bool move_player(Player& player, short direction, Rectangle& area) { Point offset = get_offset(direction); // No attempt? if(offset.x == 0 && offset.y == 0) { return false; } Point target = sum_points(player, offset); // Out of bounds? if(!point_in_rectangle(target, area)) { return false; } // Blocked? // if(!is_open_cell(area, target)) { // return false; // } player.x = target.x; player.y = target.y; return true; }
// Extracts Tesseract features and appends them to the features vector. // Startpt to lastpt, inclusive, MUST have the same src_outline member, // which may be nullptr. The vector from lastpt to its next is included in // the feature extraction. Hidden edges should be excluded by the caller. // If force_poly is true, the features will be extracted from the polygonal // approximation even if more accurate data is available. static void ExtractFeaturesFromRun( const EDGEPT* startpt, const EDGEPT* lastpt, const DENORM& denorm, double feature_length, bool force_poly, GenericVector<INT_FEATURE_STRUCT>* features) { const EDGEPT* endpt = lastpt->next; const C_OUTLINE* outline = startpt->src_outline; if (outline != nullptr && !force_poly) { // Detailed information is available. We have to normalize only from // the root_denorm to denorm. const DENORM* root_denorm = denorm.RootDenorm(); int total_features = 0; // Get the features from the outline. int step_length = outline->pathlength(); int start_index = startpt->start_step; // pos is the integer coordinates of the binary image steps. ICOORD pos = outline->position_at_index(start_index); // We use an end_index that allows us to use a positive increment, but that // may be beyond the bounds of the outline steps/ due to wrap-around, to // so we use % step_length everywhere, except for start_index. int end_index = lastpt->start_step + lastpt->step_count; if (end_index <= start_index) end_index += step_length; LLSQ prev_points; LLSQ prev_dirs; FCOORD prev_normed_pos = outline->sub_pixel_pos_at_index(pos, start_index); denorm.NormTransform(root_denorm, prev_normed_pos, &prev_normed_pos); LLSQ points; LLSQ dirs; FCOORD normed_pos(0.0f, 0.0f); int index = GatherPoints(outline, feature_length, denorm, root_denorm, start_index, end_index, &pos, &normed_pos, &points, &dirs); while (index <= end_index) { // At each iteration we nominally have 3 accumulated sets of points and // dirs: prev_points/dirs, points/dirs, next_points/dirs and sum them // into sum_points/dirs, but we don't necessarily get any features out, // so if that is the case, we keep accumulating instead of rotating the // accumulators. LLSQ next_points; LLSQ next_dirs; FCOORD next_normed_pos(0.0f, 0.0f); index = GatherPoints(outline, feature_length, denorm, root_denorm, index, end_index, &pos, &next_normed_pos, &next_points, &next_dirs); LLSQ sum_points(prev_points); // TODO(rays) find out why it is better to use just dirs and next_dirs // in sum_dirs, instead of using prev_dirs as well. LLSQ sum_dirs(dirs); sum_points.add(points); sum_points.add(next_points); sum_dirs.add(next_dirs); bool made_features = false; // If we have some points, we can try making some features. if (sum_points.count() > 0) { // We have gone far enough from the start. Make a feature and restart. FCOORD fit_pt = sum_points.mean_point(); FCOORD fit_vector = MeanDirectionVector(sum_points, sum_dirs, prev_normed_pos, normed_pos); // The segment to which we fit features is the line passing through // fit_pt in direction of fit_vector that starts nearest to // prev_normed_pos and ends nearest to normed_pos. FCOORD start_pos = prev_normed_pos.nearest_pt_on_line(fit_pt, fit_vector); FCOORD end_pos = normed_pos.nearest_pt_on_line(fit_pt, fit_vector); // Possible correction to match the adjacent polygon segment. if (total_features == 0 && startpt != endpt) { FCOORD poly_pos(startpt->pos.x, startpt->pos.y); denorm.LocalNormTransform(poly_pos, &start_pos); } if (index > end_index && startpt != endpt) { FCOORD poly_pos(endpt->pos.x, endpt->pos.y); denorm.LocalNormTransform(poly_pos, &end_pos); } int num_features = ComputeFeatures(start_pos, end_pos, feature_length, features); if (num_features > 0) { // We made some features so shuffle the accumulators. prev_points = points; prev_dirs = dirs; prev_normed_pos = normed_pos; points = next_points; dirs = next_dirs; made_features = true; total_features += num_features; } // The end of the next set becomes the end next time around. normed_pos = next_normed_pos; } if (!made_features) { // We didn't make any features, so keep the prev accumulators and // add the next ones into the current. points.add(next_points); dirs.add(next_dirs); } } } else { // There is no outline, so we are forced to use the polygonal approximation. const EDGEPT* pt = startpt; do { FCOORD start_pos(pt->pos.x, pt->pos.y); FCOORD end_pos(pt->next->pos.x, pt->next->pos.y); denorm.LocalNormTransform(start_pos, &start_pos); denorm.LocalNormTransform(end_pos, &end_pos); ComputeFeatures(start_pos, end_pos, feature_length, features); } while ((pt = pt->next) != endpt); } }