/** * sr_class1p5_enable() - class 1.5 mode of enable for a voltage domain * @voltdm: voltage domain to enable SR for * @voltdm_cdata: voltage domain specific private class data * @volt_data: voltdata for the current OPP being transitioned to * * when this gets called, we use the h/w loop to setup our voltages * to an calibrated voltage, detect any oscillations, recover from the same * and finally store the optimized voltage as the calibrated voltage in the * system. * * NOTE: Appropriate locks must be held by calling path to ensure mutual * exclusivity */ static int sr_class1p5_enable(struct voltagedomain *voltdm, void *voltdm_cdata, struct omap_volt_data *volt_data) { int r; struct sr_class1p5_work_data *work_data; /* check bypass flag, if enabled, do nothing */ if (volt_data->sr_bypass) return 0; if (IS_ERR_OR_NULL(voltdm) || IS_ERR_OR_NULL(volt_data)) { pr_err("%s: bad parameters!\n", __func__); return -EINVAL; } /* If already calibrated, nothing to do here.. */ if (volt_data->volt_calibrated) return 0; /* Based on Imoseyon's idea to properly calibrate high frequencies e.g. >= 1.4Ghz MPU */ if (volt_data->volt_nominal >= 1375000) { volt_data->volt_calibrated = volt_data->volt_nominal; volt_data->volt_dynamic_nominal = volt_data->volt_nominal; pr_info("[franciscofranco] %p - nominal %d", __func__, volt_data->volt_nominal); pr_info("[franciscofranco] %p - in the selected OPP its default nominal voltage is equal or above 1375mV so we don't calibrate it to prevent a crash.", __func__); return 0; } work_data = (struct sr_class1p5_work_data *)voltdm_cdata; if (IS_ERR_OR_NULL(work_data)) { pr_err("%s: bad work data??\n", __func__); return -EINVAL; } if (work_data->work_active) return 0; omap_vp_enable(voltdm); r = sr_enable(voltdm, volt_data); if (r) { pr_err("%s: sr[%s] failed\n", __func__, voltdm->name); sr_disable_errgen(voltdm); omap_vp_disable(voltdm); return r; } work_data->vdata = volt_data; work_data->work_active = true; work_data->num_calib_triggers = 0; /* Dont interrupt me untill calibration is complete */ pm_qos_update_request(&work_data->qos, 0); /* program the workqueue and leave it to calibrate offline.. */ schedule_delayed_work(&work_data->work, msecs_to_jiffies(SR1P5_SAMPLING_DELAY_MS * SR1P5_STABLE_SAMPLES)); return 0; }
static int sr_class3_disable(struct omap_sr *sr, int is_volt_reset) { sr_disable_errgen(sr->voltdm); omap_vp_disable(sr->voltdm); sr_disable(sr->voltdm); if (is_volt_reset) voltdm_reset(sr->voltdm); return 0; }
static int sr_class3_disable(struct voltagedomain *voltdm, struct omap_volt_data *vdata, int is_volt_reset) { sr_disable_errgen(voltdm); omap_vp_disable(voltdm); sr_disable(voltdm); if (is_volt_reset) voltdm_reset(voltdm); return 0; }
/** * sr_class1p5_enable() - class 1.5 mode of enable for a voltage domain * @voltdm: voltage domain to enable SR for * @voltdm_cdata: voltage domain specific private class data * @volt_data: voltdata for the current OPP being transitioned to * * when this gets called, we use the h/w loop to setup our voltages * to an calibrated voltage, detect any oscillations, recover from the same * and finally store the optimized voltage as the calibrated voltage in the * system. * * NOTE: Appropriate locks must be held by calling path to ensure mutual * exclusivity */ static int sr_class1p5_enable(struct voltagedomain *voltdm, void *voltdm_cdata, struct omap_volt_data *volt_data) { int r; struct sr_class1p5_work_data *work_data; if (IS_ERR_OR_NULL(voltdm) || IS_ERR_OR_NULL(volt_data)) { pr_err("%s: bad parameters!\n", __func__); return -EINVAL; } /* If already calibrated, nothing to do here.. */ if (volt_data->volt_calibrated) return 0; work_data = (struct sr_class1p5_work_data *)voltdm_cdata; if (IS_ERR_OR_NULL(work_data)) { pr_err("%s: bad work data??\n", __func__); return -EINVAL; } if (work_data->work_active) return 0; omap_vp_enable(voltdm); r = sr_enable(voltdm, volt_data); if (r) { pr_err("%s: sr[%s] failed\n", __func__, voltdm->name); sr_disable_errgen(voltdm); omap_vp_disable(voltdm); return r; } work_data->vdata = volt_data; work_data->work_active = true; work_data->num_calib_triggers = 0; /* program the workqueue and leave it to calibrate offline.. */ schedule_delayed_work(&work_data->work, msecs_to_jiffies(SR1P5_SAMPLING_DELAY_MS * SR1P5_STABLE_SAMPLES)); return 0; }
/** * sr_class1p5_disable() - disable 1.5 mode for a voltage domain * @voltdm: voltage domain for the sr which needs disabling * @volt_data: voltage data for current OPP to disable * @voltdm_cdata: voltage domain specific private class data * @is_volt_reset: reset the voltage? * * This function has the necessity to either disable SR alone OR disable SR * and reset voltage to appropriate level depending on is_volt_reset parameter. * * Disabling SR H/w loop: * If calibration is complete or not yet triggered, we have no need to disable * SR h/w loop. * If calibration is complete, we would have already disabled SR AVS at the end * of calibration and h/w loop is inactive when this is called. * If it was never calibrated before, H/w loop was never enabled in the first * place to disable. * If calibration is underway, we cancel the work queue and disable SR. This is * to provide priority to DVFS transition as such transitions cannot wait * without impacting user experience. * * Resetting voltage: * If we have already completed calibration, then resetting to nominal voltage * is not required as we are functioning at safe voltage levels. * If we have not started calibration, we would like to reset to nominal voltage * If calibration is underway and we are attempting to reset voltage as * well, it implies we are in idle/suspend paths where we give priority * to calibration activity and a retry will be attempted. * * NOTE: Appropriate locks must be held by calling path to ensure mutual * exclusivity */ static int sr_class1p5_disable(struct voltagedomain *voltdm, void *voltdm_cdata, struct omap_volt_data *volt_data, int is_volt_reset) { struct sr_class1p5_work_data *work_data; if (IS_ERR_OR_NULL(voltdm) || IS_ERR_OR_NULL(volt_data)) { pr_err("%s: bad parameters!\n", __func__); return -EINVAL; } work_data = (struct sr_class1p5_work_data *)voltdm_cdata; if (IS_ERR_OR_NULL(work_data)) { pr_err("%s: bad work data??\n", __func__); return -EINVAL; } if (work_data->work_active) { /* if volt reset and work is active, we dont allow this */ if (is_volt_reset) return -EBUSY; /* flag work is dead and remove the old work */ work_data->work_active = false; cancel_delayed_work_sync(&work_data->work); sr_notifier_control(voltdm, false); sr_disable_errgen(voltdm); omap_vp_disable(voltdm); sr_disable(voltdm); /* Cancelled SR, so no more need to keep request */ pm_qos_update_request(&work_data->qos, PM_QOS_DEFAULT_VALUE); } /* If already calibrated, don't need to reset voltage */ if (volt_data->volt_calibrated) return 0; if (is_volt_reset) voltdm_reset(voltdm); return 0; }
/** * sr_class1p5_calib_work() - work which actually does the calibration * @work: pointer to the work * * calibration routine uses the following logic: * on the first trigger, we start the isr to collect sr voltages * wait for stabilization delay (reschdule self instead of sleeping) * after the delay, see if we collected any isr events * if none, we have calibrated voltage. * if there are any, we retry untill we giveup. * on retry timeout, select a voltage to use as safe voltage. */ static void sr_class1p5_calib_work(struct work_struct *work) { struct sr_class1p5_work_data *work_data = container_of(work, struct sr_class1p5_work_data, work.work); unsigned long u_volt_safe = 0, u_volt_current = 0, u_volt_margin = 0; struct omap_volt_data *volt_data; struct voltagedomain *voltdm; int idx = 0; if (!work) { pr_err("%s: ooops.. null work_data?\n", __func__); return; } /* * Handle the case where we might have just been scheduled AND * 1.5 disable was called. */ if (!mutex_trylock(&omap_dvfs_lock)) { schedule_delayed_work(&work_data->work, msecs_to_jiffies(SR1P5_SAMPLING_DELAY_MS * SR1P5_STABLE_SAMPLES)); return; } voltdm = work_data->voltdm; /* * In the unlikely case that we did get through when unplanned, * flag and return. */ if (unlikely(!work_data->work_active)) { pr_err("%s:%s unplanned work invocation!\n", __func__, voltdm->name); mutex_unlock(&omap_dvfs_lock); return; } volt_data = work_data->vdata; work_data->num_calib_triggers++; /* if we are triggered first time, we need to start isr to sample */ if (work_data->num_calib_triggers == 1) { /* We could be interrupted many times, so, only for debug */ pr_debug("%s: %s: Calibration start: Voltage Nominal=%d\n", __func__, voltdm->name, volt_data->volt_nominal); goto start_sampling; } /* Stop isr from interrupting our measurements :) */ sr_notifier_control(voltdm, false); /* * Quit sampling * a) if we have oscillations * b) if we have nominal voltage as the voltage */ if (work_data->num_calib_triggers == SR1P5_MAX_TRIGGERS) goto stop_sampling; /* if there are no samples captured.. SR is silent, aka stability! */ if (!work_data->num_osc_samples) { /* Did we interrupt too early? */ u_volt_current = omap_vp_get_curr_volt(voltdm); if (u_volt_current >= volt_data->volt_nominal) goto start_sampling; u_volt_safe = u_volt_current; goto done_calib; } /* we have potential oscillations/first sample */ start_sampling: work_data->num_osc_samples = 0; /* Clear transdone events so that we can go on. */ do { if (!omap_vp_is_transdone(voltdm)) break; idx++; /* get some constant delay */ udelay(1); omap_vp_clear_transdone(voltdm); } while (idx < MAX_CHECK_VPTRANS_US); if (idx >= MAX_CHECK_VPTRANS_US) pr_warning("%s: timed out waiting for transdone clear!!\n", __func__); /* Clear pending events */ sr_notifier_control(voltdm, false); /* trigger sampling */ sr_notifier_control(voltdm, true); schedule_delayed_work(&work_data->work, msecs_to_jiffies(SR1P5_SAMPLING_DELAY_MS * SR1P5_STABLE_SAMPLES)); mutex_unlock(&omap_dvfs_lock); return; stop_sampling: /* * We are here for Oscillations due to two scenarios: * a) SR is attempting to adjust voltage lower than VLIMITO * which VP will ignore, but SR will re-attempt * b) actual oscillations * NOTE: For debugging, enable debug to see the samples. */ pr_warning("%s: %s Stop sampling: Voltage Nominal=%d samples=%d\n", __func__, work_data->voltdm->name, volt_data->volt_nominal, work_data->num_osc_samples); /* pick up current voltage */ u_volt_current = omap_vp_get_curr_volt(voltdm); /* Just in case we got more interrupts than our tiny buffer */ if (work_data->num_osc_samples > SR1P5_STABLE_SAMPLES) idx = SR1P5_STABLE_SAMPLES; else idx = work_data->num_osc_samples; /* Index at 0 */ idx -= 1; u_volt_safe = u_volt_current; /* Grab the max of the samples as the stable voltage */ for (; idx >= 0; idx--) { pr_debug("%s: osc_v[%d]=%ld, safe_v=%ld\n", __func__, idx, work_data->u_volt_samples[idx], u_volt_safe); if (work_data->u_volt_samples[idx] > u_volt_safe) u_volt_safe = work_data->u_volt_samples[idx]; } /* Fall through to close up common stuff */ done_calib: sr_disable_errgen(voltdm); omap_vp_disable(voltdm); sr_disable(voltdm); /* Add margin if needed */ if (volt_data->volt_margin) { struct omap_voltdm_pmic *pmic = voltdm->pmic; /* Convert to rounded to PMIC step level if available */ if (pmic && pmic->vsel_to_uv && pmic->uv_to_vsel) { /* * To ensure conversion works: * use a proper base voltage - we use the current volt * then convert it with pmic routine to vsel and back * to voltage, and finally remove the base voltage */ u_volt_margin = u_volt_current + volt_data->volt_margin; u_volt_margin = pmic->uv_to_vsel(u_volt_margin); u_volt_margin = pmic->vsel_to_uv(u_volt_margin); u_volt_margin -= u_volt_current; } else { u_volt_margin = volt_data->volt_margin; } u_volt_safe += u_volt_margin; } if (u_volt_safe > volt_data->volt_nominal) { pr_warning("%s: %s Vsafe %ld > Vnom %d. %ld[%d] margin on" "vnom %d curr_v=%ld\n", __func__, voltdm->name, u_volt_safe, volt_data->volt_nominal, u_volt_margin, volt_data->volt_margin, volt_data->volt_nominal, u_volt_current); } volt_data->volt_calibrated = u_volt_safe; /* Setup my dynamic voltage for the next calibration for this opp */ volt_data->volt_dynamic_nominal = omap_get_dyn_nominal(volt_data); /* * if the voltage we decided as safe is not the current voltage, * switch */ if (volt_data->volt_calibrated != u_volt_current) { pr_debug("%s: %s reconfiguring to voltage %d\n", __func__, voltdm->name, volt_data->volt_calibrated); voltdm_scale(voltdm, volt_data); } pr_info("%s: %s: Calibration complete: Voltage:Nominal=%d," "Calib=%d,margin=%d\n", __func__, voltdm->name, volt_data->volt_nominal, volt_data->volt_calibrated, volt_data->volt_margin); /* * TODO: Setup my wakeup voltage to allow immediate going to OFF and * on - Pending twl and voltage layer cleanups. * This is necessary, as this is not done as part of regular * Dvfs flow. * vc_setup_on_voltage(voltdm, volt_data->volt_calibrated); */ work_data->work_active = false; mutex_unlock(&omap_dvfs_lock); }
/** * sr_classp5_stop_hw_loop() * @sr: SmartReflex for which we stop calibration * * Stops hardware calibration */ static void sr_classp5_stop_hw_loop(struct omap_sr *sr) { sr_disable_errgen(sr); omap_vp_disable(sr->voltdm); sr_disable(sr); }