示例#1
0
void rat_derivative(const int id, hamiltonian_field_t * const hf) {
  monomial * mnl = &monomial_list[id];
  solver_pm_t solver_pm;
  double atime, etime, dummy;
  atime = gettime();
  g_mu = 0;
  g_mu3 = 0.;
  boundary(mnl->kappa);

  if(mnl->type == CLOVERRAT) {
    g_c_sw = mnl->c_sw;
    for(int i = 0; i < VOLUME; i++) { 
      for(int mu = 0; mu < 4; mu++) { 
	_su3_zero(swm[i][mu]);
	_su3_zero(swp[i][mu]);
      }
    }
  
    // we compute the clover term (1 + T_ee(oo)) for all sites x
    sw_term( (const su3**) hf->gaugefield, mnl->kappa, mnl->c_sw); 
    // we invert it for the even sites only
    sw_invert(EE, 0.);
  }
  //mnl->forcefactor = mnl->EVMaxInv*mnl->EVMaxInv;
  mnl->forcefactor = 1.;

  solver_pm.max_iter = mnl->maxiter;
  solver_pm.squared_solver_prec = mnl->forceprec;
  solver_pm.no_shifts = mnl->rat.np;
  solver_pm.shifts = mnl->rat.mu;
  solver_pm.rel_prec = g_relative_precision_flag;
  solver_pm.type = CGMMS;
  solver_pm.M_psi = mnl->Qsq;
  solver_pm.sdim = VOLUME/2;
  // this generates all X_j,o (odd sites only) -> g_chi_up_spinor_field
  mnl->iter1 += cg_mms_tm(g_chi_up_spinor_field, mnl->pf,
			  &solver_pm, &dummy);
  
  for(int j = (mnl->rat.np-1); j > -1; j--) {
    mnl->Qp(mnl->w_fields[0], g_chi_up_spinor_field[j]);
    if(mnl->type == CLOVERRAT) {
      // apply Hopping Matrix M_{eo}
      // to get the even sites of X_e
      H_eo_sw_inv_psi(mnl->w_fields[2], g_chi_up_spinor_field[j], EO, -1, mnl->mu);
      // \delta Q sandwitched by Y_o^\dagger and X_e
      deriv_Sb(OE, mnl->w_fields[0], mnl->w_fields[2], hf, 
	       mnl->rat.rmu[j]*mnl->forcefactor); 
      
      // to get the even sites of Y_e
      H_eo_sw_inv_psi(mnl->w_fields[3], mnl->w_fields[0], EO, +1, mnl->mu);
      // \delta Q sandwitched by Y_e^\dagger and X_o
      // uses the gauge field in hf and changes the derivative fields in hf
      deriv_Sb(EO, mnl->w_fields[3], g_chi_up_spinor_field[j], hf, 
	       mnl->rat.rmu[j]*mnl->forcefactor);

      // even/even sites sandwiched by gamma_5 Y_e and gamma_5 X_e
      sw_spinor(EE, mnl->w_fields[2], mnl->w_fields[3], mnl->rat.rmu[j]*mnl->forcefactor);
  
      // odd/odd sites sandwiched by gamma_5 Y_o and gamma_5 X_o
      sw_spinor(OO, mnl->w_fields[0], g_chi_up_spinor_field[j], mnl->rat.rmu[j]*mnl->forcefactor);

    }
    else {
      /* apply Hopping Matrix M_{eo} */
      /* to get the even sites of X_e */
      H_eo_tm_inv_psi(mnl->w_fields[2], g_chi_up_spinor_field[j], EO, -1.);
      /* \delta Q sandwitched by Y_o^\dagger and X_e */
      deriv_Sb(OE, mnl->w_fields[0], mnl->w_fields[2], hf, 
	       mnl->rat.rmu[j]*mnl->forcefactor); 
      
      /* to get the even sites of Y_e */
      H_eo_tm_inv_psi(mnl->w_fields[3], mnl->w_fields[0], EO, +1);
      /* \delta Q sandwitched by Y_e^\dagger and X_o */
      deriv_Sb(EO, mnl->w_fields[3], g_chi_up_spinor_field[j], hf, 
	       mnl->rat.rmu[j]*mnl->forcefactor);
    }
  }
  if(mnl->type == CLOVERRAT  && mnl->trlog) {
    sw_deriv(EE, 0.);
  }
  if(mnl->type == CLOVERRAT) {
    sw_all(hf, mnl->kappa, mnl->c_sw);
  }
  etime = gettime();
  if(g_debug_level > 1 && g_proc_id == 0) {
    printf("# Time for %s monomial derivative: %e s\n", mnl->name, etime-atime);
  }
  return;
}
void cloverdet_derivative(const int id, hamiltonian_field_t * const hf) {
  monomial * mnl = &monomial_list[id];
  double atime, etime;
  int N = VOLUME/2;
  atime = gettime();
  for(int i = 0; i < VOLUME; i++) { 
    for(int mu = 0; mu < 4; mu++) { 
      _su3_zero(swm[i][mu]);
      _su3_zero(swp[i][mu]);
    }
  }

  mnl->forcefactor = 1.;
  /*********************************************************************
   * 
   *
   * This a term is det(\hat Q^2(\mu))
   *
   *********************************************************************/
  
  g_mu = mnl->mu;
  g_mu3 = mnl->rho;
  boundary(mnl->kappa);
  
  // we compute the clover term (1 + T_ee(oo)) for all sites x
  sw_term( (const su3**) hf->gaugefield, mnl->kappa, mnl->c_sw); 
  // we invert it for the even sites only
  if(!mnl->even_odd_flag) {
    N = VOLUME;
  }
  else {
    sw_invert(EE, mnl->mu);
  }
  
  if(mnl->solver != CG && g_proc_id == 0) {
    fprintf(stderr, "Bicgstab currently not implemented, using CG instead! (cloverdet_monomial.c)\n");
  }
  
  // Invert Q_{+} Q_{-}
  // X_o -> w_fields[1]
  chrono_guess(mnl->w_fields[1], mnl->pf, mnl->csg_field, mnl->csg_index_array,
               mnl->csg_N, mnl->csg_n, VOLUME/2, mnl->Qsq);
  mnl->iter1 += solve_degenerate(mnl->w_fields[1], mnl->pf, mnl->solver_params, mnl->maxiter, mnl->forceprec, 
                                 g_relative_precision_flag, VOLUME/2, mnl->Qsq, mnl->solver);
  chrono_add_solution(mnl->w_fields[1], mnl->csg_field, mnl->csg_index_array,
                      mnl->csg_N, &mnl->csg_n, N);
  
  // Y_o -> w_fields[0]
  mnl->Qm(mnl->w_fields[0], mnl->w_fields[1]);
  if(mnl->even_odd_flag) {
    // apply Hopping Matrix M_{eo}
    // to get the even sites of X_e
    H_eo_sw_inv_psi(mnl->w_fields[2], mnl->w_fields[1], EO, -1, mnl->mu);
    // \delta Q sandwitched by Y_o^\dagger and X_e
    deriv_Sb(OE, mnl->w_fields[0], mnl->w_fields[2], hf, mnl->forcefactor); 
    
    // to get the even sites of Y_e
    H_eo_sw_inv_psi(mnl->w_fields[3], mnl->w_fields[0], EO, +1, mnl->mu);
    // \delta Q sandwitched by Y_e^\dagger and X_o
    // uses the gauge field in hf and changes the derivative fields in hf
    deriv_Sb(EO, mnl->w_fields[3], mnl->w_fields[1], hf, mnl->forcefactor);
    
    // here comes the clover term...
    // computes the insertion matrices for S_eff
    // result is written to swp and swm
    // even/even sites sandwiched by gamma_5 Y_e and gamma_5 X_e
    sw_spinor_eo(EE, mnl->w_fields[2], mnl->w_fields[3], mnl->forcefactor);
    
    // odd/odd sites sandwiched by gamma_5 Y_o and gamma_5 X_o
    sw_spinor_eo(OO, mnl->w_fields[0], mnl->w_fields[1], mnl->forcefactor);
  
    // compute the contribution for the det-part
    // we again compute only the insertion matrices for S_det
    // the result is added to swp and swm
    // even sites only!
    sw_deriv(EE, mnl->mu);
  }
  else {
    /* \delta Q sandwitched by Y^\dagger and X */
    deriv_Sb_D_psi(mnl->w_fields[0], mnl->w_fields[1], hf, mnl->forcefactor);

    sw_spinor(mnl->w_fields[0], mnl->w_fields[1], mnl->forcefactor);
  }
  
  // now we compute
  // finally, using the insertion matrices stored in swm and swp
  // we compute the terms F^{det} and F^{sw} at once
  // uses the gaugefields in hf and changes the derivative field in hf
  sw_all(hf, mnl->kappa, mnl->c_sw);

  g_mu = g_mu1;
  g_mu3 = 0.;
  boundary(g_kappa);
  etime = gettime();
  if(g_debug_level > 1 && g_proc_id == 0) {
    printf("# Time for %s monomial derivative: %e s\n", mnl->name, etime-atime);
  }
  return;
}
示例#3
0
void cloverdet_derivative(const int id, hamiltonian_field_t * const hf) {
  monomial * mnl = &monomial_list[id];

  /* This factor 2 a missing factor 2 in trace_lambda */
  (*mnl).forcefactor = 2.;

  
  /*********************************************************************
   * 
   * even/odd version 
   *
   * This a term is det(\hat Q^2(\mu))
   *
   *********************************************************************/
  
  g_mu = mnl->mu;
  g_mu3 = mnl->rho;
  boundary(mnl->kappa);
  
  // we compute the clover term (1 + T_ee(oo)) for all sites x
  sw_term(hf->gaugefield, mnl->kappa, mnl->c_sw); 
  // we invert it for the even sites only
  sw_invert(EE, mnl->mu);
  
  if(mnl->solver != CG && g_proc_id == 0) {
    fprintf(stderr, "Bicgstab currently not implemented, using CG instead! (cloverdet_monomial.c)\n");
  }
  
  // Invert Q_{+} Q_{-}
  // X_o -> DUM_DERI+1
  chrono_guess(g_spinor_field[DUM_DERI+1], mnl->pf, mnl->csg_field, mnl->csg_index_array,
	       mnl->csg_N, mnl->csg_n, VOLUME/2, mnl->Qsq);
  mnl->iter1 += cg_her(g_spinor_field[DUM_DERI+1], mnl->pf, mnl->maxiter, mnl->forceprec, 
		       g_relative_precision_flag, VOLUME/2, mnl->Qsq);
  chrono_add_solution(g_spinor_field[DUM_DERI+1], mnl->csg_field, mnl->csg_index_array,
		      mnl->csg_N, &mnl->csg_n, VOLUME/2);
  
  // Y_o -> DUM_DERI
  mnl->Qm(g_spinor_field[DUM_DERI], g_spinor_field[DUM_DERI+1]);
  
  // apply Hopping Matrix M_{eo}
  // to get the even sites of X_e
  H_eo_sw_inv_psi(g_spinor_field[DUM_DERI+2], g_spinor_field[DUM_DERI+1], EE, -mnl->mu);
  // \delta Q sandwitched by Y_o^\dagger and X_e
  deriv_Sb(OE, g_spinor_field[DUM_DERI], g_spinor_field[DUM_DERI+2], hf); 
  
  // to get the even sites of Y_e
  H_eo_sw_inv_psi(g_spinor_field[DUM_DERI+3], g_spinor_field[DUM_DERI], EE, mnl->mu);
  // \delta Q sandwitched by Y_e^\dagger and X_o
  // uses the gauge field in hf and changes the derivative fields in hf
  deriv_Sb(EO, g_spinor_field[DUM_DERI+3], g_spinor_field[DUM_DERI+1], hf);
  
  // here comes the clover term...
  // computes the insertion matrices for S_eff
  // result is written to swp and swm
  // even/even sites sandwiched by gamma_5 Y_e and gamma_5 X_e
  gamma5(g_spinor_field[DUM_DERI+2], g_spinor_field[DUM_DERI+2], VOLUME/2);
  sw_spinor(EO, g_spinor_field[DUM_DERI+2], g_spinor_field[DUM_DERI+3]);
  
  // odd/odd sites sandwiched by gamma_5 Y_o and gamma_5 X_o
  gamma5(g_spinor_field[DUM_DERI], g_spinor_field[DUM_DERI], VOLUME/2);
  sw_spinor(OE, g_spinor_field[DUM_DERI], g_spinor_field[DUM_DERI+1]);
  
  // compute the contribution for the det-part
  // we again compute only the insertion matrices for S_det
  // the result is added to swp and swm
  // even sites only!
  sw_deriv(EE, mnl->mu);
  
  // now we compute
  // finally, using the insertion matrices stored in swm and swp
  // we compute the terms F^{det} and F^{sw} at once
  // uses the gaugefields in hf and changes the derivative field in hf
  sw_all(hf, mnl->kappa, mnl->c_sw);

  g_mu = g_mu1;
  g_mu3 = 0.;
  boundary(g_kappa);

  return;
}