示例#1
0
/*
 * SMPreorder()
 */
int
SMPreorder(SMPmatrix *Matrix, double PivTol, double PivRel, double Gmin)
{
    spSetReal( (void *)Matrix );
    LoadGmin( (void *)Matrix, Gmin );
    return spOrderAndFactor( (void *)Matrix, (spREAL*)NULL,
                             (spREAL)PivRel, (spREAL)PivTol, YES );
}
示例#2
0
/*
 * SMPcReorder()
 */
int
SMPcReorder(SMPmatrix *Matrix, double PivTol, double PivRel,
	    int *NumSwaps)
{
    *NumSwaps = 1;
    spSetComplex( (void *)Matrix );
    return spOrderAndFactor( (void *)Matrix, (spREAL*)NULL,
                             (spREAL)PivRel, (spREAL)PivTol, YES );
}
示例#3
0
int StanfordSolveSparseMatrix(Kentry* Kentries, double b[],
                     int numUniqueEntries, int size, double soln[]) {
    
   int i;
   int row;
   int col;
   double value;

   spMatrix A;
   spError err, Error;
   spREAL AbsThreshold,RelThreshold;
   spREAL *pElement;
   
#ifdef REALLY_OUTPUT_A_WHOLE_BUNCH   
   FILE *fp;
   fp = NULL;
   fp = fopen("nonzero-inside-solver-call","w");
   fprintf(fp,"title goes here (%i nonzero)\n",numUniqueEntries);
   fprintf(fp,"%i        real\n",size);
   for (i = 0; i < numUniqueEntries; i++) {
       /* we add 1 to row and col numbers for sparse */
      fprintf(fp,"%i %i %lf\n",Kentries[i].row+SPARSE_OFFSET,Kentries[i].col+SPARSE_OFFSET,
            Kentries[i].value);
   }
   fprintf(fp,"0 0 0.0\n"); 
   for (i = 0; i < size; i++) {
      fprintf(fp,"%lf\n",b[i+SPARSE_OFFSET]);
   }
   fclose(fp);
#endif
   
   /* create the matrix */
   debugprint(stddbg,"  allocate A matrix.\n");
   fflush(stdout); 
   A = spCreate(size, 0, &err);
   if( err >= spFATAL || A == NULL) {
      fprintf(stderr,"error allocating matrix.\n");   
      exit(-1);
   }
    
   for (i = 0; i < numUniqueEntries; i++) {
       if (!(i % (int)(numUniqueEntries/50.0))) {
        debugprint(stddbg,"inserting into A: %i of %i\n",i,numUniqueEntries); 
       }
     row   = Kentries[i].row+SPARSE_OFFSET;
     col   = Kentries[i].col+SPARSE_OFFSET;
     value = Kentries[i].value;
     pElement = spGetElement(A,row,col);
     if (pElement == NULL) {
       fprintf(stderr, "error: insufficient memory available.\n");
       exit(-1);
     }
     *pElement = value;
   }

   debugprint(stddbg,"  free memory for Kentries\n");  
   deleteKentries(Kentries);
 
   spSetReal( A );
#if MODIFIED_NODAL
   spMNA_Preorder( A );
#endif

   RelThreshold = 0;
   AbsThreshold = 0;
   debugprint(stddbg,"  order and factor matrix.\n"); 
   Error = spOrderAndFactor( A, b, RelThreshold, AbsThreshold,
                             1 );
   if ( Error >= spFATAL ) {
      fprintf(stdout,"Fatal error (%i)\n",Error);
     exit(-1);
   }
  
   /* spPrint( A,1,1,1); */

   for (i = 0; i <= size; i++) {
       soln[0] = 0;
   }

   debugprint(stddbg,"  call spSolve.\n");
   
   spSolve( A, b, soln);

   debugprint(stddbg,"  destroy A.\n");
   
   spDestroy(A);
   return 0;
}
示例#4
0
int
main (int argc, char **argv)
{
  int ch;
  int errflg=0,i,j;
  double l,c,ctot,r=0.0,g=0.0,k=0.0,lm=0.0,cm=0.0,len;
  unsigned gotl=0,gotc=0,gotr=0,gotg=0,gotk=0,gotcm=0,gotlen=0;
  unsigned gotname=0, gotnum=0;
  char *name = "";
  double **matrix, **inverse;
  double *tpeigenvalues, *gammaj;
  char *options;
  int num, node;
  char **pname, *s;
  int use_opt;
  char *optarg;

  pname = argv;
  argv++;
  argc--;

  ch = 0;
  while (argc > 0) {
    s = *argv++;
    argc--;
    while ((ch = *s++)) {
      if (*s)
	optarg = s;
      else if (argc)
	optarg = *argv;
      else
	optarg = NULL;
      use_opt = 0;

      switch (ch) {
      case 'o':
	name = (char *) tmalloc((unsigned) (strlen(optarg)*sizeof(char)));
	(void) strcpy(name,optarg);
	gotname=1;
	use_opt = 1;
	break;
      case 'l':
	sscanf(optarg,"%lf",&l);
	gotl=1;
	use_opt = 1;
	break;
      case 'c':
	sscanf(optarg,"%lf",&c);
	gotc=1;
	use_opt = 1;
	break;
      case 'r':
	sscanf(optarg,"%lf",&r);
	use_opt = 1;
	gotr=1;
	break;
      case 'g':
	sscanf(optarg,"%lf",&g);
	use_opt = 1;
	gotg=1;
	break;
      case 'k':
	sscanf(optarg,"%lf",&k);
	use_opt = 1;
	gotk=1;
	break;
      case 'x':
	sscanf(optarg,"%lf",&cm);
	use_opt = 1;
	gotcm=1;
	break;
      case 'L':
	sscanf(optarg,"%lf",&len);
	use_opt = 1;
	gotlen=1;
	break;
      case 'n':
	sscanf(optarg,"%d",&num);
	use_opt = 1;
	gotnum=1;
	break;
      case 'h':
	usage(pname);
	exit(1);
	break;
      case '-':
	break;
      default:
	usage(pname);
	exit(2);
	break;
      }
      if (use_opt) {
	if (optarg == s)
	  s += strlen(s);
	else if (optarg) {
	  argc--;
	  argv++;
	}
      }
    }
  }

  if (errflg) {
    usage(argv);
    exit (2);
  }

  if (gotl + gotc + gotname + gotnum + gotlen < 5) {
    fprintf(stderr,"l, c, model_name, number_of_conductors and length must be specified.\n");
    fprintf(stderr,"%s -u for details.\n",pname[0]);
    fflush(stdout);
    exit(1);
  }

  if ( (k<0.0?-k:k) >=1.0 ) {
    fprintf(stderr,"Error: |k| must be less than 1.0\n");
    fflush(stderr);
    exit(1);
  }

  if (num == 1) {
    fprintf(stdout,"* single conductor line\n");
    fflush(stdout);
    exit(1);
  }

  lm = l*k;
  switch(num) {

  case 1: ctot = c; break;
  case 2: ctot = c + cm; break;
  default: ctot = c + 2*cm; break;
  }

  comments(r,l,g,c,ctot,cm,lm,k,name,num,len);

  matrix = (double **) tmalloc((unsigned) (sizeof(double*)*(num+1)));
  inverse = (double **) tmalloc((unsigned) (sizeof(double*)*(num+1)));
  tpeigenvalues = (double *) tmalloc((unsigned) (sizeof(double)*(num+1)));

  for (i=1;i<=num;i++) {
    matrix[i] = (double *) tmalloc((unsigned) (sizeof(double)*(num+1)));
    inverse[i] = (double *) tmalloc((unsigned) (sizeof(double)*(num+1)));
  }

  for (i=1;i<=num;i++) {
    tpeigenvalues[i] = -2.0 * cos(M_PI*i/(num+1));
  }

  for (i=1;i<=num;i++) {
    for (j=1;j<=num;j++) {
      matrix[i][j] = phi(i-1,tpeigenvalues[j]);
    }
  }
  gammaj = (double *) tmalloc((unsigned) (sizeof(double)*(num+1)));

  for (j=1;j<=num;j++) {
    gammaj[j] = 0.0;
    for (i=1;i<=num;i++) {
      gammaj[j] += matrix[i][j] * matrix[i][j];
    }
    gammaj[j] = sqrt(gammaj[j]);
  }

  for (j=1;j<=num;j++) {
    for (i=1;i<=num; i++) {
      matrix[i][j] /= gammaj[j];
    }
  }

  tfree(gammaj);

  /* matrix = M set up */

  {
    MatrixPtr othermatrix;
    double *rhs, *solution;
    double *irhs, *isolution;
    int errflg, err, singular_row, singular_col;
    double *elptr;

    rhs = (double *) tmalloc((unsigned) (sizeof(double)*(num+1)));
    irhs = (double *) tmalloc((unsigned) (sizeof(double)*(num+1)));
    solution = (double *) tmalloc((unsigned) (sizeof(double)*(num+1)));
    isolution = (double *) tmalloc((unsigned) (sizeof(double)*(num+1)));

    othermatrix = spCreate(num,0,&errflg);

    for (i=1;i<=num;i++) {
      for (j=1; j<=num; j++) {
	elptr = spGetElement(othermatrix,i,j);
	*elptr = matrix[i][j];
      }
    }

#ifdef DEBUG_LEVEL1
    (void) spPrint(othermatrix,0,1,0);
#endif

    for (i=1;i<=num;i++) rhs[i] = 0.0;
    rhs[1]=1.0;

    err =
      spOrderAndFactor(othermatrix,rhs,THRSH,ABS_THRSH,DIAG_PIVOTING);

    spErrorMessage(othermatrix,stderr,NULL);

    switch(err) {

    case spNO_MEMORY:
      fprintf(stderr,"No memory in spOrderAndFactor\n");
      fflush(stderr);
      exit(1);
    case spSINGULAR:
      (void)
	spWhereSingular(othermatrix,&singular_row,&singular_col);
      fprintf(stderr,"Singular matrix: problem in row %d and col %d\n", singular_row, singular_col);
      fflush(stderr);
      exit(1);
    default: break;
    }

    for (i=1;i<=num;i++) {
      for (j=1;j<=num;j++) {
	rhs[j] = (j==i?1.0:0.0);
	irhs[j] = 0.0;
      }
      (void) spSolveTransposed(othermatrix,rhs,solution, irhs, isolution);
      for (j=1;j<=num;j++) {
	inverse[i][j] = solution[j];
      }
    }

    tfree(rhs);
    tfree(solution);
  }

  /* inverse = M^{-1} set up */

  fprintf(stdout,"\n");
  fprintf(stdout,"* Lossy line models\n");

  options = (char *) tmalloc((unsigned) 256);
  (void) strcpy(options,"rel=1.2 nocontrol");
  for (i=1;i<=num;i++) {
    fprintf(stdout,".model mod%d_%s ltra %s r=%0.12g l=%0.12g g=%0.12g c=%0.12g len=%0.12g\n",
	    i,name,options,r,l+tpeigenvalues[i]*lm,g,ctot-tpeigenvalues[i]*cm,len);
    /*i,name,options,r,l+tpeigenvalues[i]*lm,g,ctot+tpeigenvalues[i]*cm,len);*/
  }


  fprintf(stdout,"\n");
  fprintf(stdout,"* subcircuit m_%s - modal transformation network for %s\n",name,name);
  fprintf(stdout,".subckt m_%s", name);
  for (i=1;i<= 2*num; i++) {
    fprintf(stdout," %d",i);
  }
  fprintf(stdout,"\n");
  for (j=1;j<=num;j++) fprintf(stdout,"v%d %d 0 0v\n",j,j+2*num);

  for (j=1;j<=num;j++) {
    for (i=1; i<=num; i++) {
      fprintf(stdout,"f%d 0 %d v%d %0.12g\n",
	      (j-1)*num+i,num+j,i,inverse[j][i]);
    }
  }

  node = 3*num+1;
  for (j=1;j<=num;j++) {
    fprintf(stdout,"e%d %d %d %d 0 %0.12g\n", (j-1)*num+1,
	    node, 2*num+j, num+1, matrix[j][1]);
    node++;
    for (i=2; i<num; i++) {
      fprintf(stdout,"e%d %d %d %d 0 %0.12g\n", (j-1)*num+i,
	      node,node-1,num+i,matrix[j][i]);
      node++;
    }
    fprintf(stdout,"e%d %d %d %d 0 %0.12g\n", j*num,j,node-1,
	    2*num,matrix[j][num]);
  }
  fprintf(stdout,".ends m_%s\n",name);

  fprintf(stdout,"\n");
  fprintf(stdout,"* Subckt %s\n", name);
  fprintf(stdout,".subckt %s",name);
  for (i=1;i<=2*num;i++) {
    fprintf(stdout," %d",i);
  }
  fprintf(stdout,"\n");

  fprintf(stdout,"x1");
  for (i=1;i<=num;i++)  fprintf(stdout," %d", i);
  for (i=1;i<=num;i++)  fprintf(stdout," %d", 2*num+i);
  fprintf(stdout," m_%s\n",name);

  for (i=1;i<=num;i++) 
    fprintf(stdout,"o%d %d 0 %d 0 mod%d_%s\n",i,2*num+i,3*num+i,i,name);

  fprintf(stdout,"x2");
  for (i=1;i<=num;i++)  fprintf(stdout," %d", num+i);
  for (i=1;i<=num;i++)  fprintf(stdout," %d", 3*num+i);
  fprintf(stdout," m_%s\n",name);

  fprintf(stdout,".ends %s\n",name);

  tfree(tpeigenvalues);
  for (i=1;i<=num;i++) {
    tfree(matrix[i]);
    tfree(inverse[i]);
  }
  tfree(matrix);
  tfree(inverse);
  tfree(name);
  tfree(options);

  return EXIT_NORMAL; 
}
示例#5
0
int main(int argc, char* argv[]) {

    int i;  
    char title[1024];
    char line[1024]; 
    int size;
    int row;
    int col;
    double value;
    spMatrix A;
    spREAL x[4096];
    spREAL b[4096];
    spError err, Error;
    spREAL AbsThreshold,RelThreshold;
    spREAL *pElement;
    FILE *fp = NULL;

    if (argc != 2) {
        fprintf(stderr,"usage: sptest <matrix_filename>\n");
        exit(-1); 
    }

    fprintf(stdout,"Reading file [%s]\n",argv[1]);

    if ((fp = fopen(argv[1],"r")) == NULL) {
        fprintf(stderr,"Error opening file [%s]\n",argv[1]);
        exit(-1);
    }
    
    title[0]='\0'; 
    fgets(title,1024,fp); 

    fgets(line,1024,fp);
    if (sscanf(line,"%i real",&size) !=  1) {
        fprintf(stderr,"Error reading size.\n");
        exit(-1);
    }

    // create the matrix

    A = spCreate(size, 0, &err);
    if( err >= spFATAL || A == NULL) {
      fprintf(stderr,"error allocating matrix.\n");   
      exit(-1);
    }

    while (0 == 0) {
        line[0]='\0';
        fgets(line,1024,fp);
        if (sscanf(line,"%i %i %lf",&row,&col,&value) !=  3) {
          fprintf(stderr,"Error reading matrix.\n");
          exit(-1);
        }
        if (row == 0 && col == 0) break;

        //spElement *pElement;
        pElement = spGetElement(A,row,col);
        if (pElement == NULL)
        {   fprintf(stderr, "error: insufficient memory available.\n");
            exit(-1);
        }  
        *pElement = value;
        pElement = spGetElement(A,row,col);
    }

    b[0] = 0;  
    for (i = 1; i <= size; i++) {
        line[0]='\0';
        fgets(line,1024,fp);
        if (sscanf(line,"%lf",&value) !=  1) {
          fprintf(stderr,"Error reading RHS.\n");
          exit(-1);
        }
        b[i] = value;
    }
    
    spSetReal( A );

    /*spPrint( A,1,1,1);*/

#if MODIFIED_NODAL
    spMNA_Preorder( A );
#endif
    RelThreshold = 0;
    AbsThreshold = 0;
  Error = spOrderAndFactor( A, b, RelThreshold, AbsThreshold,
                            1 );
  if ( Error >= spFATAL ) {
      fprintf(stdout,"Fatal error (%i)\n",Error);
    exit(-1);
  }
  
  /*spPrint( A,1,1,1);*/

  for (i = 0; i <= size; i++) {
      x[0] = 0;
  }
  
  spSolve( A, b, x);

  /* Print the Solution. */
  for (i = 1; i <= size; i++) {
      fprintf(stdout,"diplacement[%i] = %lg\n",i,x[i]);
  }
  
  spDestroy(A);
  return 0;
    
}