main(int argc, char *argv[]) {
  char name[256];
  int i,cx,cy,cz,x,y,z,squareSize,maxCZ;
  
  GraphicsSpace space1("triangleTest.ppm");
  space1.createImage(301,301);

    space1.addTriangle(150,150,0, 0,150,-100, 150,0,-100, 255,0,0);
    space1.addTriangle(150,150,0, 0,150,-100, 150,300,-100, 255,0,0);  
    space1.addTriangle(150,150,0, 300,150,-100, 150,300,-100, 255,0,0);  
    space1.addTriangle(150,150,0, 300,150,-100, 150,0,-100, 255,0,0);  

    space1.addTriangle(0,0,-100, 0,150,0, 150,0,0, 0,255,0);  
    space1.addTriangle(0,300,-100, 0,150,0, 150,300,0, 0,255,0);  
    space1.addTriangle(300,300,-100, 300,150,0, 150,300,0, 0,255,0);  
    space1.addTriangle(300,0,-100, 300,150,0, 150,0,0, 0,255,0);
  
  //camera stuff
  space1.setBackground(0,0,0);
  space1.lookDown();
  space1.writeImage();

  //image 2
  // space1.rename("triangleTest2.ppm");
  // space1.setCamera(150,150,200);
  // space1.setViewPlaneCenter(150,150,0);
  // space1.setViewPlaneNormal(1,1,1);//not important right now
  // //render image
  // space1.setBackground(0,0,0);
  // space1.render();
  // space1.writeImage();
}
main(int argc, char *argv[]) {
  char name[256];
  int i;
  

  //create an instance of the graphicsSpace class
  GraphicsSpace space2("sphereTest.ppm");
  //create an image background plane for space 2
  space2.createImage(400,600);
  //set a background color for space 2
  space2.setBackground(255,0,0);
  //create a large number of circles
  for (i=1;i<200;i++)
    space2.addSphere(199,299,200-2*i,i+1, i,i,i);
  //run look down to create the image
  space2.lookDown();
  //write out the image plane from image space 2
  space2.writeImage();

  //create space for the ellipse test
  GraphicsSpace space1("Test.ppm");
  //create an image background plane for space 3
  space1.createImage(600,200);
  //set a black background color for space 3
  space1.setBackground(0,0,0);
  //create a single sphere
  space1.addSphere(199,99,0, 50, 255,255,255);

  std::cout << "about to call lookDown" << std::endl;
  //run look down to create the image
  space1.lookDown();
  
    std::cout << "about to call writeImage" << std::endl;
  //write out the image plane from image space 1
  space1.writeImage();
 
}
main(int argc, char *argv[]) {
  char name[256];
  int i,cx,cy,cz,x,y,z,squareSize,maxCZ;
  
  GraphicsSpace space1("planeTest.ppm");
  space1.createImage(301,301);
  space1.setBackground(0,0,0);
  //planes
  //floor
  space1.addPlane(0,100,0, 0,1,0, 100,100,100);
  //ceiling
  space1.addPlane(0,-100,0, 0,1,0, 200,200,200);
  //left wall
  space1.addPlane(-200,0,0, 1,0,0, 150,150,150);
  //right wall
  space1.addPlane(200,0,0, 1,0,0, 150,150,150);
  
  //legs
  for (x=0;x<10;x++)
    for (z=1;z<10;z++){
      space1.addLine(-50+x,100,z, -50+x,0,z, 200,0,0);
      space1.addLine(-50+x,100,100-z, -50+x,0,100-z, 200,0,0);
      space1.addLine(50-x,100,z, 50-x,0,z, 200,0,0);
      space1.addLine(50-x,100,100-z, 50-x,0,100-z, 200,0,0);
    }
  //leg fronts
  for (x=0;x<10;x++){
    space1.addLine(-50+x,100,0, -50+x,0,0, 255,0,0);
    space1.addLine(-50+x,100,100, -50+x,0,100, 255,0,0);
    space1.addLine(50-x,100,0, 50-x,0,0, 255,0,0);
    space1.addLine(50-x,100,100, 50-x,0,100, 255,0,0);
    
    space1.addLine(-50+x,100,10, -50+x,0,10, 255,0,0);
    space1.addLine(-50+x,100,90, -50+x,0,90, 255,0,0);
    space1.addLine(50-x,100,10, 50-x,0,10, 255,0,0);
    space1.addLine(50-x,100,90, 50-x,0,90, 255,0,0);
  }
  //table
  for (x=-50;x<=50;x++)
    for (y=0;y<10;y++){
      space1.addLine(x,-y,1, x,-y,99, 200,100,0);
    }

  for (y=0;y<10;y++){
    space1.addLine(-50,-y,0, 50,-y,0, 255,50,0);
    space1.addLine(-50,-y,100, 50,-y,100, 255,50,0);
  }  
  
  //camera stuff
  space1.setCamera(0,40,-50);
  space1.setViewPlaneCenter(0,40,0);
  space1.setViewPlaneNormal(1,1,1);//not important right now
  //render image
  space1.render();
  space1.writeImage();

  //image 2
  space1.rename("planeTest2.ppm");
  space1.setCamera(0,-40,-75);
  space1.setViewPlaneCenter(0,-40,0);
  space1.render();
  space1.writeImage();
  
  GraphicsSpace space2("sphereTest1.ppm");
  space2.createImage(301,301);
  space2.setBackground(255,0,0);

  for (cz=0;cz<10;cz+=2){
    space2.addSphere(50,50,cz*100, 50, 0,255-cz*10,0);
    space2.addSphere(50,301-50,cz*100, 50, 0,255-cz*10,0);
    space2.addSphere(301-50,50,cz*100, 50, 0,255-cz*10,0);
    space2.addSphere(301-50,301-50,cz*100, 50, 0,255-cz*10,0);
  }

  space2.lookDown();
  space2.writeImage();

  space2.setBackground(255,0,0);
  space2.rename("sphereTest2.ppm");
  space2.setCamera(151,151,-300);
  space2.setViewPlaneCenter(151,151,0);
  space2.setViewPlaneNormal(1,1,1);//not important right now
  //render image
  space2.render();
  space2.writeImage();
}
示例#4
0
int main(int argc, char* argv[])
{
  // Load the mesh.
  Mesh mesh;
  MeshReaderH2D mloader;
  mloader.load(mesh_file.c_str(), &mesh);

  // Perform initial mesh refinements.
  for (int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();

  // Solution variables.
  Solution<double> sln1, sln2, sln3, sln4;
  Hermes::vector<Solution<double>*> solutions(&sln1, &sln2, &sln3, &sln4);
  
  // Define initial conditions.
  Hermes::Mixins::Loggable::Static::info("Setting initial conditions.");
  ConstantSolution<double> iter1(&mesh, 1.00), iter2(&mesh, 1.00), iter3(&mesh, 1.00), iter4(&mesh, 1.00);

  Hermes::vector<MeshFunction<double>*> iterates(&iter1, &iter2, &iter3, &iter4);

  // Create H1 spaces with default shapesets.
  H1Space<double> space1(&mesh, P_INIT_1);
  H1Space<double> space2(&mesh, P_INIT_2);
  H1Space<double> space3(&mesh, P_INIT_3);
  H1Space<double> space4(&mesh, P_INIT_4);
  Hermes::vector<const Space<double>* > spaces(&space1, &space2, &space3, &space4);
  int ndof = Space<double>::get_num_dofs(spaces);
  Hermes::Mixins::Loggable::Static::info("ndof = %d", ndof);

  // Initialize views.
  ScalarView view1("Neutron flux 1", new WinGeom(0, 0, 320, 600));
  ScalarView view2("Neutron flux 2", new WinGeom(350, 0, 320, 600));
  ScalarView view3("Neutron flux 3", new WinGeom(700, 0, 320, 600));
  ScalarView view4("Neutron flux 4", new WinGeom(1050, 0, 320, 600));
  
  // Do not show meshes, set 3D mode.
  view1.show_mesh(false); view1.set_3d_mode(true);
  view2.show_mesh(false); view2.set_3d_mode(true);
  view3.show_mesh(false); view3.set_3d_mode(true);
  view4.show_mesh(false); view4.set_3d_mode(true);
  
  // Load physical data of the problem for the 4 energy groups.
  Hermes::Hermes2D::WeakFormsNeutronics::Multigroup::MaterialProperties::Diffusion::MaterialPropertyMaps matprop(4);
  matprop.set_D(D);
  matprop.set_Sigma_r(Sr);
  matprop.set_Sigma_s(Ss);
  matprop.set_Sigma_a(Sa);
  matprop.set_Sigma_f(Sf);
  matprop.set_nu(nu);
  matprop.set_chi(chi);
  matprop.validate();
  
  // Printing table of material properties.
  std::cout << matprop;
  
  // Initialize the weak formulation.
  CustomWeakForm wf(matprop, iterates, k_eff, bdy_vacuum);

  // Initialize the FE problem.
  DiscreteProblem<double> dp(&wf, spaces);

  // Initialize Newton solver.
  NewtonSolver<double> newton(&dp);

  // Time measurement.
  Hermes::Mixins::TimeMeasurable cpu_time;
      
  // Main power iteration loop:
  int it = 1; bool done = false;
  do
  {
    Hermes::Mixins::Loggable::Static::info("------------ Power iteration %d:", it);
    
    Hermes::Mixins::Loggable::Static::info("Newton's method.");
    
    // Perform Newton's iteration.
    try
    {
      newton.set_newton_max_iter(NEWTON_MAX_ITER);
      newton.set_newton_tol(NEWTON_TOL);
      newton.solve_keep_jacobian();
    }
    catch(Hermes::Exceptions::Exception e)
    {
      e.printMsg();
      throw Hermes::Exceptions::Exception("Newton's iteration failed.");
    }
       
    // Debug.
    //printf("\n=================================================\n");
    //for (int d = 0; d < ndof; d++) printf("%g ", newton.get_sln_vector()[d]);

    // Translate the resulting coefficient vector into a Solution.
    Solution<double>::vector_to_solutions(newton.get_sln_vector(), spaces, solutions);
    
    // Show intermediate solutions.
    view1.show(&sln1);    
    view2.show(&sln2);
    view3.show(&sln3);    
    view4.show(&sln4);
    
    // Compute eigenvalue.
    SourceFilter source(solutions, &matprop, core);
    SourceFilter source_prev(iterates, &matprop, core);
    
    double k_new = k_eff * (integrate(&source, core) / integrate(&source_prev, core));
    Hermes::Mixins::Loggable::Static::info("Largest eigenvalue: %.8g, rel. difference from previous it.: %g", k_new, fabs((k_eff - k_new) / k_new));
    
    // Stopping criterion.
    if (fabs((k_eff - k_new) / k_new) < ERROR_STOP) done = true;

    // Update eigenvalue.
    k_eff = k_new;
    wf.update_keff(k_eff);
    
    if (!done)
    {
      // Save solutions for the next iteration.
      iter1.copy(&sln1);    
      iter2.copy(&sln2);
      iter3.copy(&sln3);    
      iter4.copy(&sln4);
      
      it++;
    }
  }
  while (!done);
  
  // Time measurement.
  cpu_time.tick();
  
  // Show solutions.
  view1.show(&sln1);
  view2.show(&sln2);
  view3.show(&sln3);    
  view4.show(&sln4);
  
  // Skip visualization time.
  cpu_time.tick(Hermes::Mixins::TimeMeasurable::HERMES_SKIP);

  // Print timing information.
  Hermes::Mixins::Loggable::Static::info("Total running time: %g s", cpu_time.accumulated());
    
  // Wait for all views to be closed.
  View::wait();
  return 0;
}
示例#5
0
文件: main.cpp 项目: Veix123/hermes
int main(int argc, char **args) 
{
  // Test variable.
  int success_test = 1;

	if (argc < 2) error("Not enough parameters.");

  // Load the mesh.
	Mesh mesh;
  H3DReader mloader;
  if (!mloader.load(args[1], &mesh)) error("Loading mesh file '%s'.", args[1]);

  // Initialize the space 1.
	Ord3 o1(2, 2, 2);
	H1Space space1(&mesh, bc_types, NULL, o1);

	// Initialize the space 2.
	Ord3 o2(4, 4, 4);
	H1Space space2(&mesh, bc_types, NULL, o2);

	WeakForm wf(2);
	wf.add_matrix_form(0, 0, bilinear_form_1_1<double, scalar>, bilinear_form_1_1<Ord, Ord>, HERMES_SYM);
	wf.add_matrix_form(0, 1, bilinear_form_1_2<double, scalar>, bilinear_form_1_2<Ord, Ord>, HERMES_SYM);
	wf.add_vector_form(0, linear_form_1<double, scalar>, linear_form_1<Ord, Ord>);
	wf.add_matrix_form(1, 1, bilinear_form_2_2<double, scalar>, bilinear_form_2_2<Ord, Ord>, HERMES_SYM);
	wf.add_vector_form(1, linear_form_2<double, scalar>, linear_form_2<Ord, Ord>);

  // Initialize the FE problem.
  bool is_linear = true;
  DiscreteProblem dp(&wf, Tuple<Space *>(&space1, &space2), is_linear);

  // Initialize the solver in the case of SOLVER_PETSC or SOLVER_MUMPS.
  initialize_solution_environment(matrix_solver, argc, args);

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  // Initialize the preconditioner in the case of SOLVER_AZTECOO.
  if (matrix_solver == SOLVER_AZTECOO) 
  {
    ((AztecOOSolver*) solver)->set_solver(iterative_method);
    ((AztecOOSolver*) solver)->set_precond(preconditioner);
    // Using default iteration parameters (see solver/aztecoo.h).
  }

  // Assemble the linear problem.
  info("Assembling (ndof: %d).", Space::get_num_dofs(Tuple<Space *>(&space1, &space2)));
  dp.assemble(matrix, rhs);

  // Solve the linear system. If successful, obtain the solution.
  info("Solving.");
	Solution sln1(&mesh);
	Solution sln2(&mesh);
  if(solver->solve()) Solution::vector_to_solutions(solver->get_solution(), Tuple<Space *>(&space1, &space2), Tuple<Solution *>(&sln1, &sln2));
  else error ("Matrix solver failed.\n");

  ExactSolution ex_sln1(&mesh, exact_sln_fn_1);
  ExactSolution ex_sln2(&mesh, exact_sln_fn_2);

  // Calculate exact error.
  info("Calculating exact error.");
  Adapt *adaptivity = new Adapt(Tuple<Space *>(&space1, &space2), Tuple<ProjNormType>(HERMES_H1_NORM, HERMES_H1_NORM));
  bool solutions_for_adapt = false;
  double err_exact = adaptivity->calc_err_exact(Tuple<Solution *>(&sln1, &sln2), Tuple<Solution *>(&ex_sln1, &ex_sln2), solutions_for_adapt, HERMES_TOTAL_ERROR_ABS);

  if (err_exact > EPS)
		// Calculated solution is not precise enough.
		success_test = 0;

  // Clean up.
  delete matrix;
  delete rhs;
  delete solver;
  delete adaptivity;

  // Properly terminate the solver in the case of SOLVER_PETSC or SOLVER_MUMPS.
  finalize_solution_environment(matrix_solver);
  
  if (success_test) {
    info("Success!");
    return ERR_SUCCESS;
	}
	else {
    info("Failure!");
    return ERR_FAILURE;
	}
}
示例#6
0
int main(int argc, char* argv[])
{
  // Load the mesh.
  Mesh mesh;
  H2DReader mloader;
  mloader.load("reactor.mesh", &mesh);

  // Perform initial mesh refinements.
  for (int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();

  // Solution variables.
  Solution sln1, sln2, sln3, sln4;
  Solution iter1, iter2, iter3, iter4;
  Hermes::Tuple<Solution*> solutions(&sln1, &sln2, &sln3, &sln4);

  // Define initial conditions.
  info("Setting initial conditions.");
  iter1.set_const(&mesh, 1.00);
  iter2.set_const(&mesh, 1.00);
  iter3.set_const(&mesh, 1.00);
  iter4.set_const(&mesh, 1.00);

  // Enter boundary markers.
  BCTypes bc_types;
  bc_types.add_bc_neumann(BDY_SYM);
  bc_types.add_bc_newton(BDY_VACUUM);

  // Create H1 spaces with default shapesets.
  H1Space space1(&mesh, &bc_types, P_INIT_1);
  H1Space space2(&mesh, &bc_types, P_INIT_2);
  H1Space space3(&mesh, &bc_types, P_INIT_3);
  H1Space space4(&mesh, &bc_types, P_INIT_4);
  Hermes::Tuple<Space*> spaces(&space1, &space2, &space3, &space4);
  
  int ndof = Space::get_num_dofs(Hermes::Tuple<Space*>(&space1, &space2, &space3, &space4));
  info("ndof = %d.", ndof);
  
  // Initialize views.
  ScalarView view1("Neutron flux 1", new WinGeom(0, 0, 320, 600));
  ScalarView view2("Neutron flux 2", new WinGeom(350, 0, 320, 600));
  ScalarView view3("Neutron flux 3", new WinGeom(700, 0, 320, 600));
  ScalarView view4("Neutron flux 4", new WinGeom(1050, 0, 320, 600));
  
  // Do not show meshes.
  view1.show_mesh(false); view1.set_3d_mode(true);
  view2.show_mesh(false); view2.set_3d_mode(true);
  view3.show_mesh(false); view3.set_3d_mode(true);
  view4.show_mesh(false); view4.set_3d_mode(true);
  
  // Initialize the weak formulation.
  WeakForm wf(4);
  wf.add_matrix_form(0, 0, callback(biform_0_0), HERMES_SYM);
  wf.add_matrix_form(1, 1, callback(biform_1_1), HERMES_SYM);
  wf.add_matrix_form(1, 0, callback(biform_1_0));
  wf.add_matrix_form(2, 2, callback(biform_2_2), HERMES_SYM);
  wf.add_matrix_form(2, 1, callback(biform_2_1));
  wf.add_matrix_form(3, 3, callback(biform_3_3), HERMES_SYM);
  wf.add_matrix_form(3, 2, callback(biform_3_2));
  wf.add_vector_form(0, callback(liform_0), marker_core, Hermes::Tuple<MeshFunction*>(&iter1, &iter2, &iter3, &iter4));
  wf.add_vector_form(1, callback(liform_1), marker_core, Hermes::Tuple<MeshFunction*>(&iter1, &iter2, &iter3, &iter4));
  wf.add_vector_form(2, callback(liform_2), marker_core, Hermes::Tuple<MeshFunction*>(&iter1, &iter2, &iter3, &iter4));
  wf.add_vector_form(3, callback(liform_3), marker_core, Hermes::Tuple<MeshFunction*>(&iter1, &iter2, &iter3, &iter4));
  wf.add_matrix_form_surf(0, 0, callback(biform_surf_0_0), BDY_VACUUM);
  wf.add_matrix_form_surf(1, 1, callback(biform_surf_1_1), BDY_VACUUM);
  wf.add_matrix_form_surf(2, 2, callback(biform_surf_2_2), BDY_VACUUM);
  wf.add_matrix_form_surf(3, 3, callback(biform_surf_3_3), BDY_VACUUM);

  // Initialize the FE problem.
  bool is_linear = true;
  DiscreteProblem dp(&wf, spaces, is_linear);
  
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  if (matrix_solver == SOLVER_AZTECOO) 
  {
    ((AztecOOSolver*) solver)->set_solver(iterative_method);
    ((AztecOOSolver*) solver)->set_precond(preconditioner);
    // Using default iteration parameters (see solver/aztecoo.h).
  }
  
  // Time measurement.
  TimePeriod cpu_time, solver_time;
  
  // Main power iteration loop:
  int iter = 1; bool done = false;
  bool rhs_only = false;
  
  solver->set_factorization_scheme(HERMES_REUSE_FACTORIZATION_COMPLETELY);
  do
  {
    info("------------ Power iteration %d:", iter);
    
    info("Assembling the stiffness matrix and right-hand side vector.");
    dp.assemble(matrix, rhs, rhs_only);
    
    /* 
    // Testing the factorization reuse schemes for direct solvers.
    if (iter == 10)  
      solver->set_factorization_scheme(HERMES_REUSE_MATRIX_REORDERING);
    if (iter == 20)
      solver->set_factorization_scheme(HERMES_REUSE_MATRIX_REORDERING_AND_SCALING);
    if (iter == 30) 
      solver->set_factorization_scheme(HERMES_REUSE_FACTORIZATION_COMPLETELY);
    */
 
    info("Solving the matrix problem by %s.", MatrixSolverNames[matrix_solver].c_str());
    solver_time.tick(HERMES_SKIP);  
    bool solved = solver->solve();  
    solver_time.tick();
    
    if(solved)
      Solution::vector_to_solutions(solver->get_solution(), spaces, solutions);
    else
      error ("Matrix solver failed.\n");

    // Show intermediate solutions.
    // view1.show(&sln1);    
    // view2.show(&sln2);
    // view3.show(&sln3);    
    // view4.show(&sln4);

    SimpleFilter source(source_fn, Hermes::Tuple<MeshFunction*>(&sln1, &sln2, &sln3, &sln4));
    SimpleFilter source_prev(source_fn, Hermes::Tuple<MeshFunction*>(&iter1, &iter2, &iter3, &iter4));

    // Compute eigenvalue.
    double k_new = k_eff * (integrate(&source, marker_core) / integrate(&source_prev, marker_core));
    info("Largest eigenvalue: %.8g, rel. difference from previous it.: %g", k_new, fabs((k_eff - k_new) / k_new));
    
    // Stopping criterion.
    if (fabs((k_eff - k_new) / k_new) < ERROR_STOP) done = true;

    // Update eigenvalue.
    k_eff = k_new;
    
    if (!done)
    {
      // Save solutions for the next iteration.
      iter1.copy(&sln1);    
      iter2.copy(&sln2);
      iter3.copy(&sln3);    
      iter4.copy(&sln4);
      
      // Don't need to reassemble the system matrix in further iterations,
      // only the rhs changes to reflect the progressively updated source.
      rhs_only = true;

      iter++;
    }
  }
  while (!done);
  
  // Time measurement.
  cpu_time.tick();
  solver_time.tick(HERMES_SKIP);
  
  // Print timing information.
  verbose("Average solver time for one power iteration: %g s", solver_time.accumulated() / iter);
  
  // Clean up.
  delete matrix;
  delete rhs;
  delete solver;

  // Show solutions.
  view1.show(&sln1);
  view2.show(&sln2);
  view3.show(&sln3);    
  view4.show(&sln4);
  
  // Skip visualization time.
  cpu_time.tick(HERMES_SKIP);

  // Print timing information.
  verbose("Total running time: %g s", cpu_time.accumulated());
    
  // Wait for all views to be closed.
  View::wait();
  return 0;
}
示例#7
0
int main(int argc, char* argv[])
{
  // Time measurement.
  Hermes::Mixins::TimeMeasurable cpu_time;
  cpu_time.tick();
  
  // Load physical data of the problem.
  MaterialPropertyMaps matprop(N_GROUPS);
  matprop.set_D(D);
  matprop.set_Sigma_r(Sr);
  matprop.set_Sigma_s(Ss);
  matprop.set_Sigma_a(Sa);
  matprop.set_Sigma_f(Sf);
  matprop.set_nu(nu);
  matprop.set_chi(chi);
  matprop.validate();
  
  std::cout << matprop;

  // Use multimesh, i.e. create one mesh for each energy group.
  Hermes::vector<Mesh *> meshes;
  for (unsigned int g = 0; g < matprop.get_G(); g++) 
    meshes.push_back(new Mesh());
  
  // Load the mesh for the 1st group.
  MeshReaderH2D mloader;
  mloader.load(mesh_file.c_str(), meshes[0]);
 
  for (unsigned int g = 1; g < matprop.get_G(); g++) 
  {
    // Obtain meshes for the 2nd to 4th group by cloning the mesh loaded for the 1st group.
    meshes[g]->copy(meshes[0]);
    // Initial uniform refinements.
    for (int i = 0; i < INIT_REF_NUM[g]; i++) 
      meshes[g]->refine_all_elements();
  }
  for (int i = 0; i < INIT_REF_NUM[0]; i++) 
    meshes[0]->refine_all_elements();
  
  // Create pointers to solutions on coarse and fine meshes and from the latest power iteration, respectively.
  Hermes::vector<Solution<double>*> coarse_solutions, fine_solutions;
  Hermes::vector<MeshFunction<double>*> power_iterates;

  // Initialize all the new solution variables.
  for (unsigned int g = 0; g < matprop.get_G(); g++) 
  {
    coarse_solutions.push_back(new Solution<double>());
    fine_solutions.push_back(new Solution<double>());
    power_iterates.push_back(new ConstantSolution<double>(meshes[g], 1.0));   
  }
  
  // Create the approximation spaces with the default shapeset.
  H1Space<double> space1(meshes[0], P_INIT[0]);
  H1Space<double> space2(meshes[1], P_INIT[1]);
  H1Space<double> space3(meshes[2], P_INIT[2]);
  H1Space<double> space4(meshes[3], P_INIT[3]);
  Hermes::vector<const Space<double>*> const_spaces(&space1, &space2, &space3, &space4);
  Hermes::vector<Space<double>*> spaces(&space1, &space2, &space3, &space4);

  // Initialize the weak formulation.
  CustomWeakForm wf(matprop, power_iterates, k_eff, bdy_vacuum);
    
  // Initialize the discrete algebraic representation of the problem and its solver.
  //
  // Create the matrix and right-hand side vector for the solver.
  SparseMatrix<double>* mat = create_matrix<double>();
  Vector<double>* rhs = create_vector<double>();
  // Instantiate the solver itself.
  LinearMatrixSolver<double>* solver = create_linear_solver<double>( mat, rhs);

  // Initialize views.
  /* for 1280x800 display */
  ScalarView view1("Neutron flux 1", new WinGeom(0, 0, 320, 400));
  ScalarView view2("Neutron flux 2", new WinGeom(330, 0, 320, 400));
  ScalarView view3("Neutron flux 3", new WinGeom(660, 0, 320, 400));
  ScalarView view4("Neutron flux 4", new WinGeom(990, 0, 320, 400));
  OrderView oview1("Mesh for group 1", new WinGeom(0, 450, 320, 500));
  OrderView oview2("Mesh for group 2", new WinGeom(330, 450, 320, 500));
  OrderView oview3("Mesh for group 3", new WinGeom(660, 450, 320, 500));
  OrderView oview4("Mesh for group 4", new WinGeom(990, 450, 320, 500));

  /* for adjacent 1280x800 and 1680x1050 displays
  ScalarView view1("Neutron flux 1", new WinGeom(0, 0, 640, 480));
  ScalarView view2("Neutron flux 2", new WinGeom(650, 0, 640, 480));
  ScalarView view3("Neutron flux 3", new WinGeom(1300, 0, 640, 480));
  ScalarView view4("Neutron flux 4", new WinGeom(1950, 0, 640, 480));
  OrderView oview1("Mesh for group 1", new WinGeom(1300, 500, 340, 500));
  OrderView oview2("Mesh for group 2", new WinGeom(1650, 500, 340, 500));
  OrderView oview3("Mesh for group 3", new WinGeom(2000, 500, 340, 500));
  OrderView oview4("Mesh for group 4", new WinGeom(2350, 500, 340, 500));
  */

  Hermes::vector<ScalarView *> sviews(&view1, &view2, &view3, &view4);
  Hermes::vector<OrderView *> oviews(&oview1, &oview2, &oview3, &oview4); 
  for (unsigned int g = 0; g < matprop.get_G(); g++) 
  { 
    sviews[g]->show_mesh(false);
    sviews[g]->set_3d_mode(true);
  }
  
  // DOF and CPU convergence graphs
  GnuplotGraph graph_dof("Error convergence", "NDOF", "log(error)");
  graph_dof.add_row("H1 err. est. [%]", "r", "-", "o");
  graph_dof.add_row("L2 err. est. [%]", "g", "-", "s");
  graph_dof.add_row("Keff err. est. [milli-%]", "b", "-", "d");
  graph_dof.set_log_y();
  graph_dof.show_legend();
  graph_dof.show_grid();

  GnuplotGraph graph_dof_evol("Evolution of NDOF", "Adaptation step", "NDOF");
  graph_dof_evol.add_row("group 1", "r", "-", "o");
  graph_dof_evol.add_row("group 2", "g", "-", "x");
  graph_dof_evol.add_row("group 3", "b", "-", "+");
  graph_dof_evol.add_row("group 4", "m", "-", "*");
  graph_dof_evol.set_log_y();
  graph_dof_evol.set_legend_pos("bottom right");
  graph_dof_evol.show_grid();

  GnuplotGraph graph_cpu("Error convergence", "CPU time [s]", "log(error)");
  graph_cpu.add_row("H1 err. est. [%]", "r", "-", "o");
  graph_cpu.add_row("L2 err. est. [%]", "g", "-", "s");
  graph_cpu.add_row("Keff err. est. [milli-%]", "b", "-", "d");
  graph_cpu.set_log_y();
  graph_cpu.show_legend();
  graph_cpu.show_grid();

  // Initialize the refinement selectors.
  H1ProjBasedSelector<double> selector(CAND_LIST, CONV_EXP, H2DRS_DEFAULT_ORDER);
  Hermes::vector<RefinementSelectors::Selector<double>*> selectors;
  for (unsigned int g = 0; g < matprop.get_G(); g++) 
    selectors.push_back(&selector);
  
  Hermes::vector<MatrixFormVol<double>*> projection_jacobian;
  Hermes::vector<VectorFormVol<double>*> projection_residual;
  for (unsigned int g = 0; g < matprop.get_G(); g++) 
  {
    projection_jacobian.push_back(new H1AxisymProjectionJacobian(g));
    projection_residual.push_back(new H1AxisymProjectionResidual(g, power_iterates[g]));
  }
  
  Hermes::vector<ProjNormType> proj_norms_h1, proj_norms_l2;
  for (unsigned int g = 0; g < matprop.get_G(); g++)
  {
    proj_norms_h1.push_back(HERMES_H1_NORM);
    proj_norms_l2.push_back(HERMES_L2_NORM);
  }
  
  // Initial power iteration to obtain a coarse estimate of the eigenvalue and the fission source.
  Hermes::Mixins::Loggable::Static::info("Coarse mesh power iteration, %d + %d + %d + %d = %d ndof:", report_num_dofs(spaces));
  power_iteration(matprop, const_spaces, &wf, power_iterates, core, TOL_PIT_CM, matrix_solver);
  
  // Adaptivity loop:
  int as = 1; bool done = false;
  do 
  {
    Hermes::Mixins::Loggable::Static::info("---- Adaptivity step %d:", as);
    
    // Construct globally refined meshes and setup reference spaces on them.
    Hermes::vector<const Space<double>*> ref_spaces_const;
    Hermes::vector<Mesh *> ref_meshes;
    for (unsigned int g = 0; g < matprop.get_G(); g++) 
    { 
      ref_meshes.push_back(new Mesh());
      Mesh *ref_mesh = ref_meshes.back();      
      ref_mesh->copy(spaces[g]->get_mesh());
      ref_mesh->refine_all_elements();
      
      int order_increase = 1;
      ref_spaces_const.push_back(spaces[g]->dup(ref_mesh, order_increase));
    }

#ifdef WITH_PETSC    
    // PETSc assembling is currently slow for larger matrices, so we switch to 
    // UMFPACK when matrices of order >8000 start to appear.
    if (Space<double>::get_num_dofs(ref_spaces_const) > 8000 && matrix_solver == SOLVER_PETSC)
    {
      // Delete the old solver.
      delete mat;
      delete rhs;
      delete solver;
      
      // Create a new one.
      matrix_solver = SOLVER_UMFPACK;
      mat = create_matrix<double>();
      rhs = create_vector<double>();
      solver = create_linear_solver<double>( mat, rhs);
    }
#endif    

    // Solve the fine mesh problem.
    Hermes::Mixins::Loggable::Static::info("Fine mesh power iteration, %d + %d + %d + %d = %d ndof:", report_num_dofs(ref_spaces_const));
    power_iteration(matprop, ref_spaces_const, &wf, power_iterates, core, TOL_PIT_RM, matrix_solver);
    
    // Store the results.
    for (unsigned int g = 0; g < matprop.get_G(); g++) 
      fine_solutions[g]->copy((static_cast<Solution<double>*>(power_iterates[g])));

    Hermes::Mixins::Loggable::Static::info("Projecting fine mesh solutions on coarse meshes.");
    // This is commented out as the appropriate method was deleted in the commit
    // "Cleaning global projections" (b282194946225014faa1de37f20112a5a5d7ab5a).
    //OGProjection<double> ogProjection; ogProjection.project_global(spaces, projection_jacobian, projection_residual, coarse_solutions);

    // Time measurement.
    cpu_time.tick();

    // View the coarse mesh solution and meshes.
    for (unsigned int g = 0; g < matprop.get_G(); g++) 
    { 
      sviews[g]->show(coarse_solutions[g]); 
      oviews[g]->show(spaces[g]);
    }

    // Skip visualization time.
    cpu_time.tick(Hermes::Mixins::TimeMeasurable::HERMES_SKIP);

    // Report the number of negative eigenfunction values.
    Hermes::Mixins::Loggable::Static::info("Num. of negative values: %d, %d, %d, %d",
         get_num_of_neg(coarse_solutions[0]), get_num_of_neg(coarse_solutions[1]),
         get_num_of_neg(coarse_solutions[2]), get_num_of_neg(coarse_solutions[3]));

    // Calculate element errors and total error estimate.
    Adapt<double> adapt_h1(spaces);
    Adapt<double> adapt_l2(spaces);    
    for (unsigned int g = 0; g < matprop.get_G(); g++)
    {
      adapt_h1.set_error_form(g, g, new ErrorForm(proj_norms_h1[g]));
      adapt_l2.set_error_form(g, g, new ErrorForm(proj_norms_l2[g]));
    }
    
    // Calculate element errors and error estimates in H1 and L2 norms. Use the H1 estimate to drive adaptivity.
    Hermes::Mixins::Loggable::Static::info("Calculating errors.");
    Hermes::vector<double> h1_group_errors, l2_group_errors;
    double h1_err_est = adapt_h1.calc_err_est(coarse_solutions, fine_solutions, &h1_group_errors) * 100;
    double l2_err_est = adapt_l2.calc_err_est(coarse_solutions, fine_solutions, &l2_group_errors, false) * 100;

    // Time measurement.
    cpu_time.tick();
    double cta = cpu_time.accumulated();
    
    // Report results.
    Hermes::Mixins::Loggable::Static::info("ndof_coarse: %d + %d + %d + %d = %d", report_num_dofs(spaces));

    // Millipercent eigenvalue error w.r.t. the reference value (see physical_parameters.cpp). 
    double keff_err = 1e5*fabs(wf.get_keff() - REF_K_EFF)/REF_K_EFF;

    Hermes::Mixins::Loggable::Static::info("per-group err_est_coarse (H1): %g%%, %g%%, %g%%, %g%%", report_errors(h1_group_errors));
    Hermes::Mixins::Loggable::Static::info("per-group err_est_coarse (L2): %g%%, %g%%, %g%%, %g%%", report_errors(l2_group_errors));
    Hermes::Mixins::Loggable::Static::info("total err_est_coarse (H1): %g%%", h1_err_est);
    Hermes::Mixins::Loggable::Static::info("total err_est_coarse (L2): %g%%", l2_err_est);
    Hermes::Mixins::Loggable::Static::info("k_eff err: %g milli-percent", keff_err);

    // Add entry to DOF convergence graph.
    int ndof_coarse = spaces[0]->get_num_dofs() + spaces[1]->get_num_dofs() 
      + spaces[2]->get_num_dofs() + spaces[3]->get_num_dofs();
    graph_dof.add_values(0, ndof_coarse, h1_err_est);
    graph_dof.add_values(1, ndof_coarse, l2_err_est);
    graph_dof.add_values(2, ndof_coarse, keff_err);

    // Add entry to CPU convergence graph.
    graph_cpu.add_values(0, cta, h1_err_est);
    graph_cpu.add_values(1, cta, l2_err_est);
    graph_cpu.add_values(2, cta, keff_err);

    for (unsigned int g = 0; g < matprop.get_G(); g++)
      graph_dof_evol.add_values(g, as, Space<double>::get_num_dofs(spaces[g]));

    cpu_time.tick(Hermes::Mixins::TimeMeasurable::HERMES_SKIP);

    // If err_est too large, adapt the mesh (L2 norm chosen since (weighted integrals of) solution values
    // are more important for further analyses than the derivatives. 
    if (l2_err_est < ERR_STOP) 
      done = true;
    else 
    {
      Hermes::Mixins::Loggable::Static::info("Adapting the coarse mesh.");
      done = adapt_h1.adapt(selectors, THRESHOLD, STRATEGY, MESH_REGULARITY);
      if (spaces[0]->get_num_dofs() + spaces[1]->get_num_dofs() 
          + spaces[2]->get_num_dofs() + spaces[3]->get_num_dofs() >= NDOF_STOP) 
        done = true;
    }

    // Free reference meshes and spaces.
    for (unsigned int g = 0; g < matprop.get_G(); g++) 
    {
      delete ref_spaces_const[g];
      delete ref_meshes[g];
    }

    as++;
        
    if (as >= MAX_ADAPT_NUM) done = true;
  }
  while(done == false);

  Hermes::Mixins::Loggable::Static::info("Total running time: %g s", cpu_time.accumulated());
  
  for (unsigned int g = 0; g < matprop.get_G(); g++) 
  {
    delete spaces[g]; delete meshes[g];
    delete coarse_solutions[g], delete fine_solutions[g]; delete power_iterates[g];
  }
  
  delete mat;
  delete rhs;
  delete solver;

  graph_dof.save("conv_dof.gp");
  graph_cpu.save("conv_cpu.gp");
  graph_dof_evol.save("dof_evol.gp");

  // Wait for all views to be closed.
  View::wait();
  return 0;
}
示例#8
0
int main(int argc, char **args) {
	int res = ERR_SUCCESS;

#ifdef WITH_PETSC
	PetscInitialize(&argc, &args, (char *) PETSC_NULL, PETSC_NULL);
#endif
	set_verbose(false);

	if (argc < 2) error("Not enough parameters");

	H1ShapesetLobattoHex shapeset;

	printf("* Loading mesh '%s'\n", args[1]);
	Mesh mesh;
	Mesh3DReader mesh_loader;
	if (!mesh_loader.load(args[1], &mesh)) error("Loading mesh file '%s'\n", args[1]);

	printf("* Setup space #1\n");
	H1Space space1(&mesh, &shapeset);
	space1.set_bc_types(bc_types);

	order3_t o1(2, 2, 2);
	printf("  - Setting uniform order to (%d, %d, %d)\n", o1.x, o1.y, o1.z);
	space1.set_uniform_order(o1);

	printf("* Setup space #2\n");
	H1Space space2(&mesh, &shapeset);
	space2.set_bc_types(bc_types);

	order3_t o2(4, 4, 4);
	printf("  - Setting uniform order to (%d, %d, %d)\n", o2.x, o2.y, o2.z);
	space2.set_uniform_order(o2);

	int ndofs = 0;
	ndofs += space1.assign_dofs();
	ndofs += space2.assign_dofs(ndofs);
	printf("  - Number of DOFs: %d\n", ndofs);

	printf("* Calculating a solution\n");

#if defined WITH_UMFPACK
	UMFPackMatrix mat;
	UMFPackVector rhs;
	UMFPackLinearSolver solver(&mat, &rhs);
#elif defined WITH_PARDISO
	PardisoMatrix mat;
	PardisoVector rhs;
	PardisoLinearSolver solver(&mat, &rhs);
#elif defined WITH_PETSC
	PetscMatrix mat;
	PetscVector rhs;
	PetscLinearSolver solver(&mat, &rhs);
#elif defined WITH_MUMPS
	MumpsMatrix mat;
	MumpsVector rhs;
	MumpsSolver solver(&mat, &rhs);
#endif

	WeakForm wf(2);
	wf.add_matrix_form(0, 0, bilinear_form_1<double, scalar>, bilinear_form_1<ord_t, ord_t>, SYM);
	wf.add_vector_form(0, linear_form_1<double, scalar>, linear_form_1<ord_t, ord_t>);

	wf.add_matrix_form(1, 1, bilinear_form_2<double, scalar>, bilinear_form_2<ord_t, ord_t>, SYM);
	wf.add_vector_form(1, linear_form_2<double, scalar>, linear_form_2<ord_t, ord_t>);

	LinearProblem lp(&wf, Tuple<Space *>(&space1, &space2));

	// assemble stiffness matrix
	Timer assemble_timer("Assembling stiffness matrix");
	assemble_timer.start();
	lp.assemble(&mat, &rhs);
	assemble_timer.stop();

	// solve the stiffness matrix
	Timer solve_timer("Solving stiffness matrix");
	solve_timer.start();
	bool solved = solver.solve();
	solve_timer.stop();

	// output the measured values
	printf("%s: %s (%lf secs)\n", assemble_timer.get_name(), assemble_timer.get_human_time(), assemble_timer.get_seconds());
	printf("%s: %s (%lf secs)\n", solve_timer.get_name(), solve_timer.get_human_time(), solve_timer.get_seconds());

	if (solved) {
		// solution 1
		Solution sln1(&mesh);
		sln1.set_coeff_vector(&space1, solver.get_solution());

		ExactSolution esln1(&mesh, exact_sln_fn_1);
		// norm
		double h1_sln_norm1 = h1_norm(&sln1);
		double h1_err_norm1 = h1_error(&sln1, &esln1);

		printf(" - H1 solution norm:   % le\n", h1_sln_norm1);
		printf(" - H1 error norm:      % le\n", h1_err_norm1);

		double l2_sln_norm1 = l2_norm(&sln1);
		double l2_err_norm1 = l2_error(&sln1, &esln1);
		printf(" - L2 solution norm:   % le\n", l2_sln_norm1);
		printf(" - L2 error norm:      % le\n", l2_err_norm1);

		if (h1_err_norm1 > EPS || l2_err_norm1 > EPS) {
			// calculated solution is not enough precise
			res = ERR_FAILURE;
		}

		// solution 2
		Solution sln2(&mesh);
		sln2.set_coeff_vector(&space2, solver.get_solution());

		ExactSolution esln2(&mesh, exact_sln_fn_2);
		// norm
		double h1_sln_norm2 = h1_norm(&sln2);
		double h1_err_norm2 = h1_error(&sln2, &esln2);

		printf(" - H1 solution norm:   % le\n", h1_sln_norm2);
		printf(" - H1 error norm:      % le\n", h1_err_norm2);

		double l2_sln_norm2 = l2_norm(&sln2);
		double l2_err_norm2 = l2_error(&sln2, &esln2);
		printf(" - L2 solution norm:   % le\n", l2_sln_norm2);
		printf(" - L2 error norm:      % le\n", l2_err_norm2);

		if (h1_err_norm2 > EPS || l2_err_norm2 > EPS) {
			// calculated solution is not enough precise
			res = ERR_FAILURE;
		}

#ifdef OUTPUT_DIR
		// output
		const char *of_name = OUTPUT_DIR "/solution.pos";
		FILE *ofile = fopen(of_name, "w");
		if (ofile != NULL) {
			GmshOutputEngine output(ofile);
			output.out(&sln1, "Uh_1");
			output.out(&esln1, "U1");
			output.out(&sln2, "Uh_2");
			output.out(&esln2, "U2");

			fclose(ofile);
		}
		else {
			warning("Can not open '%s' for writing.", of_name);
		}
#endif
	}

#ifdef WITH_PETSC
	mat.free();
	rhs.free();
	PetscFinalize();
#endif

	TRACE_END;

	return res;
}
main(int argc, char *argv[]) {
  char name[256];
  int i,j,k,squareSize,maxCZ;
  double radiusL,radiusC,num;
  double x1,y1,z1,xy1;
  double x2,y2,z2,xy2;
  double x3,y3,z3,xy3;
  
  GraphicsSpace space1("lightTest1.ppm");
  space1.createImage(301,301);

  space1.addSphere(100,100,0, 45, 255,0,0, 1,.5,.5,30);
  space1.addSphere(0,100,0, 45, 255,255,0, 1,1,1,30);
  space1.addSphere(-100,100,0, 45, 255,255,255, 1,.5,.5,30);
  space1.addSphere(-100,0,0, 45, 0,255,255, 1,1,1,30);
  space1.addSphere(-100,-100,0, 45, 0,255,0, 1,.5,.5,30);
  space1.addSphere(0,-100,0, 45, 255,0,255, 1,1,1,30);
  space1.addSphere(100,-100,0, 45, 0,0,255, 1,.5,.5,30);
  space1.addSphere(100,0,0, 45, 128,128,255, 1,1,1,30);
  
  //lighting
  space1.addLightAmbient(.5);
  //space1.addLightPoint(0,0,-100, 1, 255,255,255);

  space1.setCamera(0,0,-600);
  space1.setViewPlaneCenter(0,0,-30);
  space1.setViewPlaneNormal(1,1,1);//not important right now
  //render image
  space1.render();
  space1.writeImage();
  
  
  //image 2
  GraphicsSpace space2("lightTest2.ppm");
  space2.createImage(301,301);
  // space2.setBackground(255,255,255);

  space2.addSphere(100,100,0, 45, 255,0,0, 1,.5,.5,30);
  space2.addSphere(0,100,0, 45, 255,255,0, 1,1,1,30);
  space2.addSphere(-100,100,0, 45, 255,255,255, 1,.5,.5,30);
  space2.addSphere(-100,0,0, 45, 0,255,255, 1,1,1,30);
  space2.addSphere(-100,-100,0, 45, 0,255,0, 1,.5,.5,30);
  space2.addSphere(0,-100,0, 45, 255,0,255, 1,1,1,30);
  space2.addSphere(100,-100,0, 45, 0,0,255, 1,.5,.5,30);
  space2.addSphere(100,0,0, 45, 128,128,255, 1,1,1,30);
  
  //lighting
  //space2.addLightAmbient(.5);
  space2.addLightPoint(0,0,-100, 1, 255,255,255);

  space2.setCamera(0,0,-600);
  space2.setViewPlaneCenter(0,0,-30);
  space2.setViewPlaneNormal(1,1,1);//not important right now
  //render image
  space2.render();
  space2.writeImage();
  

  GraphicsSpace space4("lightTest4.ppm");
  space4.createImage(501,501);

  for (i=-250;i<=250;i+=100)
    for (j=-250;j<=250;j+=100){
      space4.addSphere(i,j,0, 30, 0,255,0, 1,1,.5,30);
    }
  
  space4.addPlane(0,0,50, 0,0,1, 0,0,255, 1,.8,1,30);
  //lighting
  space4.addLightAmbient(.1);
  space4.addLightPoint(50,50,-200, 1, 255,255,255);

  space4.setCamera(0,0,-600);
  space4.setViewPlaneCenter(0,0,-30);
  space4.setViewPlaneNormal(1,1,1);//not important right now
  //render image
  space4.render();
  space4.writeImage();


  GraphicsSpace space5("lightTest5.ppm");
  space5.createImage(501,501);

  space5.addPlane(0,0,-100, 0,0,1, 100,100,100, 1,.8,1,30);
  
  space5.addSphere(300,0,0, 100, 255,0,0, 1,1,1,30);
  //pyramid
  space5.addTriangle(-100,-100,-100, -100,100,-100, 0,0,100, 0,255,0, 1,1,1,30);
  space5.addTriangle(-100,-100,-100, 100,-100,-100, 0,0,100, 0,255,0, 1,1,1,30);
  space5.addTriangle(100,100,-100, -100,100,-100, 0,0,100, 0,255,0, 1,1,1,30);
  space5.addTriangle(100,100,-100, 100,-100,-100, 0,0,100, 0,255,0, 1,1,1,30);
  //cube
  ////base top
  space5.addTriangle(-200,-100,-100, -200,100,-100, -400,-100,-100, 0,0,255, 1,1,1,30);
  space5.addTriangle(-400,100,-100, -200,100,-100, -400,-100,-100, 0,0,255, 1,1,1,30);
  space5.addTriangle(-200,-100,100, -200,100,100, -400,-100,100, 0,0,255, 1,1,1,30);
  space5.addTriangle(-400,100,100, -200,100,100, -400,-100,100, 0,0,255, 1,1,1,30);
  
  ////left right
  space5.addTriangle(-400,100,-100, -400,100,100, -200,100,100, 0,0,255, 1,1,1,30);
  space5.addTriangle(-400,100,-100, -200,100,-100, -200,100,100, 0,0,255, 1,1,1,30);
  space5.addTriangle(-400,-100,-100, -400,-100,100, -200,-100,100, 0,0,255, 1,1,1,30);
  space5.addTriangle(-400,-100,-100, -200,-100,-100, -200,-100,100, 0,0,255, 1,1,1,30);
  
  ////other left right
  space5.addTriangle(-200,-100,-100, -200,100,100, -200,-100,100, 0,0,255, 1,1,1,30);
  space5.addTriangle(-200,-100,-100, -200,100,100, -200,100,-100, 0,0,255, 1,1,1,30);
  space5.addTriangle(-400,-100,-100, -400,100,100, -400,-100,100, 0,0,255, 1,1,1,30);
  space5.addTriangle(-400,-100,-100, -400,100,100, -400,100,-100, 0,0,255, 1,1,1,30);

  //lighting
  space5.addLightAmbient(.1);
  space5.addLightPoint(0,300,400, 1, 100,100,100);
  space5.addLightPoint(-500,300,400, 1, 50,50,50);


  space5.setCamera(0,0,900);
  space5.setViewPlaneCenter(0,0,300);
  space5.setViewPlaneNormal(1,1,1);//not important right now
  //render image
  space5.render();
  space5.writeImage();

//image 3
  GraphicsSpace space3("lightTest3.ppm");
     space3.createImage(501,501);
     
       // create edge planes
         
        space3.addPlane(300,0,0, 1,0,0, 255,255,255, 1,.8,1,30);
          space3.addPlane(-300,0,0, 1,0,0, 255,255,255, 1,.8,1,30);
          space3.addPlane(0,300,0, 0,1,0, 255,255,255, 1,.8,1,30);
          space3.addPlane(0,-300,0, 0,1,0, 255,255,255, 1,.8,1,30);
      radiusL=200;
     radiusC=50;
     num=12;
     
     // create outside circles
                            
                            for (i=0;i<360;i+=360/num){
                                x1=radiusL*cos((double)i*PI/180.0);
                                y1=radiusL*sin((double)i*PI/180.0);
                                space3.addSphere(x1,y1,60, radiusC, 255,0,0, 1,(double)i/360+1/num,(double)i/360+1/num,((double)i/360+1/num)*30);
                              }
                 
              //         // 
                      //   //create center circle with triangles
                        num=24;
                                 radiusC=100;
                                 for (k=0;k<num/2;k++){
                                   z1=radiusC*cos((double)k*PI*360/(num*180.0));
                                   xy1=radiusC*sin((double)k*PI*360/(num*180.0));
                                   
                                   z2=radiusC*cos((double)(k+1)*PI*360/(num*180.0));
                                   xy2=radiusC*sin((double)(k+1)*PI*360/(num*180.0));
                                   
                                   z3=radiusC*cos((double)(k+1)*PI*360/(num*180.0));
                                   xy3=radiusC*sin((double)(k+1)*PI*360/(num*180.0));
                                   if (k%2==1){
                                     for (i=0;i<num;i++){
                               x1=xy1*cos((double)i*PI*360/(num*180));
                               y1=xy1*sin((double)i*PI*360/(num*180));
                               
                               x2=xy2*cos(((double)i-.5)*PI*360/(num*180));
                               y2=xy2*sin(((double)i-.5)*PI*360/(num*180));
                               
                               x3=xy3*cos(((double)i+.5)*PI*360/(num*180));
                               y3=xy3*sin(((double)i+.5)*PI*360/(num*180));
                               
                               space3.addTriangle(z1,y1,x1,z2,y2,x2,z3,y3,x3, 0,0,255, 1,1,1,30);
                                     }
                                   } else {
                                     for (i=0;i<num;i++){
                               x1=xy1*cos(((double)i+.5)*PI*360/(num*180));
                               y1=xy1*sin(((double)i+.5)*PI*360/(num*180));
                               
                               x2=xy2*cos(((double)i)*PI*360/(num*180));
                               y2=xy2*sin(((double)i)*PI*360/(num*180));
                               
                               x3=xy3*cos(((double)i+1)*PI*360/(num*180));
                               y3=xy3*sin(((double)i+1)*PI*360/(num*180));
                               
                               space3.addTriangle(z1,y1,x1,z2,y2,x2,z3,y3,x3, 0,0,255, 1,1,1,30);
                                     }
                                   }
                                   
                                   if (k>0){
                                     z1=radiusC*cos((double)(k+1)*PI*360/(num*180.0));
                                     xy1=radiusC*sin((double)(k+1)*PI*360/(num*180.0));
                                     
                                     z2=radiusC*cos((double)(k)*PI*360/(num*180.0));
                                     xy2=radiusC*sin((double)(k)*PI*360/(num*180.0));
                                     
                                     z3=radiusC*cos((double)(k)*PI*360/(num*180.0));
                                     xy3=radiusC*sin((double)(k)*PI*360/(num*180.0));
                                    
                                     if (k%2==0){
                               for (i=0;i<num;i++){
                                 x1=xy1*cos((double)i*PI*360/(num*180));
                                 y1=xy1*sin((double)i*PI*360/(num*180));
                                 
                                 x2=xy2*cos(((double)i-.5)*PI*360/(num*180));
                                 y2=xy2*sin(((double)i-.5)*PI*360/(num*180));
                                 
                                 x3=xy3*cos(((double)i+.5)*PI*360/(num*180));
                                 y3=xy3*sin(((double)i+.5)*PI*360/(num*180));
                                 
                                 space3.addTriangle(z1,y1,x1,z2,y2,x2,z3,y3,x3, 0,0,255, 1,1,1,30);
                               }
                                     } else {
                               for (i=0;i<num;i++){
                                 x1=xy1*cos(((double)i+.5)*PI*360/(num*180));
                                 y1=xy1*sin(((double)i+.5)*PI*360/(num*180));
                                 
                                 x2=xy2*cos(((double)i)*PI*360/(num*180));
                                 y2=xy2*sin(((double)i)*PI*360/(num*180));
                                 
                                 x3=xy3*cos(((double)i+1)*PI*360/(num*180));
                                 y3=xy3*sin(((double)i+1)*PI*360/(num*180));
                                 
                                 space3.addTriangle(z1,y1,x1,z2,y2,x2,z3,y3,x3, 0,0,255, 1,1,1,30);
                               }
                                     } 
                                   }
                                 }
                                 
              //     
     //lighting
     space3.addLightPoint(0,0,-200, 1, 255,255,255);
     
     space3.setCamera(0,0,-600);
     space3.setViewPlaneCenter(0,0,-30);
     space3.setViewPlaneNormal(1,1,1);//not important right now
     //render image
     space3.render();
     space3.writeImage();
     
}
示例#10
0
int main(int argc, char **args)
{
	int res = ERR_SUCCESS;

#ifdef WITH_PETSC
	PetscInitialize(&argc, &args, (char *) PETSC_NULL, PETSC_NULL);
#endif

	if (argc < 2) error("Not enough parameters.");

	printf("* Loading mesh '%s'\n", args[1]);
	Mesh mesh1;
	H3DReader mesh_loader;
	if (!mesh_loader.load(args[1], &mesh1)) error("Loading mesh file '%s'\n", args[1]);

#if defined RHS2

	Ord3 order(P_INIT_X, P_INIT_Y, P_INIT_Z);
	printf("  - Setting uniform order to (%d, %d, %d)\n", order.x, order.y, order.z);
	
	// Create an H1 space with default shapeset.
	printf("* Setting the space up\n");
	H1Space space(&mesh1, bc_types, essential_bc_values, order);

	int ndofs = space.assign_dofs();
	printf("  - Number of DOFs: %d\n", ndofs);

	printf("* Calculating a solution\n");

	// duplicate the mesh
	Mesh mesh2;
	mesh2.copy(mesh1);
	// do some changes
	mesh2.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ);
	mesh2.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ);

	Solution fsln(&mesh2);
	fsln.set_const(-6.0);
#else
	// duplicate the mesh
	Mesh mesh2;
	mesh2.copy(mesh1);

	Mesh mesh3;
	mesh3.copy(mesh1);

	// change meshes
	mesh1.refine_all_elements(H3D_REFT_HEX_X);
	mesh2.refine_all_elements(H3D_REFT_HEX_Y);
	mesh3.refine_all_elements(H3D_REFT_HEX_Z);

	printf("* Setup spaces\n");
	Ord3 o1(2, 2, 2);
	printf("  - Setting uniform order to (%d, %d, %d)\n", o1.x, o1.y, o1.z);
	H1Space space1(&mesh1, bc_types_1, essential_bc_values_1, o1);

	Ord3 o2(2, 2, 2);
	printf("  - Setting uniform order to (%d, %d, %d)\n", o2.x, o2.y, o2.z);
	H1Space space2(&mesh2, bc_types_2, essential_bc_values_2, o2);

	Ord3 o3(1, 1, 1);
	printf("  - Setting uniform order to (%d, %d, %d)\n", o3.x, o3.y, o3.z);
	H1Space space3(&mesh3, bc_types_3, essential_bc_values_3, o3);

	int ndofs = 0;
	ndofs += space1.assign_dofs();
	ndofs += space2.assign_dofs(ndofs);
	ndofs += space3.assign_dofs(ndofs);
	printf("  - Number of DOFs: %d\n", ndofs);
#endif

#if defined WITH_UMFPACK
	MatrixSolverType matrix_solver = SOLVER_UMFPACK; 
#elif defined WITH_PETSC
	MatrixSolverType matrix_solver = SOLVER_PETSC; 
#elif defined WITH_MUMPS
	MatrixSolverType matrix_solver = SOLVER_MUMPS; 
#endif

#ifdef RHS2
	WeakForm wf;
	wf.add_matrix_form(bilinear_form<double, scalar>, bilinear_form<Ord, Ord>, HERMES_SYM);
	wf.add_vector_form(linear_form<double, scalar>, linear_form<Ord, Ord>, HERMES_ANY_INT, &fsln);

	// Initialize discrete problem.
	bool is_linear = true;
	DiscreteProblem dp(&wf, &space, is_linear);
#elif defined SYS3
	WeakForm wf(3);
	wf.add_matrix_form(0, 0, biform_1_1<double, scalar>, biform_1_1<Ord, Ord>, HERMES_SYM);
	wf.add_matrix_form(0, 1, biform_1_2<double, scalar>, biform_1_2<Ord, Ord>, HERMES_NONSYM);
	wf.add_vector_form(0, liform_1<double, scalar>, liform_1<Ord, Ord>);

	wf.add_matrix_form(1, 1, biform_2_2<double, scalar>, biform_2_2<Ord, Ord>, HERMES_SYM);
	wf.add_matrix_form(1, 2, biform_2_3<double, scalar>, biform_2_3<Ord, Ord>, HERMES_NONSYM);
	wf.add_vector_form(1, liform_2<double, scalar>, liform_2<Ord, Ord>);

	wf.add_matrix_form(2, 2, biform_3_3<double, scalar>, biform_3_3<Ord, Ord>, HERMES_SYM);

	// Initialize discrete problem.
	bool is_linear = true;
	DiscreteProblem dp(&wf, Hermes::vector<Space *>(&space1, &space2, &space3), is_linear);
#endif
	// Time measurement.
	TimePeriod cpu_time;
	cpu_time.tick();
  
	// Set up the solver, matrix, and rhs according to the solver selection.
	SparseMatrix* matrix = create_matrix(matrix_solver);
	Vector* rhs = create_vector(matrix_solver);
	Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

	// Initialize the preconditioner in the case of SOLVER_AZTECOO.
	if (matrix_solver == SOLVER_AZTECOO) 
	{
		((AztecOOSolver*) solver)->set_solver(iterative_method);
		((AztecOOSolver*) solver)->set_precond(preconditioner);
		// Using default iteration parameters (see solver/aztecoo.h).
	}

	// Assemble stiffness matrix and load vector.
	dp.assemble(matrix, rhs);

	// Solve the linear system. If successful, obtain the solution.
	info("Solving the linear problem.");
	bool solved = solver->solve();

	// Time measurement.
	cpu_time.tick();
	// Print timing information.
	info("Solution and mesh with polynomial orders saved. Total running time: %g s", cpu_time.accumulated());

	// Time measurement.
	TimePeriod sln_time;
	sln_time.tick();

	if (solved) {
#ifdef RHS2
		// Solve the linear system. If successful, obtain the solution.
		info("Solving the linear problem.");
                Solution sln(&mesh1);
		Solution::vector_to_solution(solver->get_solution(), &space, &sln);

		// Set exact solution.
		ExactSolution ex_sln(&mesh1, exact_solution);

		// Norm.
		double h1_sln_norm = h1_norm(&sln);
		double h1_err_norm = h1_error(&sln, &ex_sln);
		printf("  - H1 solution norm:   % le\n", h1_sln_norm);
		printf("  - H1 error norm:      % le\n", h1_err_norm);

		double l2_sln_norm = l2_norm(&sln);
		double l2_err_norm = l2_error(&sln, &ex_sln);
		printf("  - L2 solution norm:   % le\n", l2_sln_norm);
		printf("  - L2 error norm:      % le\n", l2_err_norm);

		if (h1_err_norm > EPS || l2_err_norm > EPS) {
			// Calculated solution is not enough precise.
			res = ERR_FAILURE;
		}
#elif defined SYS3
		// Solution 1.
		Solution sln1(&mesh1);
		Solution sln2(&mesh2);
		Solution sln3(&mesh3);

		Solution::vector_to_solution(solver->get_solution(), &space1, &sln1);
		Solution::vector_to_solution(solver->get_solution(), &space2, &sln2);
		Solution::vector_to_solution(solver->get_solution(), &space3, &sln3);

		ExactSolution esln1(&mesh1, exact_sln_fn_1);
		ExactSolution esln2(&mesh2, exact_sln_fn_2);
		ExactSolution esln3(&mesh3, exact_sln_fn_3);

		// Norm.
		double h1_err_norm1 = h1_error(&sln1, &esln1);
		double h1_err_norm2 = h1_error(&sln2, &esln2);
		double h1_err_norm3 = h1_error(&sln3, &esln3);

		double l2_err_norm1 = l2_error(&sln1, &esln1);
		double l2_err_norm2 = l2_error(&sln2, &esln2);
		double l2_err_norm3 = l2_error(&sln3, &esln3);

		printf("  - H1 error norm:      % le\n", h1_err_norm1);
		printf("  - L2 error norm:      % le\n", l2_err_norm1);
		if (h1_err_norm1 > EPS || l2_err_norm1 > EPS) {
			// Calculated solution is not enough precise.
			res = ERR_FAILURE;
		}

		printf("  - H1 error norm:      % le\n", h1_err_norm2);
		printf("  - L2 error norm:      % le\n", l2_err_norm2);
		if (h1_err_norm2 > EPS || l2_err_norm2 > EPS) {
			// Calculated solution is not enough precise.
			res = ERR_FAILURE;
		}

		printf("  - H1 error norm:      % le\n", h1_err_norm3);
		printf("  - L2 error norm:      % le\n", l2_err_norm3);
		if (h1_err_norm3 > EPS || l2_err_norm3 > EPS) {
			// Calculated solution is not enough precise.
			res = ERR_FAILURE;
		}
#endif

#ifdef RHS2
		out_fn_vtk(&sln, "solution");
#elif defined SYS3
		out_fn_vtk(&sln1, "sln1");
		out_fn_vtk(&sln2, "sln2");
		out_fn_vtk(&sln3, "sln3");
#endif
	}
	else
		res = ERR_FAILURE;

	// Print timing information.
	info("Solution and mesh with polynomial orders saved. Total running time: %g s", sln_time.accumulated());

	// Clean up.
	delete matrix;
	delete rhs;
	delete solver;

	return res;
}
示例#11
0
main(int argc, char *argv[]) {
  char name[256];
  int i,cx,cy,cz,x,y,squareSize,maxCZ;
  
  GraphicsSpace space3("rayLine3.ppm");
  space3.createImage(301,301);
  space3.setBackground(0,0,0);
  //lines
  space3.addLine(-150,-150,0, 150,150,0, 255,0,0);
  space3.addLine(-150,0,0, 150,0,0, 0,255,0);
  space3.addLine(0,-150,0, 0,150,0, 0,0,255);
  space3.addLine(-150,150,0, 150,-150,0, 255,255,0);
  //camera stuff
  space3.setCamera(0,0,-5);
  space3.setViewPlaneCenter(0,0,0);
  space3.setViewPlaneNormal(1,1,1);//not important right now
  //render image
  space3.render();
  space3.writeImage();
  
  GraphicsSpace space1("rayLine1.ppm");
  space1.createImage(301,301);
  space1.setBackground(0,0,0);
  //create stuff to look at
  maxCZ=100;
  for (cz=0;cz<maxCZ;cz+=1){
    space1.addLine(-145,-145,cz, -145,145,cz, 255-(255*cz/maxCZ),0,0);
    space1.addLine(-145,-145,cz, 145,-145,cz, 255-(255*cz/maxCZ),0,0);
    space1.addLine(145,145,cz, -145,145,cz, 255-(255*cz/maxCZ),0,0);
    space1.addLine(145,145,cz, 145,-145,cz, 255-(255*cz/maxCZ),0,0);
  }

  //set camera stuff
  space1.setCamera(0,0,-50);
  space1.setViewPlaneCenter(0,0,0);
  space1.setViewPlaneNormal(1,1,1);//not important right now

  //render image
  space1.render();
  space1.writeImage();
  
  //second image
  GraphicsSpace space2("rayLine2.ppm");
  space2.createImage(600,600);
  //set a black background color for space 2
  space2.setBackground(0,0,0);
  for (i=0;i<512;i+=1){
    space2.addLine(-300,i-300,0, i-300,300,i, i/2,0,0);
    space2.addLine(i-300,300,0, 300,300-i,i, i/2,0,0);
    space2.addLine(300,300-i,0, 300-i,-300,i, i/2,0,0);
    space2.addLine(300-i,-300,0, -300,i-300,i, i/2,0,0);
  }

  //set camera stuff
  space2.setCamera(0,0,-5);
  space2.setViewPlaneCenter(0,0,0);
  space2.setViewPlaneNormal(1,1,1);//not important right now

  //render image
  space2.render();
  space2.writeImage();
}
示例#12
0
文件: main.cpp 项目: Amuthan/hermes
int main(int argc, char* argv[])
{
  // Instantiate a class with global functions.
  Hermes2D hermes2d;
  
  // Load the mesh.
  Mesh mesh;
  H2DReader mloader;
  mloader.load("reactor.mesh", &mesh);

  // Perform initial mesh refinements.
  for (int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();

  // Solution variables.
  Solution sln1, sln2, sln3, sln4;
  Hermes::vector<Solution*> solutions(&sln1, &sln2, &sln3, &sln4);
  
  // Define initial conditions.
  info("Setting initial conditions.");
  Solution iter1, iter2, iter3, iter4;
  iter1.set_const(&mesh, 1.00);
  iter2.set_const(&mesh, 1.00);
  iter3.set_const(&mesh, 1.00);
  iter4.set_const(&mesh, 1.00);
  Hermes::vector<MeshFunction*> iterates(&iter1, &iter2, &iter3, &iter4);

  // Create H1 spaces with default shapesets.
  H1Space space1(&mesh, P_INIT_1);
  H1Space space2(&mesh, P_INIT_2);
  H1Space space3(&mesh, P_INIT_3);
  H1Space space4(&mesh, P_INIT_4);
  Hermes::vector<Space*> spaces(&space1, &space2, &space3, &space4);
  
  int ndof = Space::get_num_dofs(spaces);
  info("ndof = %d.", ndof);
  
  // Initialize views.
  ScalarView view1("Neutron flux 1", new WinGeom(0, 0, 320, 600));
  ScalarView view2("Neutron flux 2", new WinGeom(350, 0, 320, 600));
  ScalarView view3("Neutron flux 3", new WinGeom(700, 0, 320, 600));
  ScalarView view4("Neutron flux 4", new WinGeom(1050, 0, 320, 600));
  
  // Do not show meshes.
  view1.show_mesh(false); view1.set_3d_mode(true);
  view2.show_mesh(false); view2.set_3d_mode(true);
  view3.show_mesh(false); view3.set_3d_mode(true);
  view4.show_mesh(false); view4.set_3d_mode(true);
  
  // Load physical data of the problem for the 4 energy groups.
  MaterialPropertyMaps matprop(4);
  matprop.set_D(D);
  matprop.set_Sigma_r(Sr);
  matprop.set_Sigma_s(Ss);
  matprop.set_Sigma_s_nnz_structure(Ss_nnz);
  matprop.set_Sigma_a(Sa);
  matprop.set_Sigma_f(Sf);
  matprop.set_nu(nu);
  matprop.set_chi(chi);
  matprop.validate();
  
  std::cout << matprop;
  
  // Initialize the weak formulation.
  CustomWeakForm wf(matprop, iterates, k_eff, bdy_vacuum);

  // Initialize the FE problem.
  DiscreteProblem dp(&wf, spaces);
  
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  if (matrix_solver == SOLVER_AZTECOO) 
  {
    ((AztecOOSolver*) solver)->set_solver(iterative_method);
    ((AztecOOSolver*) solver)->set_precond(preconditioner);
    // Using default iteration parameters (see solver/aztecoo.h).
  }
   
  // Time measurement.
  TimePeriod cpu_time, solver_time;
  
  // Initial coefficient vector for the Newton's method.
  scalar* coeff_vec = new scalar[ndof];
  
  // Force the Jacobian assembling in the first iteration.
  bool Jacobian_changed = true;
  
  // In the following iterations, Jacobian will not be changing; its LU factorization
  // may be reused.
  solver->set_factorization_scheme(HERMES_REUSE_FACTORIZATION_COMPLETELY);
  
  // Main power iteration loop:
  int it = 1; bool done = false;
  do
  {
    info("------------ Power iteration %d:", it);
    
    info("Newton's method (matrix problem solved by %s).", MatrixSolverNames[matrix_solver].c_str());
    
    memset(coeff_vec, 0.0, ndof*sizeof(scalar)); //TODO: Why it doesn't work without zeroing coeff_vec in each iteration?
    
    solver_time.tick(HERMES_SKIP);      
    if (!hermes2d.solve_newton(coeff_vec, &dp, solver, matrix, rhs, Jacobian_changed, 1e-8, 10, true)) 
      error("Newton's iteration failed.");
    solver_time.tick();
    
    Solution::vector_to_solutions(solver->get_solution(), spaces, solutions);
    
    // Show intermediate solutions.
    view1.show(&sln1);    
    view2.show(&sln2);
    view3.show(&sln3);    
    view4.show(&sln4);
    
    // Compute eigenvalue.
    
    SourceFilter source(solutions, matprop);
    SourceFilter source_prev(iterates, matprop);
    
    double k_new = k_eff * (integrate(&source, core) / integrate(&source_prev, core));
    info("Largest eigenvalue: %.8g, rel. difference from previous it.: %g", k_new, fabs((k_eff - k_new) / k_new));
    
    // Stopping criterion.
    if (fabs((k_eff - k_new) / k_new) < ERROR_STOP) done = true;

    // Update eigenvalue.
    k_eff = k_new;
    wf.update_keff(k_eff);
    
    if (!done)
    {
      // Save solutions for the next iteration.
      iter1.copy(&sln1);    
      iter2.copy(&sln2);
      iter3.copy(&sln3);    
      iter4.copy(&sln4);
      
      // Don't need to reassemble the system matrix in further iterations,
      // only the rhs changes to reflect the progressively updated source.
      Jacobian_changed = false;

      it++;
    }
  }
  while (!done);
  
  delete [] coeff_vec;
  
  // Time measurement.
  cpu_time.tick();
  solver_time.tick(HERMES_SKIP);
  
  // Print timing information.
  verbose("Average solver time for one power iteration: %g s", solver_time.accumulated() / it);
  
  // Clean up.
  delete matrix;
  delete rhs;
  delete solver;

  // Show solutions.
  view1.show(&sln1);
  view2.show(&sln2);
  view3.show(&sln3);    
  view4.show(&sln4);
  
  // Skip visualization time.
  cpu_time.tick(HERMES_SKIP);

  // Print timing information.
  verbose("Total running time: %g s", cpu_time.accumulated());
    
  // Wait for all views to be closed.
  View::wait();
  return 0;
}