示例#1
0
/*
** Compute the soundex encoding of a word.
**
** IMP: R-59782-00072 The soundex(X) function returns a string that is the
** soundex encoding of the string X. 
*/
static void soundexFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  char zResult[8];
  const u8 *zIn;
  int i, j;
  static const unsigned char iCode[] = {
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
    1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
    0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
    1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
  };
  assert( argc==1 );
  zIn = (u8*)sqlite3_value_text(argv[0]);
  if( zIn==0 ) zIn = (u8*)"";
  for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){}
  if( zIn[i] ){
    u8 prevcode = iCode[zIn[i]&0x7f];
    zResult[0] = sqlite3Toupper(zIn[i]);
    for(j=1; j<4 && zIn[i]; i++){
      int code = iCode[zIn[i]&0x7f];
      if( code>0 ){
        if( code!=prevcode ){
          prevcode = code;
          zResult[j++] = code + '0';
        }
      }else{
        prevcode = 0;
      }
    }
    while( j<4 ){
      zResult[j++] = '0';
    }
    zResult[j] = 0;
    sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
  }else{
    /* IMP: R-64894-50321 The string "?000" is returned if the argument
    ** is NULL or contains no ASCII alphabetic characters. */
    sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
  }
}
示例#2
0
/*
** Implementation of the upper() and lower() SQL functions.
*/
static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
  char *z1;
  const char *z2;
  int i, n;
  UNUSED_PARAMETER(argc);
  z2 = (char*)sqlite3_value_text(argv[0]);
  n = sqlite3_value_bytes(argv[0]);
  /* Verify that the call to _bytes() does not invalidate the _text() pointer */
  assert( z2==(char*)sqlite3_value_text(argv[0]) );
  if( z2 ){
    z1 = contextMalloc(context, ((i64)n)+1);
    if( z1 ){
      for(i=0; i<n; i++){
        z1[i] = (char)sqlite3Toupper(z2[i]);
      }
      sqlite3_result_text(context, z1, n, sqlite3_free);
    }
  }
}
示例#3
0
/*
** Run the parser on the given SQL string.  The parser structure is
** passed in.  An SQLITE_ status code is returned.  If an error occurs
** then an and attempt is made to write an error message into 
** memory obtained from sqlite3_malloc() and to make *pzErrMsg point to that
** error message.
*/
int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
  int nErr = 0;                   /* Number of errors encountered */
  void *pEngine;                  /* The LEMON-generated LALR(1) parser */
  int n = 0;                      /* Length of the next token token */
  int tokenType;                  /* type of the next token */
  int lastTokenParsed = -1;       /* type of the previous token */
  sqlite3 *db = pParse->db;       /* The database connection */
  int mxSqlLen;                   /* Max length of an SQL string */
#ifdef sqlite3Parser_ENGINEALWAYSONSTACK
  yyParser sEngine;    /* Space to hold the Lemon-generated Parser object */
#endif

  assert( zSql!=0 );
  mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
  if( db->nVdbeActive==0 ){
    db->u1.isInterrupted = 0;
  }
  pParse->rc = SQLITE_OK;
  pParse->zTail = zSql;
  assert( pzErrMsg!=0 );
#ifdef SQLITE_DEBUG
  if( db->flags & SQLITE_ParserTrace ){
    printf("parser: [[[%s]]]\n", zSql);
    sqlite3ParserTrace(stdout, "parser: ");
  }else{
    sqlite3ParserTrace(0, 0);
  }
#endif
#ifdef sqlite3Parser_ENGINEALWAYSONSTACK
  pEngine = &sEngine;
  sqlite3ParserInit(pEngine, pParse);
#else
  pEngine = sqlite3ParserAlloc(sqlite3Malloc, pParse);
  if( pEngine==0 ){
    sqlite3OomFault(db);
    return SQLITE_NOMEM_BKPT;
  }
#endif
  assert( pParse->pNewTable==0 );
  assert( pParse->pNewTrigger==0 );
  assert( pParse->nVar==0 );
  assert( pParse->pVList==0 );
  while( 1 ){
    n = sqlite3GetToken((u8*)zSql, &tokenType);
    mxSqlLen -= n;
    if( mxSqlLen<0 ){
      pParse->rc = SQLITE_TOOBIG;
      break;
    }
#ifndef SQLITE_OMIT_WINDOWFUNC
    if( tokenType>=TK_WINDOW ){
      assert( tokenType==TK_SPACE || tokenType==TK_OVER || tokenType==TK_FILTER
           || tokenType==TK_ILLEGAL || tokenType==TK_WINDOW 
      );
#else
    if( tokenType>=TK_SPACE ){
      assert( tokenType==TK_SPACE || tokenType==TK_ILLEGAL );
#endif /* SQLITE_OMIT_WINDOWFUNC */
      if( db->u1.isInterrupted ){
        pParse->rc = SQLITE_INTERRUPT;
        break;
      }
      if( tokenType==TK_SPACE ){
        zSql += n;
        continue;
      }
      if( zSql[0]==0 ){
        /* Upon reaching the end of input, call the parser two more times
        ** with tokens TK_SEMI and 0, in that order. */
        if( lastTokenParsed==TK_SEMI ){
          tokenType = 0;
        }else if( lastTokenParsed==0 ){
          break;
        }else{
          tokenType = TK_SEMI;
        }
        n = 0;
#ifndef SQLITE_OMIT_WINDOWFUNC
      }else if( tokenType==TK_WINDOW ){
        assert( n==6 );
        tokenType = analyzeWindowKeyword((const u8*)&zSql[6]);
      }else if( tokenType==TK_OVER ){
        assert( n==4 );
        tokenType = analyzeOverKeyword((const u8*)&zSql[4], lastTokenParsed);
      }else if( tokenType==TK_FILTER ){
        assert( n==6 );
        tokenType = analyzeFilterKeyword((const u8*)&zSql[6], lastTokenParsed);
#endif /* SQLITE_OMIT_WINDOWFUNC */
      }else{
        sqlite3ErrorMsg(pParse, "unrecognized token: \"%.*s\"", n, zSql);
        break;
      }
    }
    pParse->sLastToken.z = zSql;
    pParse->sLastToken.n = n;
    sqlite3Parser(pEngine, tokenType, pParse->sLastToken);
    lastTokenParsed = tokenType;
    zSql += n;
    if( pParse->rc!=SQLITE_OK || db->mallocFailed ) break;
  }
  assert( nErr==0 );
#ifdef YYTRACKMAXSTACKDEPTH
  sqlite3_mutex_enter(sqlite3MallocMutex());
  sqlite3StatusHighwater(SQLITE_STATUS_PARSER_STACK,
      sqlite3ParserStackPeak(pEngine)
  );
  sqlite3_mutex_leave(sqlite3MallocMutex());
#endif /* YYDEBUG */
#ifdef sqlite3Parser_ENGINEALWAYSONSTACK
  sqlite3ParserFinalize(pEngine);
#else
  sqlite3ParserFree(pEngine, sqlite3_free);
#endif
  if( db->mallocFailed ){
    pParse->rc = SQLITE_NOMEM_BKPT;
  }
  if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
    pParse->zErrMsg = sqlite3MPrintf(db, "%s", sqlite3ErrStr(pParse->rc));
  }
  assert( pzErrMsg!=0 );
  if( pParse->zErrMsg ){
    *pzErrMsg = pParse->zErrMsg;
    sqlite3_log(pParse->rc, "%s in \"%s\"", 
                *pzErrMsg, pParse->zTail);
    pParse->zErrMsg = 0;
    nErr++;
  }
  pParse->zTail = zSql;
  if( pParse->pVdbe && pParse->nErr>0 && pParse->nested==0 ){
    sqlite3VdbeDelete(pParse->pVdbe);
    pParse->pVdbe = 0;
  }
#ifndef SQLITE_OMIT_SHARED_CACHE
  if( pParse->nested==0 ){
    sqlite3DbFree(db, pParse->aTableLock);
    pParse->aTableLock = 0;
    pParse->nTableLock = 0;
  }
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
  sqlite3_free(pParse->apVtabLock);
#endif

  if( !IN_SPECIAL_PARSE ){
    /* If the pParse->declareVtab flag is set, do not delete any table 
    ** structure built up in pParse->pNewTable. The calling code (see vtab.c)
    ** will take responsibility for freeing the Table structure.
    */
    sqlite3DeleteTable(db, pParse->pNewTable);
  }
  if( !IN_RENAME_OBJECT ){
    sqlite3DeleteTrigger(db, pParse->pNewTrigger);
  }

  if( pParse->pWithToFree ) sqlite3WithDelete(db, pParse->pWithToFree);
  sqlite3DbFree(db, pParse->pVList);
  while( pParse->pAinc ){
    AutoincInfo *p = pParse->pAinc;
    pParse->pAinc = p->pNext;
    sqlite3DbFreeNN(db, p);
  }
  while( pParse->pZombieTab ){
    Table *p = pParse->pZombieTab;
    pParse->pZombieTab = p->pNextZombie;
    sqlite3DeleteTable(db, p);
  }
  assert( nErr==0 || pParse->rc!=SQLITE_OK );
  return nErr;
}


#ifdef SQLITE_ENABLE_NORMALIZE
/*
** Insert a single space character into pStr if the current string
** ends with an identifier
*/
static void addSpaceSeparator(sqlite3_str *pStr){
  if( pStr->nChar && sqlite3IsIdChar(pStr->zText[pStr->nChar-1]) ){
    sqlite3_str_append(pStr, " ", 1);
  }
}

/*
** Compute a normalization of the SQL given by zSql[0..nSql-1].  Return
** the normalization in space obtained from sqlite3DbMalloc().  Or return
** NULL if anything goes wrong or if zSql is NULL.
*/
char *sqlite3Normalize(
  Vdbe *pVdbe,       /* VM being reprepared */
  const char *zSql   /* The original SQL string */
){
  sqlite3 *db;       /* The database connection */
  int i;             /* Next unread byte of zSql[] */
  int n;             /* length of current token */
  int tokenType;     /* type of current token */
  int prevType = 0;  /* Previous non-whitespace token */
  int nParen;        /* Number of nested levels of parentheses */
  int iStartIN;      /* Start of RHS of IN operator in z[] */
  int nParenAtIN;    /* Value of nParent at start of RHS of IN operator */
  int j;             /* Bytes of normalized SQL generated so far */
  sqlite3_str *pStr; /* The normalized SQL string under construction */

  db = sqlite3VdbeDb(pVdbe);
  tokenType = -1;
  nParen = iStartIN = nParenAtIN = 0;
  pStr = sqlite3_str_new(db);
  assert( pStr!=0 );  /* sqlite3_str_new() never returns NULL */
  for(i=0; zSql[i] && pStr->accError==0; i+=n){
    if( tokenType!=TK_SPACE ){
      prevType = tokenType;
    }
    n = sqlite3GetToken((unsigned char*)zSql+i, &tokenType);
    if( NEVER(n<=0) ) break;
    switch( tokenType ){
      case TK_SPACE: {
        break;
      }
      case TK_NULL: {
        if( prevType==TK_IS || prevType==TK_NOT ){
          sqlite3_str_append(pStr, " NULL", 5);
          break;
        }
        /* Fall through */
      }
      case TK_STRING:
      case TK_INTEGER:
      case TK_FLOAT:
      case TK_VARIABLE:
      case TK_BLOB: {
        sqlite3_str_append(pStr, "?", 1);
        break;
      }
      case TK_LP: {
        nParen++;
        if( prevType==TK_IN ){
          iStartIN = pStr->nChar;
          nParenAtIN = nParen;
        }
        sqlite3_str_append(pStr, "(", 1);
        break;
      }
      case TK_RP: {
        if( iStartIN>0 && nParen==nParenAtIN ){
          assert( pStr->nChar>=iStartIN );
          pStr->nChar = iStartIN+1;
          sqlite3_str_append(pStr, "?,?,?", 5);
          iStartIN = 0;
        }
        nParen--;
        sqlite3_str_append(pStr, ")", 1);
        break;
      }
      case TK_ID: {
        iStartIN = 0;
        j = pStr->nChar;
        if( sqlite3Isquote(zSql[i]) ){
          char *zId = sqlite3DbStrNDup(db, zSql+i, n);
          int nId;
          int eType = 0;
          if( zId==0 ) break;
          sqlite3Dequote(zId);
          if( zSql[i]=='"' && sqlite3VdbeUsesDoubleQuotedString(pVdbe, zId) ){
            sqlite3_str_append(pStr, "?", 1);
            sqlite3DbFree(db, zId);
            break;
          }
          nId = sqlite3Strlen30(zId);
          if( sqlite3GetToken((u8*)zId, &eType)==nId && eType==TK_ID ){
            addSpaceSeparator(pStr);
            sqlite3_str_append(pStr, zId, nId);
          }else{
            sqlite3_str_appendf(pStr, "\"%w\"", zId);
          }
          sqlite3DbFree(db, zId);
        }else{
          addSpaceSeparator(pStr);
          sqlite3_str_append(pStr, zSql+i, n);
        }
        while( j<pStr->nChar ){
          pStr->zText[j] = sqlite3Tolower(pStr->zText[j]);
          j++;
        }
        break;
      }
      case TK_SELECT: {
        iStartIN = 0;
        /* fall through */
      }
      default: {
        if( sqlite3IsIdChar(zSql[i]) ) addSpaceSeparator(pStr);
        j = pStr->nChar;
        sqlite3_str_append(pStr, zSql+i, n);
        while( j<pStr->nChar ){
          pStr->zText[j] = sqlite3Toupper(pStr->zText[j]);
          j++;
        }
        break;
      }
    }
  }
  if( tokenType!=TK_SEMI ) sqlite3_str_append(pStr, ";", 1);
  return sqlite3_str_finish(pStr);
}
示例#4
0
/*
** The input to this routine is an WhereTerm structure with only the
** "pExpr" field filled in.  The job of this routine is to analyze the
** subexpression and populate all the other fields of the WhereTerm
** structure.
**
** If the expression is of the form "<expr> <op> X" it gets commuted
** to the standard form of "X <op> <expr>".
**
** If the expression is of the form "X <op> Y" where both X and Y are
** columns, then the original expression is unchanged and a new virtual
** term of the form "Y <op> X" is added to the WHERE clause and
** analyzed separately.  The original term is marked with TERM_COPIED
** and the new term is marked with TERM_DYNAMIC (because it's pExpr
** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
** is a commuted copy of a prior term.)  The original term has nChild=1
** and the copy has idxParent set to the index of the original term.
*/
static void exprAnalyze(
  SrcList *pSrc,            /* the FROM clause */
  WhereClause *pWC,         /* the WHERE clause */
  int idxTerm               /* Index of the term to be analyzed */
){
  WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
  WhereTerm *pTerm;                /* The term to be analyzed */
  WhereMaskSet *pMaskSet;          /* Set of table index masks */
  Expr *pExpr;                     /* The expression to be analyzed */
  Bitmask prereqLeft;              /* Prerequesites of the pExpr->pLeft */
  Bitmask prereqAll;               /* Prerequesites of pExpr */
  Bitmask extraRight = 0;          /* Extra dependencies on LEFT JOIN */
  Expr *pStr1 = 0;                 /* RHS of LIKE/GLOB operator */
  int isComplete = 0;              /* RHS of LIKE/GLOB ends with wildcard */
  int noCase = 0;                  /* uppercase equivalent to lowercase */
  int op;                          /* Top-level operator.  pExpr->op */
  Parse *pParse = pWInfo->pParse;  /* Parsing context */
  sqlite3 *db = pParse->db;        /* Database connection */

  if( db->mallocFailed ){
    return;
  }
  pTerm = &pWC->a[idxTerm];
  pMaskSet = &pWInfo->sMaskSet;
  pExpr = pTerm->pExpr;
  assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE );
  prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft);
  op = pExpr->op;
  if( op==TK_IN ){
    assert( pExpr->pRight==0 );
    if( ExprHasProperty(pExpr, EP_xIsSelect) ){
      pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect);
    }else{
      pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList);
    }
  }else if( op==TK_ISNULL ){
    pTerm->prereqRight = 0;
  }else{
    pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight);
  }
  prereqAll = sqlite3WhereExprUsage(pMaskSet, pExpr);
  if( ExprHasProperty(pExpr, EP_FromJoin) ){
    Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable);
    prereqAll |= x;
    extraRight = x-1;  /* ON clause terms may not be used with an index
                       ** on left table of a LEFT JOIN.  Ticket #3015 */
  }
  pTerm->prereqAll = prereqAll;
  pTerm->leftCursor = -1;
  pTerm->iParent = -1;
  pTerm->eOperator = 0;
  if( allowedOp(op) ){
    Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
    Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);
    u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV;
    if( pLeft->op==TK_COLUMN ){
      pTerm->leftCursor = pLeft->iTable;
      pTerm->u.leftColumn = pLeft->iColumn;
      pTerm->eOperator = operatorMask(op) & opMask;
    }
    if( op==TK_IS ) pTerm->wtFlags |= TERM_IS;
    if( pRight && pRight->op==TK_COLUMN ){
      WhereTerm *pNew;
      Expr *pDup;
      u16 eExtraOp = 0;        /* Extra bits for pNew->eOperator */
      if( pTerm->leftCursor>=0 ){
        int idxNew;
        pDup = sqlite3ExprDup(db, pExpr, 0);
        if( db->mallocFailed ){
          sqlite3ExprDelete(db, pDup);
          return;
        }
        idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
        if( idxNew==0 ) return;
        pNew = &pWC->a[idxNew];
        markTermAsChild(pWC, idxNew, idxTerm);
        if( op==TK_IS ) pNew->wtFlags |= TERM_IS;
        pTerm = &pWC->a[idxTerm];
        pTerm->wtFlags |= TERM_COPIED;

        if( termIsEquivalence(pParse, pDup) ){
          pTerm->eOperator |= WO_EQUIV;
          eExtraOp = WO_EQUIV;
        }
      }else{
        pDup = pExpr;
        pNew = pTerm;
      }
      exprCommute(pParse, pDup);
      pLeft = sqlite3ExprSkipCollate(pDup->pLeft);
      pNew->leftCursor = pLeft->iTable;
      pNew->u.leftColumn = pLeft->iColumn;
      testcase( (prereqLeft | extraRight) != prereqLeft );
      pNew->prereqRight = prereqLeft | extraRight;
      pNew->prereqAll = prereqAll;
      pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask;
    }
  }

#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
  /* If a term is the BETWEEN operator, create two new virtual terms
  ** that define the range that the BETWEEN implements.  For example:
  **
  **      a BETWEEN b AND c
  **
  ** is converted into:
  **
  **      (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
  **
  ** The two new terms are added onto the end of the WhereClause object.
  ** The new terms are "dynamic" and are children of the original BETWEEN
  ** term.  That means that if the BETWEEN term is coded, the children are
  ** skipped.  Or, if the children are satisfied by an index, the original
  ** BETWEEN term is skipped.
  */
  else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
    ExprList *pList = pExpr->x.pList;
    int i;
    static const u8 ops[] = {TK_GE, TK_LE};
    assert( pList!=0 );
    assert( pList->nExpr==2 );
    for(i=0; i<2; i++){
      Expr *pNewExpr;
      int idxNew;
      pNewExpr = sqlite3PExpr(pParse, ops[i], 
                             sqlite3ExprDup(db, pExpr->pLeft, 0),
                             sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
      transferJoinMarkings(pNewExpr, pExpr);
      idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
      testcase( idxNew==0 );
      exprAnalyze(pSrc, pWC, idxNew);
      pTerm = &pWC->a[idxTerm];
      markTermAsChild(pWC, idxNew, idxTerm);
    }
  }
#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */

#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
  /* Analyze a term that is composed of two or more subterms connected by
  ** an OR operator.
  */
  else if( pExpr->op==TK_OR ){
    assert( pWC->op==TK_AND );
    exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
    pTerm = &pWC->a[idxTerm];
  }
#endif /* SQLITE_OMIT_OR_OPTIMIZATION */

#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
  /* Add constraints to reduce the search space on a LIKE or GLOB
  ** operator.
  **
  ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints
  **
  **          x>='ABC' AND x<'abd' AND x LIKE 'aBc%'
  **
  ** The last character of the prefix "abc" is incremented to form the
  ** termination condition "abd".  If case is not significant (the default
  ** for LIKE) then the lower-bound is made all uppercase and the upper-
  ** bound is made all lowercase so that the bounds also work when comparing
  ** BLOBs.
  */
  if( pWC->op==TK_AND 
   && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
  ){
    Expr *pLeft;       /* LHS of LIKE/GLOB operator */
    Expr *pStr2;       /* Copy of pStr1 - RHS of LIKE/GLOB operator */
    Expr *pNewExpr1;
    Expr *pNewExpr2;
    int idxNew1;
    int idxNew2;
    const char *zCollSeqName;     /* Name of collating sequence */
    const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC;

    pLeft = pExpr->x.pList->a[1].pExpr;
    pStr2 = sqlite3ExprDup(db, pStr1, 0);

    /* Convert the lower bound to upper-case and the upper bound to
    ** lower-case (upper-case is less than lower-case in ASCII) so that
    ** the range constraints also work for BLOBs
    */
    if( noCase && !pParse->db->mallocFailed ){
      int i;
      char c;
      pTerm->wtFlags |= TERM_LIKE;
      for(i=0; (c = pStr1->u.zToken[i])!=0; i++){
        pStr1->u.zToken[i] = sqlite3Toupper(c);
        pStr2->u.zToken[i] = sqlite3Tolower(c);
      }
    }

    if( !db->mallocFailed ){
      u8 c, *pC;       /* Last character before the first wildcard */
      pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
      c = *pC;
      if( noCase ){
        /* The point is to increment the last character before the first
        ** wildcard.  But if we increment '@', that will push it into the
        ** alphabetic range where case conversions will mess up the 
        ** inequality.  To avoid this, make sure to also run the full
        ** LIKE on all candidate expressions by clearing the isComplete flag
        */
        if( c=='A'-1 ) isComplete = 0;
        c = sqlite3UpperToLower[c];
      }
      *pC = c + 1;
    }
    zCollSeqName = noCase ? "NOCASE" : "BINARY";
    pNewExpr1 = sqlite3ExprDup(db, pLeft, 0);
    pNewExpr1 = sqlite3PExpr(pParse, TK_GE,
           sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName),
           pStr1, 0);
    transferJoinMarkings(pNewExpr1, pExpr);
    idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags);
    testcase( idxNew1==0 );
    exprAnalyze(pSrc, pWC, idxNew1);
    pNewExpr2 = sqlite3ExprDup(db, pLeft, 0);
    pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
           sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName),
           pStr2, 0);
    transferJoinMarkings(pNewExpr2, pExpr);
    idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags);
    testcase( idxNew2==0 );
    exprAnalyze(pSrc, pWC, idxNew2);
    pTerm = &pWC->a[idxTerm];
    if( isComplete ){
      markTermAsChild(pWC, idxNew1, idxTerm);
      markTermAsChild(pWC, idxNew2, idxTerm);
    }
  }
#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */

#ifndef SQLITE_OMIT_VIRTUALTABLE
  /* Add a WO_MATCH auxiliary term to the constraint set if the
  ** current expression is of the form:  column MATCH expr.
  ** This information is used by the xBestIndex methods of
  ** virtual tables.  The native query optimizer does not attempt
  ** to do anything with MATCH functions.
  */
  if( isMatchOfColumn(pExpr) ){
    int idxNew;
    Expr *pRight, *pLeft;
    WhereTerm *pNewTerm;
    Bitmask prereqColumn, prereqExpr;

    pRight = pExpr->x.pList->a[0].pExpr;
    pLeft = pExpr->x.pList->a[1].pExpr;
    prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight);
    prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft);
    if( (prereqExpr & prereqColumn)==0 ){
      Expr *pNewExpr;
      pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 
                              0, sqlite3ExprDup(db, pRight, 0), 0);
      idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
      testcase( idxNew==0 );
      pNewTerm = &pWC->a[idxNew];
      pNewTerm->prereqRight = prereqExpr;
      pNewTerm->leftCursor = pLeft->iTable;
      pNewTerm->u.leftColumn = pLeft->iColumn;
      pNewTerm->eOperator = WO_MATCH;
      markTermAsChild(pWC, idxNew, idxTerm);
      pTerm = &pWC->a[idxTerm];
      pTerm->wtFlags |= TERM_COPIED;
      pNewTerm->prereqAll = pTerm->prereqAll;
    }
  }
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  /* When sqlite_stat3 histogram data is available an operator of the
  ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
  ** as "x>NULL" if x is not an INTEGER PRIMARY KEY.  So construct a
  ** virtual term of that form.
  **
  ** Note that the virtual term must be tagged with TERM_VNULL.
  */
  if( pExpr->op==TK_NOTNULL
   && pExpr->pLeft->op==TK_COLUMN
   && pExpr->pLeft->iColumn>=0
   && OptimizationEnabled(db, SQLITE_Stat34)
  ){
    Expr *pNewExpr;
    Expr *pLeft = pExpr->pLeft;
    int idxNew;
    WhereTerm *pNewTerm;

    pNewExpr = sqlite3PExpr(pParse, TK_GT,
                            sqlite3ExprDup(db, pLeft, 0),
                            sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0);

    idxNew = whereClauseInsert(pWC, pNewExpr,
                              TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
    if( idxNew ){
      pNewTerm = &pWC->a[idxNew];
      pNewTerm->prereqRight = 0;
      pNewTerm->leftCursor = pLeft->iTable;
      pNewTerm->u.leftColumn = pLeft->iColumn;
      pNewTerm->eOperator = WO_GT;
      markTermAsChild(pWC, idxNew, idxTerm);
      pTerm = &pWC->a[idxTerm];
      pTerm->wtFlags |= TERM_COPIED;
      pNewTerm->prereqAll = pTerm->prereqAll;
    }
  }
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */

  /* Prevent ON clause terms of a LEFT JOIN from being used to drive
  ** an index for tables to the left of the join.
  */
  pTerm->prereqRight |= extraRight;
}