/* * Let rhs[i] = sum of i-th row of A, so the solution vector is all 1's */ void sFillRHS(trans_t trans, int nrhs, float *x, int ldx, SuperMatrix *A, SuperMatrix *B) { NCformat *Astore; float *Aval; DNformat *Bstore; float *rhs; float one = 1.0; float zero = 0.0; int ldc; char transc[1]; Astore = A->Store; Aval = (float *) Astore->nzval; Bstore = B->Store; rhs = Bstore->nzval; ldc = Bstore->lda; if ( trans == NOTRANS ) *(unsigned char *)transc = 'N'; else *(unsigned char *)transc = 'T'; sp_sgemm(transc, "N", A->nrow, nrhs, A->ncol, one, A, x, ldx, zero, rhs, ldc); }
int sp_sget02(char *trans, int m, int n, int nrhs, SuperMatrix *A, float *x, int ldx, float *b, int ldb, float *resid) { /* Purpose ======= SP_SGET02 computes the residual for a solution of a system of linear equations A*x = b or A'*x = b: RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS ), where EPS is the machine epsilon. Arguments ========= TRANS (input) CHARACTER*1 Specifies the form of the system of equations: = 'N': A *x = b = 'T': A'*x = b, where A' is the transpose of A = 'C': A'*x = b, where A' is the transpose of A M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. NRHS (input) INTEGER The number of columns of B, the matrix of right hand sides. NRHS >= 0. A (input) SuperMatrix*, dimension (LDA,N) The original M x N sparse matrix A. X (input) FLOAT PRECISION array, dimension (LDX,NRHS) The computed solution vectors for the system of linear equations. LDX (input) INTEGER The leading dimension of the array X. If TRANS = 'N', LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M). B (input/output) FLOAT PRECISION array, dimension (LDB,NRHS) On entry, the right hand side vectors for the system of linear equations. On exit, B is overwritten with the difference B - A*X. LDB (input) INTEGER The leading dimension of the array B. IF TRANS = 'N', LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N). RESID (output) FLOAT PRECISION The maximum over the number of right hand sides of norm(B - A*X) / ( norm(A) * norm(X) * EPS ). ===================================================================== */ /* Table of constant values */ float alpha = -1.; float beta = 1.; int c__1 = 1; /* System generated locals */ float d__1, d__2; /* Local variables */ int j; int n1, n2; float anorm, bnorm; float xnorm; float eps; /* Function prototypes */ extern int lsame_(char *, char *); extern float slangs(char *, SuperMatrix *); extern float sasum_(int *, float *, int *); extern double slamch_(char *); /* Function Body */ if ( m <= 0 || n <= 0 || nrhs == 0) { *resid = 0.; return 0; } if (lsame_(trans, "T") || lsame_(trans, "C")) { n1 = n; n2 = m; } else { n1 = m; n2 = n; } /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = slamch_("Epsilon"); anorm = slangs("1", A); if (anorm <= 0.) { *resid = 1. / eps; return 0; } /* Compute B - A*X (or B - A'*X ) and store in B. */ sp_sgemm(trans, "N", n1, nrhs, n2, alpha, A, x, ldx, beta, b, ldb); /* Compute the maximum over the number of right hand sides of norm(B - A*X) / ( norm(A) * norm(X) * EPS ) . */ *resid = 0.; for (j = 0; j < nrhs; ++j) { bnorm = sasum_(&n1, &b[j*ldb], &c__1); xnorm = sasum_(&n2, &x[j*ldx], &c__1); if (xnorm <= 0.) { *resid = 1. / eps; } else { /* Computing MAX */ d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps; *resid = SUPERLU_MAX(d__1, d__2); } } return 0; } /* sp_sget02 */