << "--- Test 3: GPU-based SPAI ---" << std::endl;  
    std::cout << " * Preconditioner setup..." << std::endl;
    viennacl::linalg::spai_precond<GPUMatrixType> spai_gpu(gpu_M, viennacl::linalg::spai_tag(1e-3, 3, 5e-2));
    std::cout << " * Iterative solver run..." << std::endl;
    run_solver(gpu_M, gpu_rhs, solver_tag, spai_gpu);
    
    return EXIT_SUCCESS;
}