/* ** This routine checks for a byte-order mark at the beginning of the ** UTF-16 string stored in *pMem. If one is present, it is removed and ** the encoding of the Mem adjusted. This routine does not do any ** byte-swapping, it just sets Mem.enc appropriately. ** ** The allocation (static, dynamic etc.) and encoding of the Mem may be ** changed by this function. */ int sqlite3VdbeMemHandleBom(Mem *pMem){ int rc = SQLITE_OK; u8 bom = 0; if( pMem->n<0 || pMem->n>1 ){ u8 b1 = *(u8 *)pMem->z; u8 b2 = *(((u8 *)pMem->z) + 1); if( b1==0xFE && b2==0xFF ){ bom = SQLITE_UTF16BE; } if( b1==0xFF && b2==0xFE ){ bom = SQLITE_UTF16LE; } } if( bom ){ rc = sqlite3VdbeMemMakeWriteable(pMem); if( rc==SQLITE_OK ){ pMem->n -= 2; memmove(pMem->z, &pMem->z[2], pMem->n); pMem->z[pMem->n] = '\0'; pMem->z[pMem->n+1] = '\0'; pMem->flags |= MEM_Term; pMem->enc = bom; } } return rc; }
/* This function is only available internally, it is not part of the ** external API. It works in a similar way to sqlite3_value_text(), ** except the data returned is in the encoding specified by the second ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or ** SQLITE_UTF8. ** ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. ** If that is the case, then the result must be aligned on an even byte ** boundary. */ const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ if( !pVal ) return 0; assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); if( pVal->flags&MEM_Null ){ return 0; } assert( (MEM_Blob>>3) == MEM_Str ); pVal->flags |= (pVal->flags & MEM_Blob)>>3; expandBlob(pVal); if( pVal->flags&MEM_Str ){ sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ return 0; } } sqlite3VdbeMemNulTerminate(pVal); }else{ assert( (pVal->flags&MEM_Blob)==0 ); sqlite3VdbeMemStringify(pVal, enc); assert( 0==(1&(int)pVal->z) ); } assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 || pVal->db->mallocFailed ); if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ return pVal->z; }else{ return 0; } }
/* ** Make sure the given Mem is \u0000 terminated. */ int sqlite3VdbeMemNulTerminate(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){ return SQLITE_OK; /* Nothing to do */ } if( pMem->flags & (MEM_Static|MEM_Ephem) ){ return sqlite3VdbeMemMakeWriteable(pMem); }else{ char *z; sqlite3VdbeMemExpandBlob(pMem); z = sqlite3DbMallocRaw(pMem->db, pMem->n+2); if( !z ){ return SQLITE_NOMEM; } memcpy(z, pMem->z, pMem->n); z[pMem->n] = 0; z[pMem->n+1] = 0; if( pMem->xDel ){ pMem->xDel(pMem->z); }else{ sqlite3_free(pMem->z); } pMem->xDel = 0; pMem->z = z; pMem->flags |= MEM_Term; } return SQLITE_OK; }
/* ** Make sure the given Mem is \u0000 terminated. */ int sqlite3VdbeMemNulTerminate(Mem *pMem) { /* In SQLite, a string without a nul terminator occurs when a string ** is loaded from disk (in this case the memory management is ephemeral), ** or when it is supplied by the user as a bound variable or function ** return value. Therefore, the memory management of the string must be ** either ephemeral, static or controlled by a user-supplied destructor. */ assert( !(pMem->flags&MEM_Str) || /* it's not a string, or */ (pMem->flags&MEM_Term) || /* it's nul term. already, or */ (pMem->flags&(MEM_Ephem|MEM_Static)) || /* it's static or ephem, or */ (pMem->flags&MEM_Dyn && pMem->xDel) /* external management */ ); if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ) { return SQLITE_OK; /* Nothing to do */ } if( pMem->flags & (MEM_Static|MEM_Ephem) ) { return sqlite3VdbeMemMakeWriteable(pMem); } else { char *z = sqliteMalloc(pMem->n+2); if( !z ) return SQLITE_NOMEM; memcpy(z, pMem->z, pMem->n); z[pMem->n] = 0; z[pMem->n+1] = 0; pMem->xDel(pMem->z); pMem->xDel = 0; pMem->z = z; } return SQLITE_OK; }
/* ** Make a full copy of pFrom into pTo. Prior contents of pTo are ** freed before the copy is made. */ int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ int rc; if( pTo->flags & MEM_Dyn ){ sqlite3VdbeMemRelease(pTo); } sqlite3VdbeMemShallowCopy(pTo, pFrom, MEM_Ephem); if( pTo->flags & MEM_Ephem ){ rc = sqlite3VdbeMemMakeWriteable(pTo); }else{ rc = SQLITE_OK; } return rc; }
/* ** Make a full copy of pFrom into pTo. Prior contents of pTo are ** freed before the copy is made. */ int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ int rc = SQLITE_OK; sqlite3VdbeMemReleaseExternal(pTo); memcpy(pTo, pFrom, MEMCELLSIZE); pTo->flags &= ~MEM_Dyn; if( pTo->flags&(MEM_Str|MEM_Blob) ){ if( 0==(pFrom->flags&MEM_Static) ){ pTo->flags |= MEM_Ephem; rc = sqlite3VdbeMemMakeWriteable(pTo); } } return rc; }
/* ** Transfer the contents of pFrom to pTo. Any existing value in pTo is ** freed. If pFrom contains ephemeral data, a copy is made. ** ** pFrom contains an SQL NULL when this routine returns. SQLITE_NOMEM ** might be returned if pFrom held ephemeral data and we were unable ** to allocate enough space to make a copy. */ int sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom) { int rc; if( pTo->flags & MEM_Dyn ) { sqlite3VdbeMemRelease(pTo); } memcpy(pTo, pFrom, sizeof(Mem)); if( pFrom->flags & MEM_Short ) { pTo->z = pTo->zShort; } pFrom->flags = MEM_Null; pFrom->xDel = 0; if( pTo->flags & MEM_Ephem ) { rc = sqlite3VdbeMemMakeWriteable(pTo); } else { rc = SQLITE_OK; } return rc; }
/* Make a copy of an sqlite3_value object */ sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ sqlite3_value *pNew; if( pOrig==0 ) return 0; pNew = sqlite3_malloc( sizeof(*pNew) ); if( pNew==0 ) return 0; memset(pNew, 0, sizeof(*pNew)); memcpy(pNew, pOrig, MEMCELLSIZE); pNew->flags &= ~MEM_Dyn; pNew->db = 0; if( pNew->flags&(MEM_Str|MEM_Blob) ){ pNew->flags &= ~(MEM_Static|MEM_Dyn); pNew->flags |= MEM_Ephem; if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ sqlite3ValueFree(pNew); pNew = 0; } } return pNew; }
/* ** Make sure the given Mem is \u0000 terminated. */ int sqlite3VdbeMemNulTerminate(Mem *pMem){ if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){ return SQLITE_OK; /* Nothing to do */ } if( pMem->flags & (MEM_Static|MEM_Ephem) ){ return sqlite3VdbeMemMakeWriteable(pMem); }else{ char *z = sqliteMalloc(pMem->n+2); if( !z ) return SQLITE_NOMEM; memcpy(z, pMem->z, pMem->n); z[pMem->n] = 0; z[pMem->n+1] = 0; if( pMem->xDel ){ pMem->xDel(pMem->z); }else{ sqliteFree(pMem->z); } pMem->xDel = 0; pMem->z = z; pMem->flags |= MEM_Term; } return SQLITE_OK; }
/* ** This routine transforms the internal text encoding used by pMem to ** desiredEnc. It is an error if the string is already of the desired ** encoding, or if *pMem does not contain a string value. */ int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){ unsigned char zShort[NBFS]; /* Temporary short output buffer */ int len; /* Maximum length of output string in bytes */ unsigned char *zOut; /* Output buffer */ unsigned char *zIn; /* Input iterator */ unsigned char *zTerm; /* End of input */ unsigned char *z; /* Output iterator */ unsigned int c; assert( pMem->flags&MEM_Str ); assert( pMem->enc!=desiredEnc ); assert( pMem->enc!=0 ); assert( pMem->n>=0 ); #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) { char zBuf[100]; sqlite3VdbeMemPrettyPrint(pMem, zBuf); fprintf(stderr, "INPUT: %s\n", zBuf); } #endif /* If the translation is between UTF-16 little and big endian, then ** all that is required is to swap the byte order. This case is handled ** differently from the others. */ if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){ u8 temp; int rc; rc = sqlite3VdbeMemMakeWriteable(pMem); if( rc!=SQLITE_OK ){ assert( rc==SQLITE_NOMEM ); return SQLITE_NOMEM; } zIn = (u8*)pMem->z; zTerm = &zIn[pMem->n]; while( zIn<zTerm ){ temp = *zIn; *zIn = *(zIn+1); zIn++; *zIn++ = temp; } pMem->enc = desiredEnc; goto translate_out; } /* Set len to the maximum number of bytes required in the output buffer. */ if( desiredEnc==SQLITE_UTF8 ){ /* When converting from UTF-16, the maximum growth results from ** translating a 2-byte character to a 4-byte UTF-8 character. ** A single byte is required for the output string ** nul-terminator. */ len = pMem->n * 2 + 1; }else{ /* When converting from UTF-8 to UTF-16 the maximum growth is caused ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16 ** character. Two bytes are required in the output buffer for the ** nul-terminator. */ len = pMem->n * 2 + 2; } /* Set zIn to point at the start of the input buffer and zTerm to point 1 ** byte past the end. ** ** Variable zOut is set to point at the output buffer. This may be space ** obtained from malloc(), or Mem.zShort, if it large enough and not in ** use, or the zShort array on the stack (see above). */ zIn = (u8*)pMem->z; zTerm = &zIn[pMem->n]; if( len>NBFS ){ zOut = sqliteMallocRaw(len); if( !zOut ) return SQLITE_NOMEM; }else{ zOut = zShort; } z = zOut; if( pMem->enc==SQLITE_UTF8 ){ if( desiredEnc==SQLITE_UTF16LE ){ /* UTF-8 -> UTF-16 Little-endian */ while( zIn<zTerm ){ READ_UTF8(zIn, c); WRITE_UTF16LE(z, c); } }else{ assert( desiredEnc==SQLITE_UTF16BE ); /* UTF-8 -> UTF-16 Big-endian */ while( zIn<zTerm ){ READ_UTF8(zIn, c); WRITE_UTF16BE(z, c); } } pMem->n = z - zOut; *z++ = 0; }else{ assert( desiredEnc==SQLITE_UTF8 ); if( pMem->enc==SQLITE_UTF16LE ){ /* UTF-16 Little-endian -> UTF-8 */ while( zIn<zTerm ){ READ_UTF16LE(zIn, c); WRITE_UTF8(z, c); } }else{ /* UTF-16 Little-endian -> UTF-8 */ while( zIn<zTerm ){ READ_UTF16BE(zIn, c); WRITE_UTF8(z, c); } } pMem->n = z - zOut; } *z = 0; assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); sqlite3VdbeMemRelease(pMem); pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short); pMem->enc = desiredEnc; if( zOut==zShort ){ memcpy(pMem->zShort, zOut, len); zOut = (u8*)pMem->zShort; pMem->flags |= (MEM_Term|MEM_Short); }else{ pMem->flags |= (MEM_Term|MEM_Dyn); } pMem->z = (char*)zOut; translate_out: #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) { char zBuf[100]; sqlite3VdbeMemPrettyPrint(pMem, zBuf); fprintf(stderr, "OUTPUT: %s\n", zBuf); } #endif return SQLITE_OK; }
/* ** This routine transforms the internal text encoding used by pMem to ** desiredEnc. It is an error if the string is already of the desired ** encoding, or if *pMem does not contain a string value. */ SQLITE_NOINLINE int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){ int len; /* Maximum length of output string in bytes */ unsigned char *zOut; /* Output buffer */ unsigned char *zIn; /* Input iterator */ unsigned char *zTerm; /* End of input */ unsigned char *z; /* Output iterator */ unsigned int c; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( pMem->flags&MEM_Str ); assert( pMem->enc!=desiredEnc ); assert( pMem->enc!=0 ); assert( pMem->n>=0 ); #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) { char zBuf[100]; sqlite3VdbeMemPrettyPrint(pMem, zBuf); fprintf(stderr, "INPUT: %s\n", zBuf); } #endif /* If the translation is between UTF-16 little and big endian, then ** all that is required is to swap the byte order. This case is handled ** differently from the others. */ if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){ u8 temp; int rc; rc = sqlite3VdbeMemMakeWriteable(pMem); if( rc!=SQLITE_OK ){ assert( rc==SQLITE_NOMEM ); return SQLITE_NOMEM; } zIn = (u8*)pMem->z; zTerm = &zIn[pMem->n&~1]; while( zIn<zTerm ){ temp = *zIn; *zIn = *(zIn+1); zIn++; *zIn++ = temp; } pMem->enc = desiredEnc; goto translate_out; } /* Set len to the maximum number of bytes required in the output buffer. */ if( desiredEnc==SQLITE_UTF8 ){ /* When converting from UTF-16, the maximum growth results from ** translating a 2-byte character to a 4-byte UTF-8 character. ** A single byte is required for the output string ** nul-terminator. */ pMem->n &= ~1; len = pMem->n * 2 + 1; }else{ /* When converting from UTF-8 to UTF-16 the maximum growth is caused ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16 ** character. Two bytes are required in the output buffer for the ** nul-terminator. */ len = pMem->n * 2 + 2; } /* Set zIn to point at the start of the input buffer and zTerm to point 1 ** byte past the end. ** ** Variable zOut is set to point at the output buffer, space obtained ** from sqlite3_malloc(). */ zIn = (u8*)pMem->z; zTerm = &zIn[pMem->n]; zOut = sqlite3DbMallocRaw(pMem->db, len); if( !zOut ){ return SQLITE_NOMEM; } z = zOut; if( pMem->enc==SQLITE_UTF8 ){ if( desiredEnc==SQLITE_UTF16LE ){ /* UTF-8 -> UTF-16 Little-endian */ while( zIn<zTerm ){ READ_UTF8(zIn, zTerm, c); WRITE_UTF16LE(z, c); } }else{ assert( desiredEnc==SQLITE_UTF16BE ); /* UTF-8 -> UTF-16 Big-endian */ while( zIn<zTerm ){ READ_UTF8(zIn, zTerm, c); WRITE_UTF16BE(z, c); } } pMem->n = (int)(z - zOut); *z++ = 0; }else{ assert( desiredEnc==SQLITE_UTF8 ); if( pMem->enc==SQLITE_UTF16LE ){ /* UTF-16 Little-endian -> UTF-8 */ while( zIn<zTerm ){ READ_UTF16LE(zIn, zIn<zTerm, c); WRITE_UTF8(z, c); } }else{ /* UTF-16 Big-endian -> UTF-8 */ while( zIn<zTerm ){ READ_UTF16BE(zIn, zIn<zTerm, c); WRITE_UTF8(z, c); } } pMem->n = (int)(z - zOut); } *z = 0; assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); c = pMem->flags; sqlite3VdbeMemRelease(pMem); pMem->flags = MEM_Str|MEM_Term|(c&MEM_AffMask); pMem->enc = desiredEnc; pMem->z = (char*)zOut; pMem->zMalloc = pMem->z; pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->z); translate_out: #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) { char zBuf[100]; sqlite3VdbeMemPrettyPrint(pMem, zBuf); fprintf(stderr, "OUTPUT: %s\n", zBuf); } #endif return SQLITE_OK; }
/* ** Change the value of a Mem to be a string or a BLOB. */ int sqlite3VdbeMemSetStr( Mem *pMem, /* Memory cell to set to string value */ const char *z, /* String pointer */ int n, /* Bytes in string, or negative */ u8 enc, /* Encoding of z. 0 for BLOBs */ void (*xDel)(void*) /* Destructor function */ ){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); sqlite3VdbeMemRelease(pMem); if( !z ){ pMem->flags = MEM_Null; pMem->type = SQLITE_NULL; return SQLITE_OK; } pMem->z = (char *)z; if( xDel==SQLITE_STATIC ){ pMem->flags = MEM_Static; }else if( xDel==SQLITE_TRANSIENT ){ pMem->flags = MEM_Ephem; }else{ pMem->flags = MEM_Dyn; pMem->xDel = xDel; } pMem->enc = enc; pMem->type = enc==0 ? SQLITE_BLOB : SQLITE_TEXT; pMem->n = n; assert( enc==0 || enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); switch( enc ){ case 0: pMem->flags |= MEM_Blob; pMem->enc = SQLITE_UTF8; break; case SQLITE_UTF8: pMem->flags |= MEM_Str; if( n<0 ){ pMem->n = strlen(z); pMem->flags |= MEM_Term; } break; #ifndef SQLITE_OMIT_UTF16 case SQLITE_UTF16LE: case SQLITE_UTF16BE: pMem->flags |= MEM_Str; if( pMem->n<0 ){ pMem->n = sqlite3Utf16ByteLen(pMem->z,-1); pMem->flags |= MEM_Term; } if( sqlite3VdbeMemHandleBom(pMem) ){ return SQLITE_NOMEM; } #endif /* SQLITE_OMIT_UTF16 */ } if( pMem->flags&MEM_Ephem ){ return sqlite3VdbeMemMakeWriteable(pMem); } return SQLITE_OK; }
/* ** This routine transforms the internal text encoding used by pMem to ** desiredEnc. It is an error if the string is already of the desired ** encoding, or if *pMem does not contain a string value. */ int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){ unsigned char zShort[NBFS]; /* Temporary short output buffer */ int len; /* Maximum length of output string in bytes */ unsigned char *zOut; /* Output buffer */ unsigned char *zIn; /* Input iterator */ unsigned char *zTerm; /* End of input */ unsigned char *z; /* Output iterator */ unsigned int c; assert( pMem->flags&MEM_Str ); assert( pMem->enc!=desiredEnc ); assert( pMem->enc!=0 ); assert( pMem->n>=0 ); #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) { char zBuf[100]; sqlite3VdbeMemPrettyPrint(pMem, zBuf); fprintf(stderr, "INPUT: %s\n", zBuf); } #endif /* If the translation is between UTF-16 little and big endian, then ** all that is required is to swap the byte order. This case is handled ** differently from the others. */ if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){ u8 temp; int rc; rc = sqlite3VdbeMemMakeWriteable(pMem); if( rc!=SQLITE_OK ){ assert( rc==SQLITE_NOMEM ); return SQLITE_NOMEM; } zIn = (u8*)pMem->z; zTerm = &zIn[pMem->n]; while( zIn<zTerm ){ temp = *zIn; *zIn = *(zIn+1); zIn++; *zIn++ = temp; } pMem->enc = desiredEnc; goto translate_out; } /* Set len to the maximum number of bytes required in the output buffer. */ if( desiredEnc==SQLITE_UTF8 ){ /* When converting from UTF-16, the maximum growth results from ** translating a 2-byte character to a 4-byte UTF-8 character. ** A single byte is required for the output string ** nul-terminator. */ len = pMem->n * 2 + 1; }else{ /* When converting from UTF-8 to UTF-16 the maximum growth is caused ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16 ** character. Two bytes are required in the output buffer for the ** nul-terminator. */ len = pMem->n * 2 + 2; } /* Set zIn to point at the start of the input buffer and zTerm to point 1 ** byte past the end. ** ** Variable zOut is set to point at the output buffer. This may be space ** obtained from malloc(), or Mem.zShort, if it large enough and not in ** use, or the zShort array on the stack (see above). */ zIn = (u8*)pMem->z; zTerm = &zIn[pMem->n]; if( len>NBFS ){ zOut = sqliteMallocRaw(len); if( !zOut ) return SQLITE_NOMEM; }else{ zOut = zShort; } z = zOut; if( pMem->enc==SQLITE_UTF8 ){ unsigned int iExtra = 0xD800; if( 0==(pMem->flags&MEM_Term) && zTerm>zIn && (zTerm[-1]&0x80) ){ /* This UTF8 string is not nul-terminated, and the last byte is ** not a character in the ascii range (codpoints 0..127). This ** means the SQLITE_READ_UTF8() macro might read past the end ** of the allocated buffer. ** ** There are four possibilities: ** ** 1. The last byte is the first byte of a non-ASCII character, ** ** 2. The final N bytes of the input string are continuation bytes ** and immediately preceding them is the first byte of a ** non-ASCII character. ** ** 3. The final N bytes of the input string are continuation bytes ** and immediately preceding them is a byte that encodes a ** character in the ASCII range. ** ** 4. The entire string consists of continuation characters. ** ** Cases (3) and (4) require no special handling. The SQLITE_READ_UTF8() ** macro will not overread the buffer in these cases. */ unsigned char *zExtra = &zTerm[-1]; while( zExtra>zIn && (zExtra[0]&0xC0)==0x80 ){ zExtra--; } if( (zExtra[0]&0xC0)==0xC0 ){ /* Make a copy of the last character encoding in the input string. ** Then make sure it is nul-terminated and use SQLITE_READ_UTF8() ** to decode the codepoint. Store the codepoint in variable iExtra, ** it will be appended to the output string later. */ unsigned char *zFree = 0; unsigned char zBuf[16]; int nExtra = (pMem->n+zIn-zExtra); zTerm = zExtra; if( nExtra>15 ){ zExtra = sqliteMallocRaw(nExtra+1); if( !zExtra ){ return SQLITE_NOMEM; } zFree = zExtra; }else{ zExtra = zBuf; } memcpy(zExtra, zTerm, nExtra); zExtra[nExtra] = '\0'; SQLITE_READ_UTF8(zExtra, iExtra); sqliteFree(zFree); } } if( desiredEnc==SQLITE_UTF16LE ){ /* UTF-8 -> UTF-16 Little-endian */ while( zIn<zTerm ){ SQLITE_READ_UTF8(zIn, c); WRITE_UTF16LE(z, c); } if( iExtra!=0xD800 ){ WRITE_UTF16LE(z, iExtra); } }else{ assert( desiredEnc==SQLITE_UTF16BE ); /* UTF-8 -> UTF-16 Big-endian */ while( zIn<zTerm ){ SQLITE_READ_UTF8(zIn, c); WRITE_UTF16BE(z, c); } if( iExtra!=0xD800 ){ WRITE_UTF16BE(z, iExtra); } } pMem->n = z - zOut; *z++ = 0; }else{ assert( desiredEnc==SQLITE_UTF8 ); if( pMem->enc==SQLITE_UTF16LE ){ /* UTF-16 Little-endian -> UTF-8 */ while( zIn<zTerm ){ READ_UTF16LE(zIn, c); WRITE_UTF8(z, c); } }else{ /* UTF-16 Little-endian -> UTF-8 */ while( zIn<zTerm ){ READ_UTF16BE(zIn, c); WRITE_UTF8(z, c); } } pMem->n = z - zOut; } *z = 0; assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); sqlite3VdbeMemRelease(pMem); pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short); pMem->enc = desiredEnc; if( zOut==zShort ){ memcpy(pMem->zShort, zOut, len); zOut = (u8*)pMem->zShort; pMem->flags |= (MEM_Term|MEM_Short); }else{ pMem->flags |= (MEM_Term|MEM_Dyn); } pMem->z = (char*)zOut; translate_out: #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) { char zBuf[100]; sqlite3VdbeMemPrettyPrint(pMem, zBuf); fprintf(stderr, "OUTPUT: %s\n", zBuf); } #endif return SQLITE_OK; }