/** * Will setup clocks, GPIOs, and regulators to correctly initialize the touch * sensor to be ready for work. * * In the correct order according to the sensor spec this function will * enable/disable regulators, SPI platform clocks, and reset line, all to set * the sensor in a correct power on or off state "electrical" wise. * * @see spi_prepare_set * @note This function will not send any commands to the sensor it will only * control it "electrically". */ static int device_prepare(struct fpc1020_data *fpc1020, bool enable) { int rc = 0; int error = 0; mutex_lock(&fpc1020->lock); if (enable && !fpc1020->prepared) { spi_bus_lock(fpc1020->spi->master); fpc1020->prepared = true; dev_info(&fpc1020->spi->dev, "%s: power on!!!!\n", __func__); error = fpc1020_io_regulator_configure(fpc1020); if (error) { dev_err(&fpc1020->spi->dev, "fpc1020_probe - io regulator configuration failed.\n"); } error = fpc1020_io_regulator_set(fpc1020, true); if (error) { dev_err(&fpc1020->spi->dev, "fpc1020_probe - io regulator enable failed.\n"); } usleep_range(100, 1000); rc = spi_set_fabric(fpc1020, true); if (rc) goto exit_3; usleep_range(100, 200); #if defined(CONFIG_QSEECOM) rc = set_pipe_ownership(fpc1020, true); if (rc) goto exit_5; #endif } else if (!enable && fpc1020->prepared) { #if defined(CONFIG_QSEECOM) (void)set_pipe_ownership(fpc1020, false); exit_5: #endif (void)spi_set_fabric(fpc1020, false); exit_3: (void)select_pin_ctl(fpc1020, "fpc1020_cs_high"); (void)select_pin_ctl(fpc1020, "fpc1020_reset_reset"); usleep_range(100, 1000); (void)select_pin_ctl(fpc1020, "fpc1020_cs_low"); fpc1020->prepared = false; spi_bus_unlock(fpc1020->spi->master); } mutex_unlock(&fpc1020->lock); return rc; }
static ssize_t spi_bus_lock_set(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct fpc1145_data *fpc1145 = dev_get_drvdata(dev); if (!strncmp(buf, "lock", strlen("lock"))) spi_bus_lock(fpc1145->spi->master); else if (!strncmp(buf, "unlock", strlen("unlock"))) spi_bus_unlock(fpc1145->spi->master); else return -EINVAL; return count; }
static inline int bcm_make_transfer(bcm_mpi_t *t, struct spi_message *msg) { int ret; msg->spi = t->dev; if (t->bus_is_locked) { ret = bcm63xx_spi_raw_sync_locked(t->dev, &(t->trx_opts), msg); } else { spi_bus_lock(t->dev->master); ret = bcm63xx_spi_raw_sync_locked(t->dev, &(t->trx_opts), msg); spi_bus_unlock(t->dev->master); } if (!ret) { ret = msg->status; } return (ret); }
int __init bcm_mpi_init(bcm_mpi_t *t, const bcm_mpi_params_t *params) { int ret = -1; #ifdef BCMPH_USE_SPI_DRIVER # ifndef BCMPH_NOHW struct spi_master *master; struct spi_board_info board_info; # endif // !BCMPH_NOHW #endif // BCMPH_USE_SPI_DRIVER bcm_pr_debug("%s()\n", __func__); bcm_assert(NULL != params); #ifndef BCMPH_NOHW t->trx_opts.fill_byte = params->fill_byte; t->trx_opts.wait_completion_with_irq = params->wait_completion_with_irq; t->trx_opts.drop_cs_after_each_byte = params->drop_cs_after_each_byte; t->trx_opts.cs_off_clk_cycles = params->cs_off_clk_cycles; #endif // !BCMPH_NOHW #ifdef BCMPH_USE_SPI_DRIVER t->mpi_clk = params->clk; # ifndef BCMPH_NOHW master = spi_busnum_to_master(params->bus_num); if (NULL == master) { bcm_pr_err("No SPI master found for bus num %d. Module bcm63xx-spi not loaded ?\n", (int)(params->bus_num)); ret = -EINVAL; goto fail_master; } memset(&(board_info), 0, sizeof(board_info)); strcpy(board_info.modalias, driver_name); board_info.max_speed_hz = params->clk; board_info.bus_num = params->bus_num; board_info.chip_select = params->cs; board_info.mode = SPI_MODE_3; t->dev = spi_new_device(master, &(board_info)); if (NULL == t->dev) { bcm_pr_err("Failed to add SPI device (busnum = %d, chip select = %d, clock = %lu)\n", (int)(params->bus_num), (int)(params->cs), (unsigned long)(params->clk)); ret = -ENOMEM; goto fail_new_dev; } put_device(&(master->dev)); /* Lock the bus */ if ((params->has_exclusive_bus_access) && (!bcm_drv_param_mpi_no_exclusive_bus_access)) { spi_bus_lock(t->dev->master); t->bus_is_locked = true; } bcm_mpi_enable_extra_CSs(params->cs); # ifdef BCMPH_DEBUG_MPI t->trace_len = 0; # endif // BCMPH_DEBUG_MPI return (0); spi_unregister_device(t->dev); fail_new_dev: put_device(&(master->dev)); fail_master: # else // BCMPH_NOHW ret = 0; # endif // BCMPH_NOHW #else // !BCMPH_USE_SPI_DRIVER # ifndef BCMPH_NOHW t->mpi_cs = params->cs; t->clk_cfg = bcm_mpi_get_clk_cfg(params->clk, params->cs_off_clk_cycles); bcm_mpi_enable_extra_CSs(params->cs); if (bcm_mpi_dev_data.ref_count <= 0) { struct device_driver *spi_driver = driver_find(bcm63xx_spi_driver.driver.name, &platform_bus_type); if (NULL != spi_driver) { bcm_pr_err("Error: Driver '%s' is already registered, aborting...\n", bcm63xx_spi_driver.driver.name); ret = -EBUSY; } else { ret = platform_driver_register(&(bcm63xx_spi_driver)); } bcm_assert(((ret) && (0 == bcm_mpi_dev_data.ref_count)) || ((!ret) && (1 == bcm_mpi_dev_data.ref_count))); } else { bcm_mpi_dev_data.ref_count += 1; ret = 0; } if (!ret) { bcm_assert(bcm_mpi_dev_data.ref_count > 0); if (params->cs > bcm_mpi_dev_data.num_chipselect) { dev_err(&(bcm_mpi_dev_data.pdev->dev), "%s, unsupported slave %d\n", __func__, params->cs); if (1 == bcm_mpi_dev_data.ref_count) { platform_driver_unregister(&(bcm63xx_spi_driver)); } bcm_mpi_dev_data.ref_count -= 1; ret = -EINVAL; } else { t->dev_data = &(bcm_mpi_dev_data); } } # else // BCMPH_NOHW ret = 0; # endif // BCMPH_NOHW #endif // !BCMPH_USE_SPI_DRIVER return (ret); }
/** * Will setup clocks, GPIOs, and regulators to correctly initialize the touch * sensor to be ready for work. * * In the correct order according to the sensor spec this function will * enable/disable regulators, SPI platform clocks, and reset line, all to set * the sensor in a correct power on or off state "electrical" wise. * * @see spi_prepare_set * @note This function will not send any commands to the sensor it will only * control it "electrically". */ static int device_prepare(struct fpc1145_data *fpc1145, bool enable) { int rc; mutex_lock(&fpc1145->lock); if (enable && !fpc1145->prepared) { spi_bus_lock(fpc1145->spi->master); fpc1145->prepared = true; select_pin_ctl(fpc1145, "fpc1145_reset_reset"); rc = vreg_setup(fpc1145, "vcc_spi", true); if (rc) goto exit; rc = vreg_setup(fpc1145, "vdd_io", true); if (rc) goto exit_1; rc = vreg_setup(fpc1145, "vdd_ana", true); if (rc) goto exit_2; usleep_range(100, 1000); rc = spi_set_fabric(fpc1145, true); if (rc) goto exit_3; rc = set_clks(fpc1145, true); if (rc) goto exit_4; (void)select_pin_ctl(fpc1145, "fpc1145_cs_high"); (void)select_pin_ctl(fpc1145, "fpc1145_reset_active"); usleep_range(100, 200); (void)select_pin_ctl(fpc1145, "fpc1145_cs_active"); rc = set_pipe_ownership(fpc1145, true); if (rc) goto exit_5; } else if (!enable && fpc1145->prepared) { rc = 0; (void)set_pipe_ownership(fpc1145, false); exit_5: (void)set_clks(fpc1145, false); exit_4: (void)spi_set_fabric(fpc1145, false); exit_3: (void)select_pin_ctl(fpc1145, "fpc1145_cs_high"); (void)select_pin_ctl(fpc1145, "fpc1145_reset_reset"); usleep_range(FPC1145_VREG_SETUP_US, FPC1145_VREG_SETUP_US + 100); (void)select_pin_ctl(fpc1145, "fpc1145_cs_low"); usleep_range(FPC1145_VREG_SETUP_US, FPC1145_VREG_SETUP_US + 100); exit_2: (void)vreg_setup(fpc1145, "vdd_ana", false); exit_1: (void)vreg_setup(fpc1145, "vdd_io", false); exit: (void)vreg_setup(fpc1145, "vcc_spi", false); fpc1145->prepared = false; spi_bus_unlock(fpc1145->spi->master); } else { rc = 0; } mutex_unlock(&fpc1145->lock); return rc; }
/** * cros_ec_cmd_xfer_spi - Transfer a message over SPI and receive the reply * * @ec_dev: ChromeOS EC device * @ec_msg: Message to transfer */ static int cros_ec_cmd_xfer_spi(struct cros_ec_device *ec_dev, struct cros_ec_command *ec_msg) { struct cros_ec_spi *ec_spi = ec_dev->priv; struct spi_transfer trans; struct spi_message msg; int i, len; u8 *ptr; u8 *rx_buf; int sum; int ret = 0, final_ret; len = cros_ec_prepare_tx(ec_dev, ec_msg); dev_dbg(ec_dev->dev, "prepared, len=%d\n", len); /* If it's too soon to do another transaction, wait */ if (ec_spi->last_transfer_ns) { unsigned long delay; /* The delay completed so far */ delay = ktime_get_ns() - ec_spi->last_transfer_ns; if (delay < EC_SPI_RECOVERY_TIME_NS) ndelay(EC_SPI_RECOVERY_TIME_NS - delay); } rx_buf = kzalloc(len, GFP_KERNEL); if (!rx_buf) return -ENOMEM; spi_bus_lock(ec_spi->spi->master); /* Transmit phase - send our message */ debug_packet(ec_dev->dev, "out", ec_dev->dout, len); memset(&trans, 0, sizeof(trans)); trans.tx_buf = ec_dev->dout; trans.rx_buf = rx_buf; trans.len = len; trans.cs_change = 1; spi_message_init(&msg); spi_message_add_tail(&trans, &msg); ret = spi_sync_locked(ec_spi->spi, &msg); /* Get the response */ if (!ret) { /* Verify that EC can process command */ for (i = 0; i < len; i++) { switch (rx_buf[i]) { case EC_SPI_PAST_END: case EC_SPI_RX_BAD_DATA: case EC_SPI_NOT_READY: ret = -EAGAIN; ec_msg->result = EC_RES_IN_PROGRESS; default: break; } if (ret) break; } if (!ret) ret = cros_ec_spi_receive_response(ec_dev, ec_msg->insize + EC_MSG_TX_PROTO_BYTES); } else { dev_err(ec_dev->dev, "spi transfer failed: %d\n", ret); } final_ret = terminate_request(ec_dev); spi_bus_unlock(ec_spi->spi->master); if (!ret) ret = final_ret; if (ret < 0) goto exit; ptr = ec_dev->din; /* check response error code */ ec_msg->result = ptr[0]; ret = cros_ec_check_result(ec_dev, ec_msg); if (ret) goto exit; len = ptr[1]; sum = ptr[0] + ptr[1]; if (len > ec_msg->insize) { dev_err(ec_dev->dev, "packet too long (%d bytes, expected %d)", len, ec_msg->insize); ret = -ENOSPC; goto exit; } /* copy response packet payload and compute checksum */ for (i = 0; i < len; i++) { sum += ptr[i + 2]; if (ec_msg->insize) ec_msg->data[i] = ptr[i + 2]; } sum &= 0xff; debug_packet(ec_dev->dev, "in", ptr, len + 3); if (sum != ptr[len + 2]) { dev_err(ec_dev->dev, "bad packet checksum, expected %02x, got %02x\n", sum, ptr[len + 2]); ret = -EBADMSG; goto exit; } ret = len; exit: kfree(rx_buf); if (ec_msg->command == EC_CMD_REBOOT_EC) msleep(EC_REBOOT_DELAY_MS); return ret; }
/** * cros_ec_pkt_xfer_spi - Transfer a packet over SPI and receive the reply * * @ec_dev: ChromeOS EC device * @ec_msg: Message to transfer */ static int cros_ec_pkt_xfer_spi(struct cros_ec_device *ec_dev, struct cros_ec_command *ec_msg) { struct ec_host_response *response; struct cros_ec_spi *ec_spi = ec_dev->priv; struct spi_transfer trans, trans_delay; struct spi_message msg; int i, len; u8 *ptr; u8 *rx_buf; u8 sum; int ret = 0, final_ret; len = cros_ec_prepare_tx(ec_dev, ec_msg); dev_dbg(ec_dev->dev, "prepared, len=%d\n", len); /* If it's too soon to do another transaction, wait */ if (ec_spi->last_transfer_ns) { unsigned long delay; /* The delay completed so far */ delay = ktime_get_ns() - ec_spi->last_transfer_ns; if (delay < EC_SPI_RECOVERY_TIME_NS) ndelay(EC_SPI_RECOVERY_TIME_NS - delay); } rx_buf = kzalloc(len, GFP_KERNEL); if (!rx_buf) return -ENOMEM; spi_bus_lock(ec_spi->spi->master); /* * Leave a gap between CS assertion and clocking of data to allow the * EC time to wakeup. */ spi_message_init(&msg); if (ec_spi->start_of_msg_delay) { memset(&trans_delay, 0, sizeof(trans_delay)); trans_delay.delay_usecs = ec_spi->start_of_msg_delay; spi_message_add_tail(&trans_delay, &msg); } /* Transmit phase - send our message */ memset(&trans, 0, sizeof(trans)); trans.tx_buf = ec_dev->dout; trans.rx_buf = rx_buf; trans.len = len; trans.cs_change = 1; spi_message_add_tail(&trans, &msg); ret = spi_sync_locked(ec_spi->spi, &msg); /* Get the response */ if (!ret) { /* Verify that EC can process command */ for (i = 0; i < len; i++) { switch (rx_buf[i]) { case EC_SPI_PAST_END: case EC_SPI_RX_BAD_DATA: case EC_SPI_NOT_READY: ret = -EAGAIN; ec_msg->result = EC_RES_IN_PROGRESS; default: break; } if (ret) break; } if (!ret) ret = cros_ec_spi_receive_packet(ec_dev, ec_msg->insize + sizeof(*response)); } else { dev_err(ec_dev->dev, "spi transfer failed: %d\n", ret); } final_ret = terminate_request(ec_dev); spi_bus_unlock(ec_spi->spi->master); if (!ret) ret = final_ret; if (ret < 0) goto exit; ptr = ec_dev->din; /* check response error code */ response = (struct ec_host_response *)ptr; ec_msg->result = response->result; ret = cros_ec_check_result(ec_dev, ec_msg); if (ret) goto exit; len = response->data_len; sum = 0; if (len > ec_msg->insize) { dev_err(ec_dev->dev, "packet too long (%d bytes, expected %d)", len, ec_msg->insize); ret = -EMSGSIZE; goto exit; } for (i = 0; i < sizeof(*response); i++) sum += ptr[i]; /* copy response packet payload and compute checksum */ memcpy(ec_msg->data, ptr + sizeof(*response), len); for (i = 0; i < len; i++) sum += ec_msg->data[i]; if (sum) { dev_err(ec_dev->dev, "bad packet checksum, calculated %x\n", sum); ret = -EBADMSG; goto exit; } ret = len; exit: kfree(rx_buf); if (ec_msg->command == EC_CMD_REBOOT_EC) msleep(EC_REBOOT_DELAY_MS); return ret; }
static int device_prepare(struct fpc1020_data *fpc1020, bool enable) { int rc; mutex_lock(&fpc1020->lock); if (enable && !fpc1020->prepared) { spi_bus_lock(fpc1020->spi->master); fpc1020->prepared = true; /* select_pin_ctl(fpc1020, "fpc1020_reset_reset"); */ /* rc = vreg_setup(fpc1020, "vcc_spi", true); if (rc) goto exit; rc = vreg_setup(fpc1020, "vdd_io", true); if (rc) goto exit_1; rc = vreg_setup(fpc1020, "vdd_ana", true); if (rc) goto exit_2; */ usleep_range(100, 1000); rc = spi_set_fabric(fpc1020, true); if (rc) goto exit_3; rc = set_clks(fpc1020, true); if (rc) goto exit_4; /* (void)select_pin_ctl(fpc1020, "fpc1020_cs_high"); */ /* (void)select_pin_ctl(fpc1020, "fpc1020_reset_active"); */ usleep_range(100, 200); /* (void)select_pin_ctl(fpc1020, "fpc1020_cs_active"); */ #if defined(SUPPORT_TRUSTZONE) rc = set_pipe_ownership(fpc1020, true); if (rc) goto exit_5; #endif } else if (!enable && fpc1020->prepared) { rc = 0; #if defined(SUPPORT_TRUSTZONE) (void)set_pipe_ownership(fpc1020, false); exit_5: #endif (void)set_clks(fpc1020, false); exit_4: (void)spi_set_fabric(fpc1020, false); exit_3: (void)select_pin_ctl(fpc1020, "fpc1020_cs_high"); (void)select_pin_ctl(fpc1020, "fpc1020_reset_reset"); usleep_range(100, 1000); /* (void)vreg_setup(fpc1020, "vdd_ana", false); exit_2: (void)vreg_setup(fpc1020, "vdd_io", false); exit_1: (void)vreg_setup(fpc1020, "vcc_spi", false); exit: */ (void)select_pin_ctl(fpc1020, "fpc1020_cs_low"); fpc1020->prepared = false; spi_bus_unlock(fpc1020->spi->master); } else { rc = 0; } mutex_unlock(&fpc1020->lock); return rc; }
static int ice40_fpga_ops_write_init(struct fpga_manager *mgr, struct fpga_image_info *info, const char *buf, size_t count) { struct ice40_fpga_priv *priv = mgr->priv; struct spi_device *dev = priv->dev; struct spi_message message; struct spi_transfer assert_cs_then_reset_delay = { .cs_change = 1, .delay_usecs = ICE40_SPI_RESET_DELAY }; struct spi_transfer housekeeping_delay_then_release_cs = { .delay_usecs = ICE40_SPI_HOUSEKEEPING_DELAY }; int ret; if ((info->flags & FPGA_MGR_PARTIAL_RECONFIG)) { dev_err(&dev->dev, "Partial reconfiguration is not supported\n"); return -ENOTSUPP; } /* Lock the bus, assert CRESET_B and SS_B and delay >200ns */ spi_bus_lock(dev->master); gpiod_set_value(priv->reset, 1); spi_message_init(&message); spi_message_add_tail(&assert_cs_then_reset_delay, &message); ret = spi_sync_locked(dev, &message); /* Come out of reset */ gpiod_set_value(priv->reset, 0); /* Abort if the chip-select failed */ if (ret) goto fail; /* Check CDONE is de-asserted i.e. the FPGA is reset */ if (gpiod_get_value(priv->cdone)) { dev_err(&dev->dev, "Device reset failed, CDONE is asserted\n"); ret = -EIO; goto fail; } /* Wait for the housekeeping to complete, and release SS_B */ spi_message_init(&message); spi_message_add_tail(&housekeeping_delay_then_release_cs, &message); ret = spi_sync_locked(dev, &message); fail: spi_bus_unlock(dev->master); return ret; } static int ice40_fpga_ops_write(struct fpga_manager *mgr, const char *buf, size_t count) { struct ice40_fpga_priv *priv = mgr->priv; return spi_write(priv->dev, buf, count); } static int ice40_fpga_ops_write_complete(struct fpga_manager *mgr, struct fpga_image_info *info) { struct ice40_fpga_priv *priv = mgr->priv; struct spi_device *dev = priv->dev; const u8 padding[ICE40_SPI_NUM_ACTIVATION_BYTES] = {0}; /* Check CDONE is asserted */ if (!gpiod_get_value(priv->cdone)) { dev_err(&dev->dev, "CDONE was not asserted after firmware transfer\n"); return -EIO; } /* Send of zero-padding to activate the firmware */ return spi_write(dev, padding, sizeof(padding)); } static const struct fpga_manager_ops ice40_fpga_ops = { .state = ice40_fpga_ops_state, .write_init = ice40_fpga_ops_write_init, .write = ice40_fpga_ops_write, .write_complete = ice40_fpga_ops_write_complete, }; static int ice40_fpga_probe(struct spi_device *spi) { struct device *dev = &spi->dev; struct ice40_fpga_priv *priv; struct fpga_manager *mgr; int ret; priv = devm_kzalloc(&spi->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = spi; /* Check board setup data. */ if (spi->max_speed_hz > ICE40_SPI_MAX_SPEED) { dev_err(dev, "SPI speed is too high, maximum speed is " __stringify(ICE40_SPI_MAX_SPEED) "\n"); return -EINVAL; } if (spi->max_speed_hz < ICE40_SPI_MIN_SPEED) { dev_err(dev, "SPI speed is too low, minimum speed is " __stringify(ICE40_SPI_MIN_SPEED) "\n"); return -EINVAL; } if (spi->mode & SPI_CPHA) { dev_err(dev, "Bad SPI mode, CPHA not supported\n"); return -EINVAL; } /* Set up the GPIOs */ priv->cdone = devm_gpiod_get(dev, "cdone", GPIOD_IN); if (IS_ERR(priv->cdone)) { ret = PTR_ERR(priv->cdone); dev_err(dev, "Failed to get CDONE GPIO: %d\n", ret); return ret; } priv->reset = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(priv->reset)) { ret = PTR_ERR(priv->reset); dev_err(dev, "Failed to get CRESET_B GPIO: %d\n", ret); return ret; } mgr = fpga_mgr_create(dev, "Lattice iCE40 FPGA Manager", &ice40_fpga_ops, priv); if (!mgr) return -ENOMEM; spi_set_drvdata(spi, mgr); ret = fpga_mgr_register(mgr); if (ret) fpga_mgr_free(mgr); return ret; } static int ice40_fpga_remove(struct spi_device *spi) { struct fpga_manager *mgr = spi_get_drvdata(spi); fpga_mgr_unregister(mgr); return 0; } static const struct of_device_id ice40_fpga_of_match[] = { { .compatible = "lattice,ice40-fpga-mgr", }, {}, };