示例#1
0
static Word16
MR795_gain_code_quant_mod(  /* o  : index of quantization.            */
    Word16 gain_pit,        /* i  : pitch gain,                   Q14 */
    Word16 exp_gcode0,      /* i  : predicted CB gain (exponent), Q0  */
    Word16 gcode0,          /* i  : predicted CB gain (norm.),    Q14 */
    Word16 frac_en[],       /* i  : energy coefficients (4),
                                    fraction part,                Q15 */
    Word16 exp_en[],        /* i  : energy coefficients (4),
                                    eponent part,                 Q0  */
    Word16 alpha,           /* i  : gain adaptor factor (>0),     Q15 */
    Word16 gain_cod_unq,    /* i  : Code gain (unquantized)           */
    /*      (scaling: Q10 - exp_gcode0)       */
    Word16 *gain_cod,       /* i/o: Code gain (pre-/quantized),   Q1  */
    Word16 *qua_ener_MR122, /* o  : quantized energy error,       Q10 */
    /*      (for MR122 MA predictor update)   */
    Word16 *qua_ener,       /* o  : quantized energy error,       Q10 */
    /*      (for other MA predictor update)   */
    const Word16* qua_gain_code_ptr, /* i : ptr to read-only ptr      */
    Flag   *pOverflow       /* o  : overflow indicator                */
)
{
    const Word16 *p;
    Word16 i;
    Word16 index;
    Word16 tmp;
    Word16 one_alpha;
    Word16 exp;
    Word16 e_max;

    Word16 g2_pitch;
    Word16 g_code;
    Word16 g2_code_h;
    Word16 g2_code_l;
    Word16 d2_code_h;
    Word16 d2_code_l;
    Word16 coeff[5];
    Word16 coeff_lo[5];
    Word16 exp_coeff[5];
    Word32 L_tmp;
    Word32 L_t0;
    Word32 L_t1;
    Word32 dist_min;
    Word16 gain_code;

    /*
      Steps in calculation of the error criterion (dist):
      ---------------------------------------------------

      underlined = constant; alp = FLP value of alpha, alpha = FIP
      ----------


        ExEn = gp^2 * LtpEn + 2.0*gp*gc[i] * XC + gc[i]^2 * InnEn;
               ------------   ------         --             -----

        aExEn= alp * ExEn
             = alp*gp^2*LtpEn + 2.0*alp*gp*XC* gc[i] + alp*InnEn* gc[i]^2
               --------------   -------------          ---------

             =         t[1]   +              t[2]    +          t[3]

        dist = d1 + d2;

          d1 = (1.0 - alp) * InnEn * (gcu - gc[i])^2 = t[4]
               -------------------    ---

          d2 =        alp  * (ResEn - 2.0 * sqrt(ResEn*ExEn) + ExEn);
                      ---     -----   ---        -----

             =        alp  * (sqrt(ExEn) - sqrt(ResEn))^2
                      ---                  -----------

             =               (sqrt(aExEn) - sqrt(alp*ResEn))^2
                                            ---------------

             =               (sqrt(aExEn) -       t[0]     )^2
                                                  ----

     */

    /*
     * calculate scalings of the constant terms
     */
    gain_code = shl(*gain_cod, (10 - exp_gcode0), pOverflow);   /* Q1  -> Q11 (-ec0) */
    g2_pitch = mult(gain_pit, gain_pit, pOverflow);               /* Q14 -> Q13        */
    /* 0 < alpha <= 0.5 => 0.5 <= 1-alpha < 1, i.e one_alpha is normalized  */
    one_alpha = add_16((32767 - alpha), 1, pOverflow);   /* 32768 - alpha */


    /*  alpha <= 0.5 -> mult. by 2 to keep precision; compensate in exponent */
    L_t1 = L_mult(alpha, frac_en[1], pOverflow);
    L_t1 = L_shl(L_t1, 1, pOverflow);
    tmp = (Word16)(L_t1 >> 16);

    /* directly store in 32 bit variable because no further mult. required */
    L_t1 = L_mult(tmp, g2_pitch, pOverflow);
    exp_coeff[1] = exp_en[1] - 15;


    tmp = (Word16)(L_shl(L_mult(alpha, frac_en[2], pOverflow), 1, pOverflow) >> 16);
    coeff[2] = mult(tmp, gain_pit, pOverflow);
    exp = exp_gcode0 - 10;
    exp_coeff[2] = add_16(exp_en[2], exp, pOverflow);


    /* alpha <= 0.5 -> mult. by 2 to keep precision; compensate in exponent */
    coeff[3] = (Word16)(L_shl(L_mult(alpha, frac_en[3], pOverflow), 1, pOverflow) >> 16);
    exp = shl(exp_gcode0, 1, pOverflow) - 7;
    exp_coeff[3] = add_16(exp_en[3], exp, pOverflow);


    coeff[4] = mult(one_alpha, frac_en[3], pOverflow);
    exp_coeff[4] = add_16(exp_coeff[3], 1, pOverflow);


    L_tmp = L_mult(alpha, frac_en[0], pOverflow);
    /* sqrt_l returns normalized value and 2*exponent
       -> result = val >> (exp/2)
       exp_coeff holds 2*exponent for c[0]            */
    /* directly store in 32 bit variable because no further mult. required */
    L_t0 = sqrt_l_exp(L_tmp, &exp, pOverflow);  /* normalization included in sqrt_l_exp */
    exp += 47;
    exp_coeff[0] = exp_en[0] - exp;

    /*
     * Determine the maximum exponent occuring in the distance calculation
     * and adjust all fractions accordingly (including a safety margin)
     *
     */

    /* find max(e[1..4],e[0]+31) */
    e_max = exp_coeff[0] + 31;
    for (i = 1; i <= 4; i++)
    {
        if (exp_coeff[i] > e_max)
        {
            e_max = exp_coeff[i];
        }
    }

    /* scale c[1]         (requires no further multiplication) */
    tmp = e_max - exp_coeff[1];
    L_t1 = L_shr(L_t1, tmp, pOverflow);

    /* scale c[2..4] (used in Mpy_32_16 in the quantizer loop) */
    for (i = 2; i <= 4; i++)
    {
        tmp = e_max - exp_coeff[i];
        L_tmp = ((Word32)coeff[i] << 16);
        L_tmp = L_shr(L_tmp, tmp, pOverflow);
        L_Extract(L_tmp, &coeff[i], &coeff_lo[i], pOverflow);
    }

    /* scale c[0]         (requires no further multiplication) */
    exp = e_max - 31;              /* new exponent */
    tmp = exp - exp_coeff[0];
    L_t0 = L_shr(L_t0, shr(tmp, 1, pOverflow), pOverflow);
    /* perform correction by 1/sqrt(2) if exponent difference is odd */
    if ((tmp & 0x1) != 0)
    {
        L_Extract(L_t0, &coeff[0], &coeff_lo[0], pOverflow);
        L_t0 = Mpy_32_16(coeff[0], coeff_lo[0],
                         23170, pOverflow);                    /* 23170 Q15 = 1/sqrt(2)*/
    }

    /* search the quantizer table for the lowest value
       of the search criterion                           */
    dist_min = MAX_32;
    index = 0;
    p = &qua_gain_code_ptr[0];

    for (i = 0; i < NB_QUA_CODE; i++)
    {
        g_code = *p++;                   /* this is g_fac (Q11)  */
        p++;                             /* skip log2(g_fac)     */
        p++;                             /* skip 20*log10(g_fac) */
        g_code = mult(g_code, gcode0, pOverflow);

        /* only continue if    gc[i]            < 2.0*gc
           which is equiv. to  g_code (Q10-ec0) < gain_code (Q11-ec0) */

        if (g_code >= gain_code)
        {
            break;
        }

        L_tmp = L_mult(g_code, g_code, pOverflow);
        L_Extract(L_tmp, &g2_code_h, &g2_code_l, pOverflow);

        tmp = sub(g_code, gain_cod_unq, pOverflow);
        L_tmp = L_mult(tmp, tmp, pOverflow);
        L_Extract(L_tmp, &d2_code_h, &d2_code_l, pOverflow);

        /* t2, t3, t4 */
        L_tmp = Mac_32_16(L_t1, coeff[2], coeff_lo[2], g_code, pOverflow);
        L_tmp = Mac_32(L_tmp,    coeff[3], coeff_lo[3], g2_code_h, g2_code_l, pOverflow);

        L_tmp = sqrt_l_exp(L_tmp, &exp, pOverflow);
        L_tmp = L_shr(L_tmp, shr(exp, 1, pOverflow), pOverflow);

        /* d2 */
        tmp = pv_round(L_sub(L_tmp, L_t0, pOverflow), pOverflow);
        L_tmp = L_mult(tmp, tmp, pOverflow);

        /* dist */
        L_tmp = Mac_32(L_tmp, coeff[4], coeff_lo[4], d2_code_h, d2_code_l, pOverflow);

        /* store table index if distance measure for this
            index is lower than the minimum seen so far   */
        if (L_tmp < dist_min)
        {
            dist_min = L_tmp;
            index = i;
        }
    }

    /*------------------------------------------------------------------*
     *  read quantized gains and new values for MA predictor memories   *
     *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   *
     *------------------------------------------------------------------*/

    /* Read the quantized gains */
    p = &qua_gain_code_ptr[(index<<2) - index];
    g_code = *p++;
    *qua_ener_MR122 = *p++;
    *qua_ener = *p;

    /*------------------------------------------------------------------*
     *  calculate final fixed codebook gain:                            *
     *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                            *
     *                                                                  *
     *   gc = gc0 * g                                                   *
     *------------------------------------------------------------------*/

    L_tmp = L_mult(g_code, gcode0, pOverflow);
    L_tmp = L_shr(L_tmp, 9 - exp_gcode0, pOverflow);
    *gain_cod = (Word16)(L_tmp >> 16);

    return index;
}
/*
**************************************************************************
*
*  Function    : Decoder_amr
*  Purpose     : Speech decoder routine.
*
**************************************************************************
*/
int Decoder_amr (
    Decoder_amrState *st,      /* i/o : State variables                   */
    enum Mode mode,            /* i   : AMR mode                          */
    Word16 parm[],             /* i   : vector of synthesis parameters
                                        (PRM_SIZE)                        */
    enum RXFrameType frame_type, /* i   : received frame type             */
    Word16 synth[],            /* o   : synthesis speech (L_FRAME)        */
    Word16 A_t[]               /* o   : decoded LP filter in 4 subframes
                                        (AZ_SIZE)                         */
)
{
    /* LPC coefficients */
   
    Word16 *Az;                /* Pointer on A_t */
    
    /* LSPs */

    Word16 lsp_new[M];
    Word16 lsp_mid[M];

    /* LSFs */
    
    Word16 prev_lsf[M];
    Word16 lsf_i[M];    

    /* Algebraic codevector */

    Word16 code[L_SUBFR];

    /* excitation */

    Word16 excp[L_SUBFR];
    Word16 exc_enhanced[L_SUBFR];

    /* Scalars */

    Word16 i, i_subfr;
    Word16 T0, T0_frac, index, index_mr475 = 0;
    Word16 gain_pit, gain_code, gain_code_mix, pit_sharp, pit_flag, pitch_fac;
    Word16 t0_min, t0_max;
    Word16 delta_frc_low, delta_frc_range;
    Word16 tmp_shift;
    Word16 temp;
    Word32 L_temp;
    Word16 flag4;
    Word16 carefulFlag;
    Word16 excEnergy;
    Word16 subfrNr; 
    Word16 evenSubfr = 0;

    Word16 bfi = 0;   /* bad frame indication flag                          */
    Word16 pdfi = 0;  /* potential degraded bad frame flag                  */

    enum DTXStateType newDTXState;  /* SPEECH , DTX, DTX_MUTE */

    /* find the new  DTX state  SPEECH OR DTX */
    newDTXState = rx_dtx_handler(st->dtxDecoderState, frame_type);
    move16 ();   /* function result */
    
    /* DTX actions */
    test();
    if (sub(newDTXState, SPEECH) != 0 )
    {
       Decoder_amr_reset (st, MRDTX);

       dtx_dec(st->dtxDecoderState, 
               st->mem_syn, 
               st->lsfState, 
               st->pred_state,
               st->Cb_gain_averState,
               newDTXState,
               mode, 
               parm, synth, A_t);
       /* update average lsp */
       
       Lsf_lsp(st->lsfState->past_lsf_q, st->lsp_old, M);
       lsp_avg(st->lsp_avg_st, st->lsfState->past_lsf_q);
       goto the_end;
    }

    /* SPEECH action state machine  */
    test (); test (); test (); 
    if ((sub(frame_type, RX_SPEECH_BAD) == 0) || 
        (sub(frame_type, RX_NO_DATA) == 0) ||
        (sub(frame_type, RX_ONSET) == 0)) 
    {
       bfi = 1;                                          move16 ();
       test(); test();
       if ((sub(frame_type, RX_NO_DATA) == 0) ||
           (sub(frame_type, RX_ONSET) == 0))
       {
	  build_CN_param(&st->nodataSeed,
			 prmno[mode],
			 bitno[mode],
			 parm);
       }       
    }
    else if (sub(frame_type, RX_SPEECH_DEGRADED) == 0)
    {
       pdfi = 1;                                         move16 ();
    }
   
    
    test();
    if (bfi != 0)
    {
        st->state = add (st->state, 1);
    }
    else if (sub (st->state, 6) == 0)

    {
        st->state = 5;                                   move16 ();
    }
    else
    {
        st->state = 0;                                   move16 ();
    }
    
    test (); 
    if (sub (st->state, 6) > 0)
    {
        st->state = 6;                                   move16 ();
    }

    /* If this frame is the first speech frame after CNI period,     */
    /* set the BFH state machine to an appropriate state depending   */
    /* on whether there was DTX muting before start of speech or not */
    /* If there was DTX muting, the first speech frame is muted.     */
    /* If there was no DTX muting, the first speech frame is not     */
    /* muted. The BFH state machine starts from state 5, however, to */
    /* keep the audible noise resulting from a SID frame which is    */
    /* erroneously interpreted as a good speech frame as small as    */
    /* possible (the decoder output in this case is quickly muted)   */

    test(); 
    if (sub(st->dtxDecoderState->dtxGlobalState, DTX) == 0)
    {
       st->state = 5;                                    move16 ();
       st->prev_bf = 0;                                  move16 ();
    }
    else if (test (), sub(st->dtxDecoderState->dtxGlobalState, DTX_MUTE) == 0)
    {
       st->state = 5;                                    move16 ();
       st->prev_bf = 1;                                  move16 ();
    }
    
    /* save old LSFs for CB gain smoothing */
    Copy (st->lsfState->past_lsf_q, prev_lsf, M);
    
    /* decode LSF parameters and generate interpolated lpc coefficients
       for the 4 subframes */
    test ();
    if (sub (mode, MR122) != 0)
    {
       D_plsf_3(st->lsfState, mode, bfi, parm, lsp_new);

       fwc ();                     /* function worst case */

       /* Advance synthesis parameters pointer */
       parm += 3;                  move16 ();
       
       Int_lpc_1to3(st->lsp_old, lsp_new, A_t);
    }
    else
    {
       D_plsf_5 (st->lsfState, bfi, parm, lsp_mid, lsp_new);

       fwc ();                     /* function worst case */

       /* Advance synthesis parameters pointer */
       parm += 5;                  move16 ();
       
       Int_lpc_1and3 (st->lsp_old, lsp_mid, lsp_new, A_t);
    }
       
    /* update the LSPs for the next frame */
    for (i = 0; i < M; i++)
    {
       st->lsp_old[i] = lsp_new[i];        move16 (); 
    }

    fwc ();                     /* function worst case */

   /*------------------------------------------------------------------------*
    *          Loop for every subframe in the analysis frame                 *
    *------------------------------------------------------------------------*
    * The subframe size is L_SUBFR and the loop is repeated L_FRAME/L_SUBFR  *
    *  times                                                                 *
    *     - decode the pitch delay                                           *
    *     - decode algebraic code                                            *
    *     - decode pitch and codebook gains                                  *
    *     - find the excitation and compute synthesis speech                 *
    *------------------------------------------------------------------------*/
    
    /* pointer to interpolated LPC parameters */
    Az = A_t;                                                       move16 (); 
    
    evenSubfr = 0;                                                  move16();
    subfrNr = -1;                                                   move16();
    for (i_subfr = 0; i_subfr < L_FRAME; i_subfr += L_SUBFR)
    {
       subfrNr = add(subfrNr, 1);
       evenSubfr = sub(1, evenSubfr);

       /* flag for first and 3th subframe */
       pit_flag = i_subfr;             move16 ();

       test();
       if (sub (i_subfr, L_FRAME_BY2) == 0)
       {
          test(); test();
          if (sub(mode, MR475) != 0 && sub(mode, MR515) != 0) 
          {
             pit_flag = 0;             move16 ();
          }
       }
       
       /* pitch index */
       index = *parm++;                move16 ();

       /*-------------------------------------------------------*
        * - decode pitch lag and find adaptive codebook vector. *
        *-------------------------------------------------------*/
       
       test ();
       if (sub(mode, MR122) != 0)
       {
          /* flag4 indicates encoding with 4 bit resolution;     */
          /* this is needed for mode MR475, MR515, MR59 and MR67 */
          
          flag4 = 0;                                 move16 ();
          test (); test (); test (); test ();        
          if ((sub (mode, MR475) == 0) ||
              (sub (mode, MR515) == 0) ||
              (sub (mode, MR59) == 0) ||
              (sub (mode, MR67) == 0) ) {
             flag4 = 1;                              move16 ();
          }
          
          /*-------------------------------------------------------*
           * - get ranges for the t0_min and t0_max                *
           * - only needed in delta decoding                       *
           *-------------------------------------------------------*/

          delta_frc_low = 5;                      move16();
          delta_frc_range = 9;                    move16();

          test ();
          if ( sub(mode, MR795) == 0 )
          {
             delta_frc_low = 10;                  move16();
             delta_frc_range = 19;                move16();
          }
             
          t0_min = sub(st->old_T0, delta_frc_low);
          test ();
          if (sub(t0_min, PIT_MIN) < 0)
          {
             t0_min = PIT_MIN;                    move16();
          }
          t0_max = add(t0_min, delta_frc_range);
          test ();
          if (sub(t0_max, PIT_MAX) > 0)
          {
             t0_max = PIT_MAX;                    move16();
             t0_min = sub(t0_max, delta_frc_range);
          }
             
          Dec_lag3 (index, t0_min, t0_max, pit_flag, st->old_T0,
                    &T0, &T0_frac, flag4);

          st->T0_lagBuff = T0;                        move16 ();

          test ();
          if (bfi != 0)
          {
             test ();
             if (sub (st->old_T0, PIT_MAX) < 0)     
             {                                      /* Graceful pitch */
                st->old_T0 = add(st->old_T0, 1);    /* degradation    */
             }
             T0 = st->old_T0;                     move16 (); 
             T0_frac = 0;                         move16 (); 

             test (); test (); test (); test (); test ();
             if ( st->inBackgroundNoise != 0 && 
                  sub(st->voicedHangover, 4) > 0 &&
                  ((sub(mode, MR475) == 0 ) ||
                   (sub(mode, MR515) == 0 ) ||
                   (sub(mode, MR59) == 0) )
                  )
             {
                T0 = st->T0_lagBuff;                  move16 ();
             }
          }

          fwc ();             /* function worst case */

          Pred_lt_3or6 (st->exc, T0, T0_frac, L_SUBFR, 1);
       }
       else
       {
          Dec_lag6 (index, PIT_MIN_MR122,
                    PIT_MAX, pit_flag, &T0, &T0_frac);

          test (); test (); test ();
          if ( bfi == 0 && (pit_flag == 0 || sub (index, 61) < 0))
          {
          }                
          else
          {
             st->T0_lagBuff = T0;                 move16 ();
             T0 = st->old_T0;                     move16 (); 
             T0_frac = 0;                         move16 (); 
          }

          fwc ();             /* function worst case */

          Pred_lt_3or6 (st->exc, T0, T0_frac, L_SUBFR, 0);
       }
       
       fwc ();             /* function worst case */
       
       /*-------------------------------------------------------*
        * - (MR122 only: Decode pitch gain.)                    *
        * - Decode innovative codebook.                         *
        * - set pitch sharpening factor                         *
        *-------------------------------------------------------*/

        test (); test (); 
        if (sub (mode, MR475) == 0 || sub (mode, MR515) == 0)
        {   /* MR475, MR515 */
           index = *parm++;        /* index of position */ move16 ();
           i = *parm++;            /* signs             */ move16 ();
           
           fwc ();                 /* function worst case */

           decode_2i40_9bits (subfrNr, i, index, code);
           
           fwc ();                 /* function worst case */

           pit_sharp = shl (st->sharp, 1);
        }
        else if (sub (mode, MR59) == 0)
        {   /* MR59 */
           test (); 
           index = *parm++;        /* index of position */ move16 ();
           i = *parm++;            /* signs             */ move16 ();
           
           fwc ();                 /* function worst case */

           decode_2i40_11bits (i, index, code);
           
           fwc ();                 /* function worst case */

           pit_sharp = shl (st->sharp, 1);
        }
        else if (sub (mode, MR67) == 0)
        {   /* MR67 */
           test (); test ();
           index = *parm++;        /* index of position */ move16 ();
           i = *parm++;            /* signs             */ move16 ();
           
           fwc ();                 /* function worst case */

           decode_3i40_14bits (i, index, code);
            
           fwc ();                 /* function worst case */

           pit_sharp = shl (st->sharp, 1);
        }
        else if (sub (mode, MR795) <= 0)
        {   /* MR74, MR795 */
           test (); test (); test ();
           index = *parm++;        /* index of position */ move16 ();
           i = *parm++;            /* signs             */ move16 ();
           
           fwc ();                 /* function worst case */

           decode_4i40_17bits (i, index, code);
           
           fwc ();                 /* function worst case */

           pit_sharp = shl (st->sharp, 1);
        }
        else if (sub (mode, MR102) == 0)
        {  /* MR102 */
           test (); test (); test ();

           fwc ();                 /* function worst case */

           dec_8i40_31bits (parm, code);
           parm += 7;                                       move16 (); 

           fwc ();                 /* function worst case */

           pit_sharp = shl (st->sharp, 1);
        }
        else
        {  /* MR122 */
           test (); test (); test ();
           index = *parm++;                                move16 ();
           test();
           if (bfi != 0)
           {
              ec_gain_pitch (st->ec_gain_p_st, st->state, &gain_pit);
           }
           else
           {
              gain_pit = d_gain_pitch (mode, index);        move16 ();
           }
           ec_gain_pitch_update (st->ec_gain_p_st, bfi, st->prev_bf,
                                 &gain_pit);
           

           fwc ();                 /* function worst case */


           dec_10i40_35bits (parm, code);
           parm += 10;                                     move16 (); 

           fwc ();                 /* function worst case */

           /* pit_sharp = gain_pit;                   */
           /* if (pit_sharp > 1.0) pit_sharp = 1.0;   */
           
           pit_sharp = shl (gain_pit, 1);
        }
        
        /*-------------------------------------------------------*
         * - Add the pitch contribution to code[].               *
         *-------------------------------------------------------*/
        for (i = T0; i < L_SUBFR; i++)
        {
           temp = mult (code[i - T0], pit_sharp);
           code[i] = add (code[i], temp);
           move16 (); 
        }
        
        fwc ();                 /* function worst case */
        
        /*------------------------------------------------------------*
         * - Decode codebook gain (MR122) or both pitch               *
         *   gain and codebook gain (all others)                      *
         * - Update pitch sharpening "sharp" with quantized gain_pit  *
         *------------------------------------------------------------*/

        if (test(), sub (mode, MR475) == 0)
        {
           /* read and decode pitch and code gain */
           test();      
           if (evenSubfr != 0) 
           {
              index_mr475 = *parm++;        move16 (); /* index of gain(s) */
           }

           test();
           if (bfi == 0)
           {
              Dec_gain(st->pred_state, mode, index_mr475, code,
                       evenSubfr, &gain_pit, &gain_code); 
           }
           else
           {
              ec_gain_pitch (st->ec_gain_p_st, st->state, &gain_pit);
              ec_gain_code (st->ec_gain_c_st, st->pred_state, st->state,
                            &gain_code);
           }
           ec_gain_pitch_update (st->ec_gain_p_st, bfi, st->prev_bf,
                                 &gain_pit);
           ec_gain_code_update (st->ec_gain_c_st, bfi, st->prev_bf,
                                &gain_code);
           
           fwc ();                 /* function worst case */

           pit_sharp = gain_pit;                                move16 ();
           test ();
           if (sub (pit_sharp, SHARPMAX) > 0) 
           {
               pit_sharp = SHARPMAX;                            move16 ();
           }

        }
        else if (test(), test(), (sub (mode, MR74) <= 0) || 
                 (sub (mode, MR102) == 0))
        {
            /* read and decode pitch and code gain */
            index = *parm++;                move16 (); /* index of gain(s) */
           
            test();
            if (bfi == 0)
            {
               Dec_gain(st->pred_state, mode, index, code,
                        evenSubfr, &gain_pit, &gain_code);
            }
            else
            {
               ec_gain_pitch (st->ec_gain_p_st, st->state, &gain_pit);
               ec_gain_code (st->ec_gain_c_st, st->pred_state, st->state,
                             &gain_code);
            }
            ec_gain_pitch_update (st->ec_gain_p_st, bfi, st->prev_bf,
                                  &gain_pit);
            ec_gain_code_update (st->ec_gain_c_st, bfi, st->prev_bf,
                                 &gain_code);

            fwc ();                 /* function worst case */
            
            pit_sharp = gain_pit;                               move16 ();
            test ();
            if (sub (pit_sharp, SHARPMAX) > 0) 
            {
               pit_sharp = SHARPMAX;                           move16 ();
            }

            if (sub (mode, MR102) == 0)
            {
               if (sub (st->old_T0, add(L_SUBFR, 5)) > 0)
               {
                  pit_sharp = shr(pit_sharp, 2);
               }
            }
        }
        else
        {
           /* read and decode pitch gain */
           index = *parm++;                move16 (); /* index of gain(s) */
           
           test (); 
           if (sub (mode, MR795) == 0)
           {
              /* decode pitch gain */
              test();
              if (bfi != 0)
              {
                 ec_gain_pitch (st->ec_gain_p_st, st->state, &gain_pit);
              }
              else
              {
                 gain_pit = d_gain_pitch (mode, index);       move16 ();
              }
              ec_gain_pitch_update (st->ec_gain_p_st, bfi, st->prev_bf,
                                    &gain_pit);
              
              /* read and decode code gain */
              index = *parm++;                                move16 ();
              test();
              if (bfi == 0)
              {
                 d_gain_code (st->pred_state, mode, index, code, &gain_code);
              }
              else
              {
                 ec_gain_code (st->ec_gain_c_st, st->pred_state, st->state,
                               &gain_code);
              }
              ec_gain_code_update (st->ec_gain_c_st, bfi, st->prev_bf,
                                   &gain_code);
              
              fwc ();                 /* function worst case */
              
              pit_sharp = gain_pit;                               move16 ();
              test ();
              if (sub (pit_sharp, SHARPMAX) > 0)
              {
                 pit_sharp = SHARPMAX;                           move16 ();
              }
           }
           else 
           { /* MR122 */
              test();
              if (bfi == 0)
              {
                 d_gain_code (st->pred_state, mode, index, code, &gain_code);
              }
              else
              {
                 ec_gain_code (st->ec_gain_c_st, st->pred_state, st->state,
                               &gain_code);
              }
              ec_gain_code_update (st->ec_gain_c_st, bfi, st->prev_bf,
                                   &gain_code);
                            
              fwc ();                 /* function worst case */
                
              pit_sharp = gain_pit;                                move16 ();
           }
        }
        
        /* store pitch sharpening for next subframe          */
        /* (for modes which use the previous pitch gain for 
           pitch sharpening in the search phase)             */
        /* do not update sharpening in even subframes for MR475 */
        test(); test();
        if (sub(mode, MR475) != 0 || evenSubfr == 0)
        {
            st->sharp = gain_pit;                                   move16 (); 
            test ();
            if (sub (st->sharp, SHARPMAX) > 0)
            {
                st->sharp = SHARPMAX;                                move16 ();
            }
        }

        pit_sharp = shl (pit_sharp, 1);
        test ();
        if (sub (pit_sharp, 16384) > 0)
        {
           for (i = 0; i < L_SUBFR; i++)
            {
               temp = mult (st->exc[i], pit_sharp);
               L_temp = L_mult (temp, gain_pit);
               test ();
               if (sub(mode, MR122)==0)
               {
                  L_temp = L_shr (L_temp, 1);
               }
               excp[i] = round (L_temp);                        move16 (); 
            }
        }
        
        /*-------------------------------------------------------*
         * - Store list of LTP gains needed in the source        *
         *   characteristic detector (SCD)                       *
         *-------------------------------------------------------*/
        test ();
        if ( bfi == 0 )
        {
           for (i = 0; i < 8; i++)
           {
              st->ltpGainHistory[i] = st->ltpGainHistory[i+1];     move16 ();
           }
           st->ltpGainHistory[8] = gain_pit;                       move16 ();
        }

        /*-------------------------------------------------------*
         * - Limit gain_pit if in background noise and BFI       *
         *   for MR475, MR515, MR59                              *
         *-------------------------------------------------------*/

        test (); test (); test (); test (); test (); test ();
        if ( (st->prev_bf != 0 || bfi != 0) && st->inBackgroundNoise != 0 &&
             ((sub(mode, MR475) == 0) ||
              (sub(mode, MR515) == 0) ||
              (sub(mode, MR59) == 0))
             )
        {
           test ();
           if ( sub (gain_pit, 12288) > 0)    /* if (gain_pit > 0.75) in Q14*/
              gain_pit = add( shr( sub(gain_pit, 12288), 1 ), 12288 );
              /* gain_pit = (gain_pit-0.75)/2.0 + 0.75; */

           test ();
           if ( sub (gain_pit, 14745) > 0)    /* if (gain_pit > 0.90) in Q14*/
           {
              gain_pit = 14745;                                 move16 ();
           }
        }

        /*-------------------------------------------------------*
         *  Calculate CB mixed gain                              *
         *-------------------------------------------------------*/
        Int_lsf(prev_lsf, st->lsfState->past_lsf_q, i_subfr, lsf_i); 
        gain_code_mix = Cb_gain_average(
            st->Cb_gain_averState, mode, gain_code, 
            lsf_i, st->lsp_avg_st->lsp_meanSave, bfi, 
            st->prev_bf, pdfi, st->prev_pdf,  
            st->inBackgroundNoise, st->voicedHangover);         move16 ();
        
        /* make sure that MR74, MR795, MR122 have original code_gain*/
        test();
        if ((sub(mode, MR67) > 0) && (sub(mode, MR102) != 0) ) 
           /* MR74, MR795, MR122 */
        {
           gain_code_mix = gain_code;                 move16 ();
        }
        
        /*-------------------------------------------------------*
         * - Find the total excitation.                          *
         * - Find synthesis speech corresponding to st->exc[].   *
         *-------------------------------------------------------*/
        test ();
        if (sub(mode, MR102) <= 0) /* MR475, MR515, MR59, MR67, MR74, MR795, MR102*/
        {
           pitch_fac = gain_pit;                                move16 ();
           tmp_shift = 1;                                       move16 ();
        }
        else       /* MR122 */
        {
           pitch_fac = shr (gain_pit, 1);                       move16 ();
           tmp_shift = 2;                                       move16 ();
        }

        /* copy unscaled LTP excitation to exc_enhanced (used in phase
         * dispersion below) and compute total excitation for LTP feedback
         */
        for (i = 0; i < L_SUBFR; i++)
        {
           exc_enhanced[i] = st->exc[i];                        move16 ();

           /* st->exc[i] = gain_pit*st->exc[i] + gain_code*code[i]; */
           L_temp = L_mult (st->exc[i], pitch_fac);
                                                      /* 12.2: Q0 * Q13 */
                                                      /*  7.4: Q0 * Q14 */
           L_temp = L_mac (L_temp, code[i], gain_code);
                                                      /* 12.2: Q12 * Q1 */
                                                      /*  7.4: Q13 * Q1 */
           L_temp = L_shl (L_temp, tmp_shift);                   /* Q16 */
           st->exc[i] = round (L_temp);                         move16 (); 
        }
        
        /*-------------------------------------------------------*
         * - Adaptive phase dispersion                           *
         *-------------------------------------------------------*/
        ph_disp_release(st->ph_disp_st); /* free phase dispersion adaption */

        test (); test (); test (); test (); test (); test ();
        if ( ((sub(mode, MR475) == 0) ||
              (sub(mode, MR515) == 0) ||
              (sub(mode, MR59) == 0))   &&
             sub(st->voicedHangover, 3) > 0 &&
             st->inBackgroundNoise != 0 &&
             bfi != 0 )
        {
           ph_disp_lock(st->ph_disp_st); /* Always Use full Phase Disp. */
        }                                /* if error in bg noise       */

        /* apply phase dispersion to innovation (if enabled) and
           compute total excitation for synthesis part           */
        ph_disp(st->ph_disp_st, mode,
                exc_enhanced, gain_code_mix, gain_pit, code,
                pitch_fac, tmp_shift);       
        
        /*-------------------------------------------------------*
         * - The Excitation control module are active during BFI.*
         * - Conceal drops in signal energy if in bg noise.      *
         *-------------------------------------------------------*/

        L_temp = 0;                                   move32 ();
        for (i = 0; i < L_SUBFR; i++)
        {
            L_temp = L_mac (L_temp, exc_enhanced[i], exc_enhanced[i] );
        }

        L_temp = L_shr (L_temp, 1);     /* excEnergy = sqrt(L_temp) in Q0 */
        L_temp = sqrt_l_exp(L_temp, &temp); move32 (); /* function result */
        L_temp = L_shr(L_temp, add( shr(temp, 1), 15));
        L_temp = L_shr(L_temp, 2);       /* To cope with 16-bit and  */
        excEnergy = extract_l(L_temp);   /* scaling in ex_ctrl()     */

        test (); test (); test (); test (); test (); 
        test (); test (); test (); test (); test ();
        if ( ((sub (mode, MR475) == 0) ||
              (sub (mode, MR515) == 0) ||
              (sub (mode, MR59) == 0))  &&
             sub(st->voicedHangover, 5) > 0 &&
             st->inBackgroundNoise != 0 &&
             sub(st->state, 4) < 0 &&
             ( (pdfi != 0 && st->prev_pdf != 0) ||
                bfi != 0 ||
                st->prev_bf != 0) )
        {
           carefulFlag = 0;                          move32 ();
           test (); test ();           
           if ( pdfi != 0 && bfi == 0 )       
           {
              carefulFlag = 1;                       move16 ();
           }

           Ex_ctrl(exc_enhanced,     
                   excEnergy,
                   st->excEnergyHist,
                   st->voicedHangover,
                   st->prev_bf,
                   carefulFlag);
        }

        test (); test (); test (); test ();
        if ( st->inBackgroundNoise != 0 &&
             ( bfi != 0 || st->prev_bf != 0 ) &&
             sub(st->state, 4) < 0 )
        { 
           ; /* do nothing! */
        }
        else
        {
           /* Update energy history for all modes */
           for (i = 0; i < 8; i++)
           {
              st->excEnergyHist[i] = st->excEnergyHist[i+1]; move16 ();
           }
           st->excEnergyHist[8] = excEnergy;   move16 ();
        }
        /*-------------------------------------------------------*
         * Excitation control module end.                        *
         *-------------------------------------------------------*/
        
        fwc ();                 /* function worst case */

        test (); 
        if (sub (pit_sharp, 16384) > 0)
        {
           for (i = 0; i < L_SUBFR; i++)
           {
              excp[i] = add (excp[i], exc_enhanced[i]);              
              move16 (); 
           }
           agc2 (exc_enhanced, excp, L_SUBFR);
           Overflow = 0;                 move16 ();
           Syn_filt (Az, excp, &synth[i_subfr], L_SUBFR,
                     st->mem_syn, 0);
        }
        else
        {
           Overflow = 0;                 move16 ();
           Syn_filt (Az, exc_enhanced, &synth[i_subfr], L_SUBFR,
                     st->mem_syn, 0);
        }

        test ();
        if (Overflow != 0)    /* Test for overflow */
        {
           for (i = 0; i < PIT_MAX + L_INTERPOL + L_SUBFR; i++)
           {
              st->old_exc[i] = shr(st->old_exc[i], 2);       move16 ();
           }
           for (i = 0; i < L_SUBFR; i++)
           {
              exc_enhanced[i] = shr(exc_enhanced[i], 2);     move16 ();
           }
           Syn_filt(Az, exc_enhanced, &synth[i_subfr], L_SUBFR, st->mem_syn, 1);
        }
        else
        {
           Copy(&synth[i_subfr+L_SUBFR-M], st->mem_syn, M);
        }
        
        /*--------------------------------------------------*
         * Update signal for next frame.                    *
         * -> shift to the left by L_SUBFR  st->exc[]       *
         *--------------------------------------------------*/
        
        Copy (&st->old_exc[L_SUBFR], &st->old_exc[0], PIT_MAX + L_INTERPOL);

        fwc ();                 /* function worst case */

        /* interpolated LPC parameters for next subframe */
        Az += MP1;                      move16 ();
        
        /* store T0 for next subframe */ 
        st->old_T0 = T0;                move16 ();
    }
    
    /*-------------------------------------------------------*
     * Call the Source Characteristic Detector which updates *
     * st->inBackgroundNoise and st->voicedHangover.         *
     *-------------------------------------------------------*/

                            move16 (); /* function result */
    st->inBackgroundNoise = Bgn_scd(st->background_state,
                                    &(st->ltpGainHistory[0]),
                                    &(synth[0]),
                                    &(st->voicedHangover) );

    dtx_dec_activity_update(st->dtxDecoderState, 
                            st->lsfState->past_lsf_q, 
                            synth);
    
    fwc ();                     /* function worst case */

    /* store bfi for next subframe */
    st->prev_bf = bfi;                  move16 (); 
    st->prev_pdf = pdfi;                move16 (); 
    
    /*--------------------------------------------------*
     * Calculate the LSF averages on the eight          *
     * previous frames                                  *
     *--------------------------------------------------*/
    
    lsp_avg(st->lsp_avg_st, st->lsfState->past_lsf_q);
    fwc ();                 /* function worst case */

the_end:
    st->dtxDecoderState->dtxGlobalState = newDTXState;  move16();
    
    return 0;
}