示例#1
0
/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it.  If it returns NULL
** that means that a mutex could not be allocated.  SQLite
** will unwind its stack and return an error.  The argument
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li>  SQLITE_MUTEX_FAST
** <li>  SQLITE_MUTEX_RECURSIVE
** <li>  SQLITE_MUTEX_STATIC_MASTER
** <li>  SQLITE_MUTEX_STATIC_MEM
** <li>  SQLITE_MUTEX_STATIC_OPEN
** <li>  SQLITE_MUTEX_STATIC_PRNG
** <li>  SQLITE_MUTEX_STATIC_LRU
** <li>  SQLITE_MUTEX_STATIC_PMEM
** <li>  SQLITE_MUTEX_STATIC_APP1
** <li>  SQLITE_MUTEX_STATIC_APP2
** <li>  SQLITE_MUTEX_STATIC_APP3
** <li>  SQLITE_MUTEX_STATIC_VFS1
** <li>  SQLITE_MUTEX_STATIC_VFS2
** <li>  SQLITE_MUTEX_STATIC_VFS3
** </ul>
**
** The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to.  But SQLite will only request a recursive mutex in
** cases where it really needs one.  If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex.  Six static mutexes are
** used by the current version of SQLite.  Future versions of SQLite
** may add additional static mutexes.  Static mutexes are for internal
** use by SQLite only.  Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call.  But for the static 
** mutex types, the same mutex is returned on every call that has
** the same type number.
*/
static sqlite3_mutex *pthreadMutexAlloc(int iType){
  static sqlite3_mutex staticMutexes[] = {
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER
  };
  sqlite3_mutex *p;
  switch( iType ){
    case SQLITE_MUTEX_RECURSIVE: {
      p = sqlite3MallocZero( sizeof(*p) );
      if( p ){
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
        /* If recursive mutexes are not available, we will have to
        ** build our own.  See below. */
        pthread_mutex_init(&p->mutex, 0);
#else
        /* Use a recursive mutex if it is available */
        pthread_mutexattr_t recursiveAttr;
        pthread_mutexattr_init(&recursiveAttr);
        pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
        pthread_mutex_init(&p->mutex, &recursiveAttr);
        pthread_mutexattr_destroy(&recursiveAttr);
#endif
      }
      break;
    }
    case SQLITE_MUTEX_FAST: {
      p = sqlite3MallocZero( sizeof(*p) );
      if( p ){
        pthread_mutex_init(&p->mutex, 0);
      }
      break;
    }
    default: {
#ifdef SQLITE_ENABLE_API_ARMOR
      if( iType-2<0 || iType-2>=ArraySize(staticMutexes) ){
        (void)SQLITE_MISUSE_BKPT;
        return 0;
      }
#endif
      p = &staticMutexes[iType-2];
      break;
    }
  }
#if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR)
  if( p ) p->id = iType;
#endif
  return p;
}
示例#2
0
/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it.  If it returns NULL
** that means that a mutex could not be allocated.  SQLite
** will unwind its stack and return an error.  The argument
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li>  SQLITE_MUTEX_FAST
** <li>  SQLITE_MUTEX_RECURSIVE
** <li>  SQLITE_MUTEX_STATIC_MASTER
** <li>  SQLITE_MUTEX_STATIC_MEM
** <li>  SQLITE_MUTEX_STATIC_MEM2
** <li>  SQLITE_MUTEX_STATIC_PRNG
** <li>  SQLITE_MUTEX_STATIC_LRU
** <li>  SQLITE_MUTEX_STATIC_PMEM
** </ul>
**
** The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to.  But SQLite will only request a recursive mutex in
** cases where it really needs one.  If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex.  Six static mutexes are
** used by the current version of SQLite.  Future versions of SQLite
** may add additional static mutexes.  Static mutexes are for internal
** use by SQLite only.  Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call.  But for the static 
** mutex types, the same mutex is returned on every call that has
** the same type number.
*/
static sqlite3_mutex *pthreadMutexAlloc(int iType){
  static sqlite3_mutex staticMutexes[] = {
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER,
    SQLITE3_MUTEX_INITIALIZER
  };
  sqlite3_mutex *p;
  switch( iType ){
    case SQLITE_MUTEX_RECURSIVE: {
      p = sqlite3MallocZero( sizeof(*p) );
      if( p ){
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
        /* If recursive mutexes are not available, we will have to
        ** build our own.  See below. */
        pthread_mutex_init(&p->mutex, 0);
#else
        /* Use a recursive mutex if it is available */
        pthread_mutexattr_t recursiveAttr;
        pthread_mutexattr_init(&recursiveAttr);
        pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
        pthread_mutex_init(&p->mutex, &recursiveAttr);
        pthread_mutexattr_destroy(&recursiveAttr);
#endif
#if SQLITE_MUTEX_NREF
        p->id = iType;
#endif
      }
      break;
    }
    case SQLITE_MUTEX_FAST: {
      p = sqlite3MallocZero( sizeof(*p) );
      if( p ){
#if SQLITE_MUTEX_NREF
        p->id = iType;
#endif
        pthread_mutex_init(&p->mutex, 0);
      }
      break;
    }
    default: {
      assert( iType-2 >= 0 );
      assert( iType-2 < ArraySize(staticMutexes) );
      p = &staticMutexes[iType-2];
#if SQLITE_MUTEX_NREF
      p->id = iType;
#endif
      break;
    }
  }
  return p;
}
示例#3
0
/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it.  If it returns NULL
** that means that a mutex could not be allocated.  SQLite
** will unwind its stack and return an error.  The argument
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li>  SQLITE_MUTEX_FAST
** <li>  SQLITE_MUTEX_RECURSIVE
** <li>  SQLITE_MUTEX_STATIC_MASTER
** <li>  SQLITE_MUTEX_STATIC_MEM
** <li>  SQLITE_MUTEX_STATIC_MEM2
** <li>  SQLITE_MUTEX_STATIC_PRNG
** <li>  SQLITE_MUTEX_STATIC_LRU
** <li>  SQLITE_MUTEX_STATIC_PMEM
** </ul>
**
** The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to.  But SQLite will only request a recursive mutex in
** cases where it really needs one.  If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex.  Six static mutexes are
** used by the current version of SQLite.  Future versions of SQLite
** may add additional static mutexes.  Static mutexes are for internal
** use by SQLite only.  Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call.  But for the static
** mutex types, the same mutex is returned on every call that has
** the same type number.
*/
static sqlite3_mutex *vmsMutexAlloc(int iType){
  static sqlite3_mutex staticMutexes[] = {
    SQLITE3_MUTEX_INITIALIZER("SQLITE3_MUTEX_STATIC_MASTER"),
    SQLITE3_MUTEX_INITIALIZER("SQLITE3_MUTEX_STATIC_MEM"),
    SQLITE3_MUTEX_INITIALIZER("SQLITE3_MUTEX_STATIC_MEM2"),
    SQLITE3_MUTEX_INITIALIZER("SQLITE3_MUTEX_STATIC_PRNG"),
    SQLITE3_MUTEX_INITIALIZER("SQLITE3_MUTEX_STATIC_LRU"),
    SQLITE3_MUTEX_INITIALIZER("SQLITE3_MUTEX_STATIC_PMEM")
  };
  sqlite3_mutex *p;
  switch( iType ){
    case SQLITE_MUTEX_RECURSIVE: {
      p = sqlite3MallocZero( sizeof(*p) );
      if( p ){
#ifdef vax
        /*
        ** On OpenVMS VAX there is no way to create a recursive mutex in
        ** the tis interface.  The routine tis_mutex_initwithname is in
        ** the header file and claims to enable this.  However, it does
        ** not actually exist in the CMA$TIS_SHR RTL.  So, while the
        ** jiggery-pokery of the lock field in pthread_mutex_t below is
        ** completely unsupported it does, in fact, seem to work.
        */
        tis_mutex_init(&p->mutex);
        p->mutex.lock &= ~_PTHREAD_MSTATE_TYPE;     /* Clear mutex type */
        p->mutex.lock |= _PTHREAD_MTYPE_RECURS;     /* Set mutex type to recursive */
#else
        /*
        ** Although not documented, this is the routine used by the
        ** CRTL on Alpha and I64 to implement the flock() routine.
        */
        tis_mutex_init_type(&p->mutex, PTHREAD_MUTEX_RECURSIVE, 0);
#endif
      }
      break;
    }
    case SQLITE_MUTEX_FAST: {
      p = sqlite3MallocZero( sizeof(*p) );
      if( p ){
        tis_mutex_init(&p->mutex);
      }
      break;
    }
    default: {
      assert( iType-2 >= 0 );
      assert( iType-2 < ArraySize(staticMutexes) );
      p = &staticMutexes[iType-2];
      break;
    }
  }
  return p;
}
示例#4
0
/*
** Sort the linked list of records headed at pCsr->pRecord. Return SQLITE_OK
** if successful, or an SQLite error code (i.e. SQLITE_NOMEM) if an error
** occurs.
*/
static int vdbeSorterSort(VdbeCursor *pCsr){
  int i;
  SorterRecord **aSlot;
  SorterRecord *p;
  VdbeSorter *pSorter = pCsr->pSorter;

  aSlot = (SorterRecord **)sqlite3MallocZero(64 * sizeof(SorterRecord *));
  if( !aSlot ){
    return SQLITE_NOMEM;
  }

  p = pSorter->pRecord;
  while( p ){
    SorterRecord *pNext = p->pNext;
    p->pNext = 0;
    for(i=0; aSlot[i]; i++){
      vdbeSorterMerge(pCsr, p, aSlot[i], &p);
      aSlot[i] = 0;
    }
    aSlot[i] = p;
    p = pNext;
  }

  p = 0;
  for(i=0; i<64; i++){
    vdbeSorterMerge(pCsr, p, aSlot[i], &p);
  }
  pSorter->pRecord = p;

  sqlite3_free(aSlot);
  return SQLITE_OK;
}
示例#5
0
/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it.  If it returns NULL
** that means that a mutex could not be allocated.  SQLite
** will unwind its stack and return an error.  The argument
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li>  SQLITE_MUTEX_FAST
** <li>  SQLITE_MUTEX_RECURSIVE
** <li>  SQLITE_MUTEX_STATIC_MASTER
** <li>  SQLITE_MUTEX_STATIC_MEM
** <li>  SQLITE_MUTEX_STATIC_MEM2
** <li>  SQLITE_MUTEX_STATIC_PRNG
** <li>  SQLITE_MUTEX_STATIC_LRU
** <li>  SQLITE_MUTEX_STATIC_LRU2
** </ul>
**
** The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to.  But SQLite will only request a recursive mutex in
** cases where it really needs one.  If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex.  Six static mutexes are
** used by the current version of SQLite.  Future versions of SQLite
** may add additional static mutexes.  Static mutexes are for internal
** use by SQLite only.  Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call.  But for the static 
** mutex types, the same mutex is returned on every call that has
** the same type number.
*/
static sqlite3_mutex *winMutexAlloc(int iType){
  sqlite3_mutex *p;

  switch( iType ){
    case SQLITE_MUTEX_FAST:
    case SQLITE_MUTEX_RECURSIVE: {
      p = sqlite3MallocZero( sizeof(*p) );
      if( p ){  
#ifdef SQLITE_DEBUG
        p->id = iType;
#endif
        InitializeCriticalSection(&p->mutex);
      }
      break;
    }
    default: {
      assert( winMutex_isInit==1 );
      assert( iType-2 >= 0 );
      assert( iType-2 < ArraySize(winMutex_staticMutexes) );
      p = &winMutex_staticMutexes[iType-2];
#ifdef SQLITE_DEBUG
      p->id = iType;
#endif
      break;
    }
  }
  return p;
}
示例#6
0
/* Resize the hash table so that it cantains "new_size" buckets.
** "new_size" must be a power of 2.  The hash table might fail 
** to resize if sqlite3_malloc() fails.
*/
static void rehash(Hash *pH, int new_size){
  struct _ht *new_ht;            /* The new hash table */
  HashElem *elem, *next_elem;    /* For looping over existing elements */

#ifdef SQLITE_MALLOC_SOFT_LIMIT
  if( new_size*sizeof(struct _ht)>SQLITE_MALLOC_SOFT_LIMIT ){
    new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht);
  }
  if( new_size==pH->htsize ) return;
#endif

  /* There is a call to sqlite3_malloc() inside rehash(). If there is
  ** already an allocation at pH->ht, then if this malloc() fails it
  ** is benign (since failing to resize a hash table is a performance
  ** hit only, not a fatal error).
  */
  if( pH->htsize>0 ) sqlite3BeginBenignMalloc();
  new_ht = (struct _ht *)sqlite3MallocZero( new_size*sizeof(struct _ht) );
  if( pH->htsize>0 ) sqlite3EndBenignMalloc();

  if( new_ht==0 ) return;
  sqlite3_free(pH->ht);
  pH->ht = new_ht;
  pH->htsize = new_size;
  for(elem=pH->first, pH->first=0; elem; elem = next_elem){
    int h = strHash(elem->pKey, elem->nKey) & (new_size-1);
    next_elem = elem->next;
    insertElement(pH, &new_ht[h], elem);
  }
}
示例#7
0
/*
** This function is used to resize the hash table used by the cache passed
** as the first argument.
**
** The PCache mutex must be held when this function is called.
*/
static void pcache1ResizeHash(PCache1 *p){
  PgHdr1 **apNew;
  unsigned int nNew;
  unsigned int i;

  assert( sqlite3_mutex_held(p->pGroup->mutex) );

  nNew = p->nHash*2;
  if( nNew<256 ){
    nNew = 256;
  }

  pcache1LeaveMutex(p->pGroup);
  if( p->nHash ){ sqlite3BeginBenignMalloc(); }
  apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
  if( p->nHash ){ sqlite3EndBenignMalloc(); }
  pcache1EnterMutex(p->pGroup);
  if( apNew ){
    for(i=0; i<p->nHash; i++){
      PgHdr1 *pPage;
      PgHdr1 *pNext = p->apHash[i];
      while( (pPage = pNext)!=0 ){
        unsigned int h = pPage->iKey % nNew;
        pNext = pPage->pNext;
        pPage->pNext = apNew[h];
        apNew[h] = pPage;
      }
    }
    sqlite3_free(p->apHash);
    p->apHash = apNew;
    p->nHash = nNew;
  }
}
示例#8
0
文件: test6.c 项目: soubok/libset
/*
** Add an entry to the end of the write-list.
*/
static int writeListAppend(
  sqlite3_file *pFile,
  sqlite3_int64 iOffset,
  const u8 *zBuf,
  int nBuf
){
  WriteBuffer *pNew;

  assert((zBuf && nBuf) || (!nBuf && !zBuf));

  pNew = (WriteBuffer *)sqlite3MallocZero(sizeof(WriteBuffer) + nBuf);
  if( pNew==0 ){
    fprintf(stderr, "out of memory in the crash simulator\n");
  }
  pNew->iOffset = iOffset;
  pNew->nBuf = nBuf;
  pNew->pFile = (CrashFile *)pFile;
  if( zBuf ){
    pNew->zBuf = (u8 *)&pNew[1];
    memcpy(pNew->zBuf, zBuf, nBuf);
  }

  if( g.pWriteList ){
    assert(g.pWriteListEnd);
    g.pWriteListEnd->pNext = pNew;
  }else{
    g.pWriteList = pNew;
  }
  g.pWriteListEnd = pNew;
  
  return SQLITE_OK;
}
示例#9
0
static int echoConstructor(
  sqlite3 *db,
  void *pAux,
  int argc, const char *const*argv,
  sqlite3_vtab **ppVtab,
  char **pzErr
){
  int rc;
  int i;
  echo_vtab *pVtab;

  
  pVtab = sqlite3MallocZero( sizeof(*pVtab) );
  if( !pVtab ){
    return SQLITE_NOMEM;
  }
  pVtab->interp = ((EchoModule *)pAux)->interp;
  pVtab->db = db;

  
  pVtab->zThis = sqlite3_mprintf("%s", argv[2]);
  if( !pVtab->zThis ){
    echoDestructor((sqlite3_vtab *)pVtab);
    return SQLITE_NOMEM;
  }

  
  if( argc>3 ){
    pVtab->zTableName = sqlite3_mprintf("%s", argv[3]);
    dequoteString(pVtab->zTableName);
    if( pVtab->zTableName && pVtab->zTableName[0]=='*' ){
      char *z = sqlite3_mprintf("%s%s", argv[2], &(pVtab->zTableName[1]));
      sqlite3_free(pVtab->zTableName);
      pVtab->zTableName = z;
      pVtab->isPattern = 1;
    }
    if( !pVtab->zTableName ){
      echoDestructor((sqlite3_vtab *)pVtab);
      return SQLITE_NOMEM;
    }
  }

  
  for(i=0; i<argc; i++){
    appendToEchoModule(pVtab->interp, argv[i]);
  }

  rc = echoDeclareVtab(pVtab, db);
  if( rc!=SQLITE_OK ){
    echoDestructor((sqlite3_vtab *)pVtab);
    return rc;
  }

  
  *ppVtab = &pVtab->base;
  return SQLITE_OK;
}
示例#10
0
static int echoOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
  echo_cursor *pCur;
  if( simulateVtabError((echo_vtab *)pVTab, "xOpen") ){
    return SQLITE_ERROR;
  }
  pCur = sqlite3MallocZero(sizeof(echo_cursor));
  *ppCursor = (sqlite3_vtab_cursor *)pCur;
  return (pCur ? SQLITE_OK : SQLITE_NOMEM);
}
示例#11
0
/*
** Retrieve the column names for the table named zTab via database
** connection db. SQLITE_OK is returned on success, or an sqlite error
** code otherwise.
**
** If successful, the number of columns is written to *pnCol. *paCol is
** set to point at sqlite3_malloc()'d space containing the array of
** nCol column names. The caller is responsible for calling sqlite3_free
** on *paCol.
*/
static int getColumnNames(
  sqlite3 *db, 
  const char *zTab,
  char ***paCol, 
  int *pnCol
){
  char **aCol = 0;
  char *zSql;
  sqlite3_stmt *pStmt = 0;
  int rc = SQLITE_OK;
  int nCol = 0;

  zSql = sqlite3_mprintf("SELECT * FROM %Q", zTab);
  if( !zSql ){
    rc = SQLITE_NOMEM;
    goto out;
  }
  rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
  sqlite3_free(zSql);

  if( rc==SQLITE_OK ){
    int ii;
    int nBytes;
    char *zSpace;
    nCol = sqlite3_column_count(pStmt);

    nBytes = sizeof(char *) * nCol;
    for(ii=0; ii<nCol; ii++){
      const char *zName = sqlite3_column_name(pStmt, ii);
      if( !zName ){
        rc = SQLITE_NOMEM;
        goto out;
      }
      nBytes += strlen(zName)+1;
    }
    aCol = (char **)sqlite3MallocZero(nBytes);
    if( !aCol ){
      rc = SQLITE_NOMEM;
      goto out;
    }

    zSpace = (char *)(&aCol[nCol]);
    for(ii=0; ii<nCol; ii++){
      aCol[ii] = zSpace;
      zSpace += sprintf(zSpace, "%s", sqlite3_column_name(pStmt, ii));
      zSpace++;
    }
    assert( (zSpace-nBytes)==(char *)aCol );
  }

  *paCol = aCol;
  *pnCol = nCol;

out:
  sqlite3_finalize(pStmt);
  return rc;
}
示例#12
0
文件: bitvec.c 项目: 0xr0ot/sqlcipher
/*
** Create a new bitmap object able to handle bits between 0 and iSize,
** inclusive.  Return a pointer to the new object.  Return NULL if 
** malloc fails.
*/
Bitvec *sqlite3BitvecCreate(u32 iSize){
  Bitvec *p;
  assert( sizeof(*p)==BITVEC_SZ );
  p = sqlite3MallocZero( sizeof(*p) );
  if( p ){
    p->iSize = iSize;
  }
  return p;
}
示例#13
0
/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it.  If it returns NULL
** that means that a mutex could not be allocated.  SQLite
** will unwind its stack and return an error.  The argument
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li>  SQLITE_MUTEX_FAST
** <li>  SQLITE_MUTEX_RECURSIVE
** <li>  SQLITE_MUTEX_STATIC_MASTER
** <li>  SQLITE_MUTEX_STATIC_MEM
** <li>  SQLITE_MUTEX_STATIC_MEM2
** <li>  SQLITE_MUTEX_STATIC_PRNG
** <li>  SQLITE_MUTEX_STATIC_LRU
** </ul>
**
** The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to.  But SQLite will only request a recursive mutex in
** cases where it really needs one.  If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex.  Three static mutexes are
** used by the current version of SQLite.  Future versions of SQLite
** may add additional static mutexes.  Static mutexes are for internal
** use by SQLite only.  Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call.  But for the static 
** mutex types, the same mutex is returned on every call that has
** the same type number.
*/
sqlite3_mutex *sqlite3_mutex_alloc(int iType){
  static sqlite3_mutex staticMutexes[] = {
    { PTHREAD_MUTEX_INITIALIZER, },
    { PTHREAD_MUTEX_INITIALIZER, },
    { PTHREAD_MUTEX_INITIALIZER, },
    { PTHREAD_MUTEX_INITIALIZER, },
    { PTHREAD_MUTEX_INITIALIZER, },
  };
  sqlite3_mutex *p;
  switch( iType ){
    case SQLITE_MUTEX_RECURSIVE: {
      p = sqlite3MallocZero( sizeof(*p) );
      if( p ){
        pthread_mutexattr_t recursiveAttr;
        pthread_mutexattr_init(&recursiveAttr);
        pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
        pthread_mutex_init(&p->mutex, &recursiveAttr);
        pthread_mutexattr_destroy(&recursiveAttr);
        p->id = iType;
      }
      break;
    }
    case SQLITE_MUTEX_FAST: {
      p = sqlite3MallocZero( sizeof(*p) );
      if( p ){
        p->id = iType;
        pthread_mutex_init(&p->mutex, 0);
      }
      break;
    }
    default: {
      assert( iType-2 >= 0 );
      assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
      p = &staticMutexes[iType-2];
      p->id = iType;
      break;
    }
  }
  return p;
}
示例#14
0
/*
** Find and return the schema associated with a BTree.  Create
** a new one if necessary.
*/
Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){
  Schema * p;
  if( pBt ){
    p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaFree);
  }else{
    p = (Schema *)sqlite3MallocZero(sizeof(Schema));
  }
  if( !p ){
    db->mallocFailed = 1;
  }else if ( 0==p->file_format ){
    sqlite3HashInit(&p->tblHash);
    sqlite3HashInit(&p->idxHash);
    sqlite3HashInit(&p->trigHash);
    p->enc = SQLITE_UTF8;
  }
  return p;
}
示例#15
0
/* Methods for the tclvar module */
static int tclvarConnect(
  sqlite3 *db,
  void *pAux,
  int argc, const char *const*argv,
  sqlite3_vtab **ppVtab,
  char **pzErr
){
  tclvar_vtab *pVtab;
  static const char zSchema[] = 
     "CREATE TABLE whatever(name TEXT, arrayname TEXT, value TEXT)";
  pVtab = sqlite3MallocZero( sizeof(*pVtab) );
  if( pVtab==0 ) return SQLITE_NOMEM;
  *ppVtab = &pVtab->base;
  pVtab->interp = (Tcl_Interp *)pAux;
  sqlite3_declare_vtab(db, zSchema);
  return SQLITE_OK;
}
示例#16
0
/*
** Allocate a new Explain object
*/
void sqlite3ExplainBegin(Vdbe *pVdbe){
    if( pVdbe ){
        Explain *p;
        sqlite3BeginBenignMalloc();
        p = (Explain *)sqlite3MallocZero( sizeof(Explain) );
        if( p ){
            p->pVdbe = pVdbe;
            sqlite3_free(pVdbe->pExplain);
            pVdbe->pExplain = p;
            sqlite3StrAccumInit(&p->str, p->zBase, sizeof(p->zBase),
                SQLITE_MAX_LENGTH);
            p->str.useMalloc = 2;
        }else{
            sqlite3EndBenignMalloc();
        }
    }
}
示例#17
0
int sqlite3OsOpenMalloc(
  sqlite3_vfs *pVfs, 
  const char *zFile, 
  sqlite3_file **ppFile, 
  int flags,
  int *pOutFlags
){
  int rc = SQLITE_NOMEM;
  sqlite3_file *pFile;
  pFile = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile);
  if( pFile ){
    rc = sqlite3OsOpen(pVfs, zFile, pFile, flags, pOutFlags);
    if( rc!=SQLITE_OK ){
      sqlite3_free(pFile);
    }else{
      *ppFile = pFile;
    }
  }
  return rc;
}
示例#18
0
/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it.  If it returns NULL
** that means that a mutex could not be allocated.  SQLite
** will unwind its stack and return an error.  The argument
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li>  SQLITE_MUTEX_FAST
** <li>  SQLITE_MUTEX_RECURSIVE
** <li>  SQLITE_MUTEX_STATIC_MASTER
** <li>  SQLITE_MUTEX_STATIC_MEM
** <li>  SQLITE_MUTEX_STATIC_OPEN
** <li>  SQLITE_MUTEX_STATIC_PRNG
** <li>  SQLITE_MUTEX_STATIC_LRU
** <li>  SQLITE_MUTEX_STATIC_PMEM
** <li>  SQLITE_MUTEX_STATIC_APP1
** <li>  SQLITE_MUTEX_STATIC_APP2
** <li>  SQLITE_MUTEX_STATIC_APP3
** <li>  SQLITE_MUTEX_STATIC_VFS1
** <li>  SQLITE_MUTEX_STATIC_VFS2
** <li>  SQLITE_MUTEX_STATIC_VFS3
** </ul>
**
** The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to.  But SQLite will only request a recursive mutex in
** cases where it really needs one.  If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex.  Six static mutexes are
** used by the current version of SQLite.  Future versions of SQLite
** may add additional static mutexes.  Static mutexes are for internal
** use by SQLite only.  Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call.  But for the static
** mutex types, the same mutex is returned on every call that has
** the same type number.
*/
static sqlite3_mutex *winMutexAlloc(int iType){
  sqlite3_mutex *p;

  switch( iType ){
    case SQLITE_MUTEX_FAST:
    case SQLITE_MUTEX_RECURSIVE: {
      p = sqlite3MallocZero( sizeof(*p) );
      if( p ){
        p->id = iType;
#ifdef SQLITE_DEBUG
#ifdef SQLITE_WIN32_MUTEX_TRACE_DYNAMIC
        p->trace = 1;
#endif
#endif
#if SQLITE_OS_WINRT
        InitializeCriticalSectionEx(&p->mutex, 0, 0);
#else
        InitializeCriticalSection(&p->mutex);
#endif
      }
      break;
    }
    default: {
#ifdef SQLITE_ENABLE_API_ARMOR
      if( iType-2<0 || iType-2>=ArraySize(winMutex_staticMutexes) ){
        (void)SQLITE_MISUSE_BKPT;
        return 0;
      }
#endif
      p = &winMutex_staticMutexes[iType-2];
      p->id = iType;
#ifdef SQLITE_DEBUG
#ifdef SQLITE_WIN32_MUTEX_TRACE_STATIC
      p->trace = 1;
#endif
#endif
      break;
    }
  }
  return p;
}
示例#19
0
/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it.  If it returns NULL
** that means that a mutex could not be allocated.  SQLite
** will unwind its stack and return an error.  The argument
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li>  SQLITE_MUTEX_FAST               0
** <li>  SQLITE_MUTEX_RECURSIVE          1
** <li>  SQLITE_MUTEX_STATIC_MASTER      2
** <li>  SQLITE_MUTEX_STATIC_MEM         3
** <li>  SQLITE_MUTEX_STATIC_PRNG        4
** </ul>
**
** The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to.  But SQLite will only request a recursive mutex in
** cases where it really needs one.  If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex.  Three static mutexes are
** used by the current version of SQLite.  Future versions of SQLite
** may add additional static mutexes.  Static mutexes are for internal
** use by SQLite only.  Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call.  But for the static 
** mutex types, the same mutex is returned on every call that has
** the same type number.
*/
sqlite3_mutex *sqlite3_mutex_alloc(int iType){
  sqlite3_mutex *p;

  switch( iType ){
    case SQLITE_MUTEX_FAST:
    case SQLITE_MUTEX_RECURSIVE: {
      p = sqlite3MallocZero( sizeof(*p) );
      if( p ){
        p->id = iType;
        InitializeCriticalSection(&p->mutex);
      }
      break;
    }
    default: {
      static sqlite3_mutex staticMutexes[5];
      static int isInit = 0;
      while( !isInit ){
        static long lock = 0;
        if( InterlockedIncrement(&lock)==1 ){
          int i;
          for(i=0; i<sizeof(staticMutexes)/sizeof(staticMutexes[0]); i++){
            InitializeCriticalSection(&staticMutexes[i].mutex);
          }
          isInit = 1;
        }else{
          Sleep(1);
        }
      }
      assert( iType-2 >= 0 );
      assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
      p = &staticMutexes[iType-2];
      p->id = iType;
      break;
    }
  }
  return p;
}
示例#20
0
/* 
** Open a journal file.
*/
int sqlite3JournalOpen(
  sqlite3_vfs *pVfs,         /* The VFS to use for actual file I/O */
  const char *zName,         /* Name of the journal file */
  sqlite3_file *pJfd,        /* Preallocated, blank file handle */
  int flags,                 /* Opening flags */
  int nBuf                   /* Bytes buffered before opening the file */
){
  JournalFile *p = (JournalFile *)pJfd;
  memset(p, 0, sqlite3JournalSize(pVfs));
  if( nBuf>0 ){
    p->zBuf = sqlite3MallocZero(nBuf);
    if( !p->zBuf ){
      return SQLITE_NOMEM;
    }
  }else{
    return sqlite3OsOpen(pVfs, zName, pJfd, flags, 0);
  }
  p->pMethod = &JournalFileMethods;
  p->nBuf = nBuf;
  p->flags = flags;
  p->zJournal = zName;
  p->pVfs = pVfs;
  return SQLITE_OK;
}
示例#21
0
/*
** This routine does the work of opening a database on behalf of
** sqlite3_open() and sqlite3_open16(). The database filename "zFilename"  
** is UTF-8 encoded.
*/
static int openDatabase(
  const char *zFilename, /* Database filename UTF-8 encoded */
  sqlite3 **ppDb,        /* OUT: Returned database handle */
  unsigned flags,        /* Operational flags */
  const char *zVfs       /* Name of the VFS to use */
){
  sqlite3 *db;
  int rc;
  CollSeq *pColl;


  /* Allocate the sqlite data structure */
  db = (sqlite3*)sqlite3MallocZero( sizeof(sqlite3) );
  if( db==0 ) goto opendb_out;
  db->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_RECURSIVE);
  if( db->mutex==0 ){
    sqlite3_free(db);
    db = 0;
    goto opendb_out;
  }
  sqlite3_mutex_enter(db->mutex);
  db->errMask = 0xff;
  db->priorNewRowid = 0;
  db->nDb = 2;
  db->magic = SQLITE_MAGIC_BUSY;
  db->aDb = db->aDbStatic;
  db->autoCommit = 1;
  db->nextAutovac = -1;
  db->flags |= SQLITE_ShortColNames
#if SQLITE_DEFAULT_FILE_FORMAT<4
                 | SQLITE_LegacyFileFmt
#endif
#ifdef SQLITE_ENABLE_LOAD_EXTENSION
                 | SQLITE_LoadExtension
#endif
      ;
  sqlite3HashInit(&db->aFunc, SQLITE_HASH_STRING, 0);
  sqlite3HashInit(&db->aCollSeq, SQLITE_HASH_STRING, 0);
#ifndef SQLITE_OMIT_VIRTUALTABLE
  sqlite3HashInit(&db->aModule, SQLITE_HASH_STRING, 0);
#endif

  db->pVfs = sqlite3OsDefaultVfs();//sqlite3_vfs_find(zVfs);
  if( !db->pVfs ){
    rc = SQLITE_ERROR;
    db->magic = SQLITE_MAGIC_CLOSED;
    sqlite3Error(db, rc, "no such vfs: %s", (zVfs?zVfs:"(null)"));
    goto opendb_out;
  }

  /* Add the default collation sequence BINARY. BINARY works for both UTF-8
  ** and UTF-16, so add a version for each to avoid any unnecessary
  ** conversions. The only error that can occur here is a malloc() failure.
  */
  if( createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0) ||
      createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0) ||
      createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0) ||
      (db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0))==0 
  ){
    assert( db->mallocFailed );
    db->magic = SQLITE_MAGIC_CLOSED;
    goto opendb_out;
  }

  /* Also add a UTF-8 case-insensitive collation sequence. */
  createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0);

  /* Set flags on the built-in collating sequences */
  db->pDfltColl->type = SQLITE_COLL_BINARY;
  pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "NOCASE", 6, 0);
  if( pColl ){
    pColl->type = SQLITE_COLL_NOCASE;
  }

  /* Open the backend database driver */
  db->openFlags = flags;
  rc = sqlite3BtreeFactory(db, zFilename, 0, SQLITE_DEFAULT_CACHE_SIZE, 
                           flags | SQLITE_OPEN_MAIN_DB,
                           &db->aDb[0].pBt);
  if( rc!=SQLITE_OK ){
    sqlite3Error(db, rc, 0);
    db->magic = SQLITE_MAGIC_CLOSED;
    goto opendb_out;
  }
  db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt);
  db->aDb[1].pSchema = sqlite3SchemaGet(db, 0);


  /* The default safety_level for the main database is 'full'; for the temp
  ** database it is 'NONE'. This matches the pager layer defaults.  
  */
  db->aDb[0].zName = "main";
  db->aDb[0].safety_level = 3;
#ifndef SQLITE_OMIT_TEMPDB
  db->aDb[1].zName = "temp";
  db->aDb[1].safety_level = 1;
#endif

  db->magic = SQLITE_MAGIC_OPEN;
  if( db->mallocFailed ){
    goto opendb_out;
  }

  /* Register all built-in functions, but do not attempt to read the
  ** database schema yet. This is delayed until the first time the database
  ** is accessed.
  */
  sqlite3Error(db, SQLITE_OK, 0);
  sqlite3RegisterBuiltinFunctions(db);

  /* Load automatic extensions - extensions that have been registered
  ** using the sqlite3_automatic_extension() API.
  */
  (void)sqlite3AutoLoadExtensions(db);
  if( sqlite3_errcode(db)!=SQLITE_OK ){
    goto opendb_out;
  }

#ifdef SQLITE_ENABLE_FTS1
  if( !db->mallocFailed ){
    extern int sqlite3Fts1Init(sqlite3*);
    rc = sqlite3Fts1Init(db);
  }
#endif

#ifdef SQLITE_ENABLE_FTS2
  if( !db->mallocFailed && rc==SQLITE_OK ){
    extern int sqlite3Fts2Init(sqlite3*);
    rc = sqlite3Fts2Init(db);
  }
#endif

#ifdef SQLITE_ENABLE_FTS3
  if( !db->mallocFailed && rc==SQLITE_OK ){
    extern int sqlite3Fts3Init(sqlite3*);
    rc = sqlite3Fts3Init(db);
  }
#endif

#ifdef SQLITE_ENABLE_ICU
  if( !db->mallocFailed && rc==SQLITE_OK ){
    extern int sqlite3IcuInit(sqlite3*);
    rc = sqlite3IcuInit(db);
  }
#endif
  sqlite3Error(db, rc, 0);

  /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking
  ** mode.  -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking
  ** mode.  Doing nothing at all also makes NORMAL the default.
  */
#ifdef SQLITE_DEFAULT_LOCKING_MODE
  db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE;
  sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt),
                          SQLITE_DEFAULT_LOCKING_MODE);
#endif

opendb_out:
  if( db && db->mutex ){
    sqlite3_mutex_leave(db->mutex);
  }
  if( SQLITE_NOMEM==(rc = sqlite3_errcode(db)) ){
    sqlite3_close(db);
    db = 0;
  }
  *ppDb = db;
  return sqlite3ApiExit(0, rc);
}
示例#22
0
文件: test8.c 项目: hj3938/sqlite
/*
** Retrieve the column names for the table named zTab via database
** connection db. SQLITE_OK is returned on success, or an sqlite error
** code otherwise.
**
** If successful, the number of columns is written to *pnCol. *paCol is
** set to point at sqlite3_malloc()'d space containing the array of
** nCol column names. The caller is responsible for calling sqlite3_free
** on *paCol.
*/
static int getColumnNames(
  sqlite3 *db, 
  const char *zTab,
  char ***paCol, 
  int *pnCol
){
  char **aCol = 0;
  char *zSql;
  sqlite3_stmt *pStmt = 0;
  int rc = SQLITE_OK;
  int nCol = 0;

  /* Prepare the statement "SELECT * FROM <tbl>". The column names
  ** of the result set of the compiled SELECT will be the same as
  ** the column names of table <tbl>.
  */
  zSql = sqlite3_mprintf("SELECT * FROM %Q", zTab);
  if( !zSql ){
    rc = SQLITE_NOMEM;
    goto out;
  }
  rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
  sqlite3_free(zSql);

  if( rc==SQLITE_OK ){
    int ii;
    int nBytes;
    char *zSpace;
    nCol = sqlite3_column_count(pStmt);

    /* Figure out how much space to allocate for the array of column names 
    ** (including space for the strings themselves). Then allocate it.
    */
    nBytes = sizeof(char *) * nCol;
    for(ii=0; ii<nCol; ii++){
      const char *zName = sqlite3_column_name(pStmt, ii);
      if( !zName ){
        rc = SQLITE_NOMEM;
        goto out;
      }
      nBytes += (int)strlen(zName)+1;
    }
    aCol = (char **)sqlite3MallocZero(nBytes);
    if( !aCol ){
      rc = SQLITE_NOMEM;
      goto out;
    }

    /* Copy the column names into the allocated space and set up the
    ** pointers in the aCol[] array.
    */
    zSpace = (char *)(&aCol[nCol]);
    for(ii=0; ii<nCol; ii++){
      aCol[ii] = zSpace;
      sqlite3_snprintf(nBytes, zSpace, "%s", sqlite3_column_name(pStmt,ii));
      zSpace += (int)strlen(zSpace) + 1;
    }
    assert( (zSpace-nBytes)==(char *)aCol );
  }

  *paCol = aCol;
  *pnCol = nCol;

out:
  sqlite3_finalize(pStmt);
  return rc;
}
示例#23
0
static int getIndexArray(
  sqlite3 *db,             
  const char *zTab,        
  int nCol,
  int **paIndex
){
  sqlite3_stmt *pStmt = 0;
  int *aIndex = 0;
  int rc;
  char *zSql;

  
  aIndex = (int *)sqlite3MallocZero(sizeof(int) * nCol);
  if( !aIndex ){
    rc = SQLITE_NOMEM;
    goto get_index_array_out;
  }

  
  zSql = sqlite3_mprintf("PRAGMA index_list(%s)", zTab);
  if( !zSql ){
    rc = SQLITE_NOMEM;
    goto get_index_array_out;
  }
  rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
  sqlite3_free(zSql);

  while( pStmt && sqlite3_step(pStmt)==SQLITE_ROW ){
    const char *zIdx = (const char *)sqlite3_column_text(pStmt, 1);
    sqlite3_stmt *pStmt2 = 0;
    zSql = sqlite3_mprintf("PRAGMA index_info(%s)", zIdx);
    if( !zSql ){
      rc = SQLITE_NOMEM;
      goto get_index_array_out;
    }
    rc = sqlite3_prepare(db, zSql, -1, &pStmt2, 0);
    sqlite3_free(zSql);
    if( pStmt2 && sqlite3_step(pStmt2)==SQLITE_ROW ){
      int cid = sqlite3_column_int(pStmt2, 1);
      assert( cid>=0 && cid<nCol );
      aIndex[cid] = 1;
    }
    if( pStmt2 ){
      rc = sqlite3_finalize(pStmt2);
    }
    if( rc!=SQLITE_OK ){
      goto get_index_array_out;
    }
  }


get_index_array_out:
  if( pStmt ){
    int rc2 = sqlite3_finalize(pStmt);
    if( rc==SQLITE_OK ){
      rc = rc2;
    }
  }
  if( rc!=SQLITE_OK ){
    sqlite3_free(aIndex);
    aIndex = 0;
  }
  *paIndex = aIndex;
  return rc;
}
示例#24
0
文件: test8.c 项目: hj3938/sqlite
/*
** Parameter zTab is the name of a table in database db with nCol 
** columns. This function allocates an array of integers nCol in 
** size and populates it according to any implicit or explicit 
** indices on table zTab.
**
** If successful, SQLITE_OK is returned and *paIndex set to point 
** at the allocated array. Otherwise, an error code is returned.
**
** See comments associated with the member variable aIndex above 
** "struct echo_vtab" for details of the contents of the array.
*/
static int getIndexArray(
  sqlite3 *db,             /* Database connection */
  const char *zTab,        /* Name of table in database db */
  int nCol,
  int **paIndex
){
  sqlite3_stmt *pStmt = 0;
  int *aIndex = 0;
  int rc;
  char *zSql;

  /* Allocate space for the index array */
  aIndex = (int *)sqlite3MallocZero(sizeof(int) * nCol);
  if( !aIndex ){
    rc = SQLITE_NOMEM;
    goto get_index_array_out;
  }

  /* Compile an sqlite pragma to loop through all indices on table zTab */
  zSql = sqlite3_mprintf("PRAGMA index_list(%s)", zTab);
  if( !zSql ){
    rc = SQLITE_NOMEM;
    goto get_index_array_out;
  }
  rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
  sqlite3_free(zSql);

  /* For each index, figure out the left-most column and set the 
  ** corresponding entry in aIndex[] to 1.
  */
  while( pStmt && sqlite3_step(pStmt)==SQLITE_ROW ){
    const char *zIdx = (const char *)sqlite3_column_text(pStmt, 1);
    sqlite3_stmt *pStmt2 = 0;
    if( zIdx==0 ) continue;
    zSql = sqlite3_mprintf("PRAGMA index_info(%s)", zIdx);
    if( !zSql ){
      rc = SQLITE_NOMEM;
      goto get_index_array_out;
    }
    rc = sqlite3_prepare(db, zSql, -1, &pStmt2, 0);
    sqlite3_free(zSql);
    if( pStmt2 && sqlite3_step(pStmt2)==SQLITE_ROW ){
      int cid = sqlite3_column_int(pStmt2, 1);
      assert( cid>=0 && cid<nCol );
      aIndex[cid] = 1;
    }
    if( pStmt2 ){
      rc = sqlite3_finalize(pStmt2);
    }
    if( rc!=SQLITE_OK ){
      goto get_index_array_out;
    }
  }


get_index_array_out:
  if( pStmt ){
    int rc2 = sqlite3_finalize(pStmt);
    if( rc==SQLITE_OK ){
      rc = rc2;
    }
  }
  if( rc!=SQLITE_OK ){
    sqlite3_free(aIndex);
    aIndex = 0;
  }
  *paIndex = aIndex;
  return rc;
}
示例#25
0
文件: test8.c 项目: hj3938/sqlite
/*
** This function is called to do the work of the xConnect() method -
** to allocate the required in-memory structures for a newly connected
** virtual table.
*/
static int echoConstructor(
  sqlite3 *db,
  void *pAux,
  int argc, const char *const*argv,
  sqlite3_vtab **ppVtab,
  char **pzErr
){
  int rc;
  int i;
  echo_vtab *pVtab;

  /* Allocate the sqlite3_vtab/echo_vtab structure itself */
  pVtab = sqlite3MallocZero( sizeof(*pVtab) );
  if( !pVtab ){
    return SQLITE_NOMEM;
  }
  pVtab->interp = ((EchoModule *)pAux)->interp;
  pVtab->db = db;

  /* Allocate echo_vtab.zThis */
  pVtab->zThis = sqlite3_mprintf("%s", argv[2]);
  if( !pVtab->zThis ){
    echoDestructor((sqlite3_vtab *)pVtab);
    return SQLITE_NOMEM;
  }

  /* Allocate echo_vtab.zTableName */
  if( argc>3 ){
    pVtab->zTableName = sqlite3_mprintf("%s", argv[3]);
    dequoteString(pVtab->zTableName);
    if( pVtab->zTableName && pVtab->zTableName[0]=='*' ){
      char *z = sqlite3_mprintf("%s%s", argv[2], &(pVtab->zTableName[1]));
      sqlite3_free(pVtab->zTableName);
      pVtab->zTableName = z;
      pVtab->isPattern = 1;
    }
    if( !pVtab->zTableName ){
      echoDestructor((sqlite3_vtab *)pVtab);
      return SQLITE_NOMEM;
    }
  }

  /* Log the arguments to this function to Tcl var ::echo_module */
  for(i=0; i<argc; i++){
    appendToEchoModule(pVtab->interp, argv[i]);
  }

  /* Invoke sqlite3_declare_vtab and set up other members of the echo_vtab
  ** structure. If an error occurs, delete the sqlite3_vtab structure and
  ** return an error code.
  */
  rc = echoDeclareVtab(pVtab, db);
  if( rc!=SQLITE_OK ){
    echoDestructor((sqlite3_vtab *)pVtab);
    return rc;
  }

  /* Success. Set *ppVtab and return */
  *ppVtab = &pVtab->base;
  return SQLITE_OK;
}
示例#26
0
/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it.  If it returns NULL
** that means that a mutex could not be allocated. 
** SQLite will unwind its stack and return an error.  The argument
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li>  SQLITE_MUTEX_FAST               0
** <li>  SQLITE_MUTEX_RECURSIVE          1
** <li>  SQLITE_MUTEX_STATIC_MASTER      2
** <li>  SQLITE_MUTEX_STATIC_MEM         3
** <li>  SQLITE_MUTEX_STATIC_PRNG        4
** </ul>
**
** The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to.  But SQLite will only request a recursive mutex in
** cases where it really needs one.  If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex.  Three static mutexes are
** used by the current version of SQLite.  Future versions of SQLite
** may add additional static mutexes.  Static mutexes are for internal
** use by SQLite only.  Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call.  But for the static
** mutex types, the same mutex is returned on every call that has
** the same type number.
*/
static sqlite3_mutex *os2MutexAlloc(int iType){
  sqlite3_mutex *p = NULL;
  switch( iType ){
    case SQLITE_MUTEX_FAST:
    case SQLITE_MUTEX_RECURSIVE: {
      p = sqlite3MallocZero( sizeof(*p) );
      if( p ){
        p->id = iType;
        if( DosCreateMutexSem( 0, &p->mutex, 0, FALSE ) != NO_ERROR ){
          sqlite3_free( p );
          p = NULL;
        }
      }
      break;
    }
    default: {
      static volatile int isInit = 0;
      static sqlite3_mutex staticMutexes[] = {
        { OS2_MUTEX_INITIALIZER, },
        { OS2_MUTEX_INITIALIZER, },
        { OS2_MUTEX_INITIALIZER, },
        { OS2_MUTEX_INITIALIZER, },
        { OS2_MUTEX_INITIALIZER, },
        { OS2_MUTEX_INITIALIZER, },
      };
      if ( !isInit ){
        APIRET rc;
        PTIB ptib;
        PPIB ppib;
        HMTX mutex;
        char name[32];
        DosGetInfoBlocks( &ptib, &ppib );
        sqlite3_snprintf( sizeof(name), name, "\\SEM32\\SQLITE%04x",
                          ppib->pib_ulpid );
        while( !isInit ){
          mutex = 0;
          rc = DosCreateMutexSem( name, &mutex, 0, FALSE);
          if( rc == NO_ERROR ){
            int i;
            if( !isInit ){
              for( i = 0; i < sizeof(staticMutexes)/sizeof(staticMutexes[0]); i++ ){
                DosCreateMutexSem( 0, &staticMutexes[i].mutex, 0, FALSE );
              }
              isInit = 1;
            }
            DosCloseMutexSem( mutex );
          }else if( rc == ERROR_DUPLICATE_NAME ){
            DosSleep( 1 );
          }else{
            return p;
          }
        }
      }
      assert( iType-2 >= 0 );
      assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
      p = &staticMutexes[iType-2];
      p->id = iType;
      break;
    }
  }
  return p;
}
示例#27
0
/*
** Create an sqlite3_backup process to copy the contents of zSrcDb from
** connection handle pSrcDb to zDestDb in pDestDb. If successful, return
** a pointer to the new sqlite3_backup object.
**
** If an error occurs, NULL is returned and an error code and error message
** stored in database handle pDestDb.
*/
sqlite3_backup *sqlite3_backup_init(
  sqlite3* pDestDb,                     /* Database to write to */
  const char *zDestDb,                  /* Name of database within pDestDb */
  sqlite3* pSrcDb,                      /* Database connection to read from */
  const char *zSrcDb                    /* Name of database within pSrcDb */
){
  sqlite3_backup *p;                    /* Value to return */

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(pSrcDb)||!sqlite3SafetyCheckOk(pDestDb) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif

/* BEGIN SQLCIPHER */
#ifdef SQLITE_HAS_CODEC
  {
    extern int sqlcipher_find_db_index(sqlite3*, const char*);
    extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*);
    int srcNKey, destNKey;
    void *zKey;

    sqlite3CodecGetKey(pSrcDb, sqlcipher_find_db_index(pSrcDb, zSrcDb), &zKey, &srcNKey);
    sqlite3CodecGetKey(pDestDb, sqlcipher_find_db_index(pDestDb, zDestDb), &zKey, &destNKey);
    zKey = NULL;

    if(srcNKey || destNKey) {
      sqlite3ErrorWithMsg(pDestDb, SQLITE_ERROR, "backup is not supported with encrypted databases");
      return NULL;
    }
  }
#endif
/* END SQLCIPHER */

  /* Lock the source database handle. The destination database
  ** handle is not locked in this routine, but it is locked in
  ** sqlite3_backup_step(). The user is required to ensure that no
  ** other thread accesses the destination handle for the duration
  ** of the backup operation.  Any attempt to use the destination
  ** database connection while a backup is in progress may cause
  ** a malfunction or a deadlock.
  */
  sqlite3_mutex_enter(pSrcDb->mutex);
  sqlite3_mutex_enter(pDestDb->mutex);

  if( pSrcDb==pDestDb ){
    sqlite3ErrorWithMsg(
        pDestDb, SQLITE_ERROR, "source and destination must be distinct"
    );
    p = 0;
  }else {
    /* Allocate space for a new sqlite3_backup object...
    ** EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a
    ** call to sqlite3_backup_init() and is destroyed by a call to
    ** sqlite3_backup_finish(). */
    p = (sqlite3_backup *)sqlite3MallocZero(sizeof(sqlite3_backup));
    if( !p ){
      sqlite3Error(pDestDb, SQLITE_NOMEM_BKPT);
    }
  }

  /* If the allocation succeeded, populate the new object. */
  if( p ){
    p->pSrc = findBtree(pDestDb, pSrcDb, zSrcDb);
    p->pDest = findBtree(pDestDb, pDestDb, zDestDb);
    p->pDestDb = pDestDb;
    p->pSrcDb = pSrcDb;
    p->iNext = 1;
    p->isAttached = 0;

    if( 0==p->pSrc || 0==p->pDest 
     || checkReadTransaction(pDestDb, p->pDest)!=SQLITE_OK 
     ){
      /* One (or both) of the named databases did not exist or an OOM
      ** error was hit. Or there is a transaction open on the destination
      ** database. The error has already been written into the pDestDb 
      ** handle. All that is left to do here is free the sqlite3_backup 
      ** structure.  */
      sqlite3_free(p);
      p = 0;
    }
  }
  if( p ){
    p->pSrc->nBackup++;
  }

  sqlite3_mutex_leave(pDestDb->mutex);
  sqlite3_mutex_leave(pSrcDb->mutex);
  return p;
}
示例#28
0
/*
** Attempt to read the database schema and initialize internal
** data structures for a single database file.  The index of the
** database file is given by iDb.  iDb==0 is used for the main
** database.  iDb==1 should never be used.  iDb>=2 is used for
** auxiliary databases.  Return one of the SQLITE_ error codes to
** indicate success or failure.
*/
static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
  int rc;
  BtCursor *curMain;
  int size;
  Table *pTab;
  Db *pDb;
  char const *azArg[4];
  int meta[10];
  InitData initData;
  char const *zMasterSchema;
  char const *zMasterName = SCHEMA_TABLE(iDb);

  /*
  ** The master database table has a structure like this
  */
  static const char master_schema[] = 
     "CREATE TABLE sqlite_master(\n"
     "  type text,\n"
     "  name text,\n"
     "  tbl_name text,\n"
     "  rootpage integer,\n"
     "  sql text\n"
     ")"
  ;
#ifndef SQLITE_OMIT_TEMPDB
  static const char temp_master_schema[] = 
     "CREATE TEMP TABLE sqlite_temp_master(\n"
     "  type text,\n"
     "  name text,\n"
     "  tbl_name text,\n"
     "  rootpage integer,\n"
     "  sql text\n"
     ")"
  ;
#else
  #define temp_master_schema 0
#endif

  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pSchema );
  assert( sqlite3_mutex_held(db->mutex) );
  assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );

  /* zMasterSchema and zInitScript are set to point at the master schema
  ** and initialisation script appropriate for the database being
  ** initialised. zMasterName is the name of the master table.
  */
  if( !OMIT_TEMPDB && iDb==1 ){
    zMasterSchema = temp_master_schema;
  }else{
    zMasterSchema = master_schema;
  }
  zMasterName = SCHEMA_TABLE(iDb);

  /* Construct the schema tables.  */
  azArg[0] = zMasterName;
  azArg[1] = "1";
  azArg[2] = zMasterSchema;
  azArg[3] = 0;
  initData.db = db;
  initData.iDb = iDb;
  initData.rc = SQLITE_OK;
  initData.pzErrMsg = pzErrMsg;
  (void)sqlite3SafetyOff(db);
  sqlite3InitCallback(&initData, 3, (char **)azArg, 0);
  (void)sqlite3SafetyOn(db);
  if( initData.rc ){
    rc = initData.rc;
    goto error_out;
  }
  pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName);
  if( pTab ){
    pTab->tabFlags |= TF_Readonly;
  }

  /* Create a cursor to hold the database open
  */
  pDb = &db->aDb[iDb];
  if( pDb->pBt==0 ){
    if( !OMIT_TEMPDB && iDb==1 ){
      DbSetProperty(db, 1, DB_SchemaLoaded);
    }
    return SQLITE_OK;
  }
  curMain = sqlite3MallocZero(sqlite3BtreeCursorSize());
  if( !curMain ){
    rc = SQLITE_NOMEM;
    goto error_out;
  }
  sqlite3BtreeEnter(pDb->pBt);
  rc = sqlite3BtreeCursor(pDb->pBt, MASTER_ROOT, 0, 0, curMain);
  if( rc!=SQLITE_OK && rc!=SQLITE_EMPTY ){
    sqlite3SetString(pzErrMsg, db, "%s", sqlite3ErrStr(rc));
    goto initone_error_out;
  }

  /* Get the database meta information.
  **
  ** Meta values are as follows:
  **    meta[0]   Schema cookie.  Changes with each schema change.
  **    meta[1]   File format of schema layer.
  **    meta[2]   Size of the page cache.
  **    meta[3]   Use freelist if 0.  Autovacuum if greater than zero.
  **    meta[4]   Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE
  **    meta[5]   The user cookie. Used by the application.
  **    meta[6]   Incremental-vacuum flag.
  **    meta[7]
  **    meta[8]
  **    meta[9]
  **
  ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to
  ** the possible values of meta[4].
  */
  if( rc==SQLITE_OK ){
    int i;
    for(i=0; i<ArraySize(meta); i++){
      rc = sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]);
      if( rc ){
        sqlite3SetString(pzErrMsg, db, "%s", sqlite3ErrStr(rc));
        goto initone_error_out;
      }
    }
  }else{
    memset(meta, 0, sizeof(meta));
  }
  pDb->pSchema->schema_cookie = meta[0];

  /* If opening a non-empty database, check the text encoding. For the
  ** main database, set sqlite3.enc to the encoding of the main database.
  ** For an attached db, it is an error if the encoding is not the same
  ** as sqlite3.enc.
  */
  if( meta[4] ){  /* text encoding */
    if( iDb==0 ){
      /* If opening the main database, set ENC(db). */
      ENC(db) = (u8)meta[4];
      db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0);
    }else{
      /* If opening an attached database, the encoding much match ENC(db) */
      if( meta[4]!=ENC(db) ){
        sqlite3SetString(pzErrMsg, db, "attached databases must use the same"
            " text encoding as main database");
        rc = SQLITE_ERROR;
        goto initone_error_out;
      }
    }
  }else{
    DbSetProperty(db, iDb, DB_Empty);
  }
  pDb->pSchema->enc = ENC(db);

  if( pDb->pSchema->cache_size==0 ){
    size = meta[2];
    if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; }
    if( size<0 ) size = -size;
    pDb->pSchema->cache_size = size;
    sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
  }

  /*
  ** file_format==1    Version 3.0.0.
  ** file_format==2    Version 3.1.3.  // ALTER TABLE ADD COLUMN
  ** file_format==3    Version 3.1.4.  // ditto but with non-NULL defaults
  ** file_format==4    Version 3.3.0.  // DESC indices.  Boolean constants
  */
  pDb->pSchema->file_format = (u8)meta[1];
  if( pDb->pSchema->file_format==0 ){
    pDb->pSchema->file_format = 1;
  }
  if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){
    sqlite3SetString(pzErrMsg, db, "unsupported file format");
    rc = SQLITE_ERROR;
    goto initone_error_out;
  }

  /* Ticket #2804:  When we open a database in the newer file format,
  ** clear the legacy_file_format pragma flag so that a VACUUM will
  ** not downgrade the database and thus invalidate any descending
  ** indices that the user might have created.
  */
  if( iDb==0 && meta[1]>=4 ){
    db->flags &= ~SQLITE_LegacyFileFmt;
  }

  /* Read the schema information out of the schema tables
  */
  assert( db->init.busy );
  if( rc==SQLITE_EMPTY ){
    /* For an empty database, there is nothing to read */
    rc = SQLITE_OK;
  }else{
    char *zSql;
    zSql = sqlite3MPrintf(db, 
        "SELECT name, rootpage, sql FROM '%q'.%s",
        db->aDb[iDb].zName, zMasterName);
    (void)sqlite3SafetyOff(db);
#ifndef SQLITE_OMIT_AUTHORIZATION
    {
      int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
      xAuth = db->xAuth;
      db->xAuth = 0;
#endif
      rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
#ifndef SQLITE_OMIT_AUTHORIZATION
      db->xAuth = xAuth;
    }
#endif
    if( rc==SQLITE_OK ) rc = initData.rc;
    (void)sqlite3SafetyOn(db);
    sqlite3DbFree(db, zSql);
#ifndef SQLITE_OMIT_ANALYZE
    if( rc==SQLITE_OK ){
      sqlite3AnalysisLoad(db, iDb);
    }
#endif
  }
  if( db->mallocFailed ){
    rc = SQLITE_NOMEM;
    sqlite3ResetInternalSchema(db, 0);
  }
  if( rc==SQLITE_OK || (db->flags&SQLITE_RecoveryMode)){
    /* Black magic: If the SQLITE_RecoveryMode flag is set, then consider
    ** the schema loaded, even if errors occurred. In this situation the 
    ** current sqlite3_prepare() operation will fail, but the following one
    ** will attempt to compile the supplied statement against whatever subset
    ** of the schema was loaded before the error occurred. The primary
    ** purpose of this is to allow access to the sqlite_master table
    ** even when its contents have been corrupted.
    */
    DbSetProperty(db, iDb, DB_SchemaLoaded);
    rc = SQLITE_OK;
  }

  /* Jump here for an error that occurs after successfully allocating
  ** curMain and calling sqlite3BtreeEnter(). For an error that occurs
  ** before that point, jump to error_out.
  */
initone_error_out:
  sqlite3BtreeCloseCursor(curMain);
  sqlite3_free(curMain);
  sqlite3BtreeLeave(pDb->pBt);

error_out:
  if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
    db->mallocFailed = 1;
  }
  return rc;
}
示例#29
0
/*
** Open a new tclvar cursor.
*/
static int tclvarOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
  tclvar_cursor *pCur;
  pCur = sqlite3MallocZero(sizeof(tclvar_cursor));
  *ppCursor = &pCur->base;
  return SQLITE_OK;
}
示例#30
0
文件: bitvec.c 项目: 0xr0ot/sqlcipher
/*
** This routine runs an extensive test of the Bitvec code.
**
** The input is an array of integers that acts as a program
** to test the Bitvec.  The integers are opcodes followed
** by 0, 1, or 3 operands, depending on the opcode.  Another
** opcode follows immediately after the last operand.
**
** There are 6 opcodes numbered from 0 through 5.  0 is the
** "halt" opcode and causes the test to end.
**
**    0          Halt and return the number of errors
**    1 N S X    Set N bits beginning with S and incrementing by X
**    2 N S X    Clear N bits beginning with S and incrementing by X
**    3 N        Set N randomly chosen bits
**    4 N        Clear N randomly chosen bits
**    5 N S X    Set N bits from S increment X in array only, not in bitvec
**
** The opcodes 1 through 4 perform set and clear operations are performed
** on both a Bitvec object and on a linear array of bits obtained from malloc.
** Opcode 5 works on the linear array only, not on the Bitvec.
** Opcode 5 is used to deliberately induce a fault in order to
** confirm that error detection works.
**
** At the conclusion of the test the linear array is compared
** against the Bitvec object.  If there are any differences,
** an error is returned.  If they are the same, zero is returned.
**
** If a memory allocation error occurs, return -1.
*/
int sqlite3BitvecBuiltinTest(int sz, int *aOp){
  Bitvec *pBitvec = 0;
  unsigned char *pV = 0;
  int rc = -1;
  int i, nx, pc, op;
  void *pTmpSpace;

  /* Allocate the Bitvec to be tested and a linear array of
  ** bits to act as the reference */
  pBitvec = sqlite3BitvecCreate( sz );
  pV = sqlite3MallocZero( (sz+7)/8 + 1 );
  pTmpSpace = sqlite3_malloc(BITVEC_SZ);
  if( pBitvec==0 || pV==0 || pTmpSpace==0  ) goto bitvec_end;

  /* NULL pBitvec tests */
  sqlite3BitvecSet(0, 1);
  sqlite3BitvecClear(0, 1, pTmpSpace);

  /* Run the program */
  pc = 0;
  while( (op = aOp[pc])!=0 ){
    switch( op ){
      case 1:
      case 2:
      case 5: {
        nx = 4;
        i = aOp[pc+2] - 1;
        aOp[pc+2] += aOp[pc+3];
        break;
      }
      case 3:
      case 4: 
      default: {
        nx = 2;
        sqlite3_randomness(sizeof(i), &i);
        break;
      }
    }
    if( (--aOp[pc+1]) > 0 ) nx = 0;
    pc += nx;
    i = (i & 0x7fffffff)%sz;
    if( (op & 1)!=0 ){
      SETBIT(pV, (i+1));
      if( op!=5 ){
        if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
      }
    }else{
      CLEARBIT(pV, (i+1));
      sqlite3BitvecClear(pBitvec, i+1, pTmpSpace);
    }
  }

  /* Test to make sure the linear array exactly matches the
  ** Bitvec object.  Start with the assumption that they do
  ** match (rc==0).  Change rc to non-zero if a discrepancy
  ** is found.
  */
  rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
          + sqlite3BitvecTest(pBitvec, 0)
          + (sqlite3BitvecSize(pBitvec) - sz);
  for(i=1; i<=sz; i++){
    if(  (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
      rc = i;
      break;
    }
  }

  /* Free allocated structure */
bitvec_end:
  sqlite3_free(pTmpSpace);
  sqlite3_free(pV);
  sqlite3BitvecDestroy(pBitvec);
  return rc;
}