/*
 * No need to decide whether this PTE shares the swap entry with others,
 * just let do_wp_page work it out if a write is requested later - to
 * force COW, vm_page_prot omits write permission from any private vma.
 */
static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
		unsigned long addr, swp_entry_t entry, struct page *page)
{
	spinlock_t *ptl;
	pte_t *pte;
	int ret = 1;

	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
		ret = -ENOMEM;

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
		if (ret > 0)
			mem_cgroup_uncharge_page(page);
		ret = 0;
		goto out;
	}

	inc_mm_counter(vma->vm_mm, anon_rss);
	get_page(page);
	set_pte_at(vma->vm_mm, addr, pte,
		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
	page_add_anon_rmap(page, vma, addr);
	swap_free(entry);
	/*
	 * Move the page to the active list so it is not
	 * immediately swapped out again after swapon.
	 */
	activate_page(page);
out:
	pte_unmap_unlock(pte, ptl);
	return ret;
}
static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
				unsigned long addr, unsigned long end,
				swp_entry_t entry, struct page *page)
{
	pte_t swp_pte = swp_entry_to_pte(entry);
	pte_t *pte;
	int ret = 0;

	/*
	 * We don't actually need pte lock while scanning for swp_pte: since
	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
	 * page table while we're scanning; though it could get zapped, and on
	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
	 * of unmatched parts which look like swp_pte, so unuse_pte must
	 * recheck under pte lock.  Scanning without pte lock lets it be
	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
	 */
	pte = pte_offset_map(pmd, addr);
	do {
		/*
		 * swapoff spends a _lot_ of time in this loop!
		 * Test inline before going to call unuse_pte.
		 */
		if (unlikely(pte_same(*pte, swp_pte))) {
			pte_unmap(pte);
			ret = unuse_pte(vma, pmd, addr, entry, page);
			if (ret)
				goto out;
			pte = pte_offset_map(pmd, addr);
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);
	pte_unmap(pte - 1);
out:
	return ret;
}
示例#3
0
static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
				unsigned long addr, unsigned long end,
				swp_entry_t entry, struct page *page)
{
	pte_t swp_pte = swp_entry_to_pte(entry);
	pte_t *pte;
	spinlock_t *ptl;
	int found = 0;

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	do {
		/*
		 * swapoff spends a _lot_ of time in this loop!
		 * Test inline before going to call unuse_pte.
		 */
		if (unlikely(pte_same(*pte, swp_pte))) {
			unuse_pte(vma, pte++, addr, entry, page);
			found = 1;
			break;
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);
	pte_unmap_unlock(pte - 1, ptl);
	return found;
}
示例#4
0
/* mm->page_table_lock is held. mmap_sem is not held */
static inline int try_to_swap_out(struct mm_struct * mm, struct vm_area_struct* vma, unsigned long address, pte_t * page_table, struct page *page, zone_t * classzone)
{
	pte_t pte;
	swp_entry_t entry;

	/* Don't look at this pte if it's been accessed recently. */
	if ((vma->vm_flags & VM_LOCKED) || ptep_test_and_clear_young(page_table)) {
		mark_page_accessed(page);
		return 0;
	}

	/* Don't bother unmapping pages that are active */
	if (PageActive(page))
		return 0;

	/* Don't bother replenishing zones not under pressure.. */
	if (!memclass(page->zone, classzone))
		return 0;

	if (TryLockPage(page))
		return 0;

	/* From this point on, the odds are that we're going to
	 * nuke this pte, so read and clear the pte.  This hook
	 * is needed on CPUs which update the accessed and dirty
	 * bits in hardware.
	 */
	flush_cache_page(vma, address);
	pte = ptep_get_and_clear(page_table);
	flush_tlb_page(vma, address);

	if (pte_dirty(pte))
		set_page_dirty(page);

	/*
	 * Is the page already in the swap cache? If so, then
	 * we can just drop our reference to it without doing
	 * any IO - it's already up-to-date on disk.
	 */
	if (PageSwapCache(page)) {
		entry.val = page->index;
		swap_duplicate(entry);
set_swap_pte:
		set_pte(page_table, swp_entry_to_pte(entry));
drop_pte:
		mm->rss--;
		UnlockPage(page);
		{
			int freeable = page_count(page) - !!page->buffers <= 2;
			page_cache_release(page);
			return freeable;
		}
	}

	/*
	 * Is it a clean page? Then it must be recoverable
	 * by just paging it in again, and we can just drop
	 * it..  or if it's dirty but has backing store,
	 * just mark the page dirty and drop it.
	 *
	 * However, this won't actually free any real
	 * memory, as the page will just be in the page cache
	 * somewhere, and as such we should just continue
	 * our scan.
	 *
	 * Basically, this just makes it possible for us to do
	 * some real work in the future in "refill_inactive()".
	 */
	if (page->mapping)
		goto drop_pte;
	if (!PageDirty(page))
		goto drop_pte;

	/*
	 * Anonymous buffercache pages can be left behind by
	 * concurrent truncate and pagefault.
	 */
	if (page->buffers)
		goto preserve;

	/*
	 * This is a dirty, swappable page.  First of all,
	 * get a suitable swap entry for it, and make sure
	 * we have the swap cache set up to associate the
	 * page with that swap entry.
	 */
	for (;;) {
		entry = get_swap_page();
		if (!entry.val)
			break;
		/* Add it to the swap cache and mark it dirty
		 * (adding to the page cache will clear the dirty
		 * and uptodate bits, so we need to do it again)
		 */
		if (add_to_swap_cache(page, entry) == 0) {
			SetPageUptodate(page);
			set_page_dirty(page);
			goto set_swap_pte;
		}
		/* Raced with "speculative" read_swap_cache_async */
		swap_free(entry);
	}

	/* No swap space left */
preserve:
	set_pte(page_table, pte);
	UnlockPage(page);
	return 0;
}
示例#5
0
文件: vmscan.c 项目: davidbau/davej
/*
 * The swap-out functions return 1 if they successfully
 * threw something out, and we got a free page. It returns
 * zero if it couldn't do anything, and any other value
 * indicates it decreased rss, but the page was shared.
 *
 * NOTE! If it sleeps, it *must* return 1 to make sure we
 * don't continue with the swap-out. Otherwise we may be
 * using a process that no longer actually exists (it might
 * have died while we slept).
 */
static int try_to_swap_out(struct mm_struct * mm, struct vm_area_struct* vma, unsigned long address, pte_t * page_table, int gfp_mask)
{
	pte_t pte;
	swp_entry_t entry;
	struct page * page;
	int onlist;

	pte = *page_table;
	if (!pte_present(pte))
		goto out_failed;
	page = pte_page(pte);
	if ((!VALID_PAGE(page)) || PageReserved(page))
		goto out_failed;

	if (mm->swap_cnt)
		mm->swap_cnt--;

	onlist = PageActive(page);
	/* Don't look at this pte if it's been accessed recently. */
	if (ptep_test_and_clear_young(page_table)) {
		age_page_up(page);
		goto out_failed;
	}
	if (!onlist)
		/* The page is still mapped, so it can't be freeable... */
		age_page_down_ageonly(page);

	/*
	 * If the page is in active use by us, or if the page
	 * is in active use by others, don't unmap it or
	 * (worse) start unneeded IO.
	 */
	if (page->age > 0)
		goto out_failed;

	if (TryLockPage(page))
		goto out_failed;

	/* From this point on, the odds are that we're going to
	 * nuke this pte, so read and clear the pte.  This hook
	 * is needed on CPUs which update the accessed and dirty
	 * bits in hardware.
	 */
	pte = ptep_get_and_clear(page_table);

	/*
	 * Is the page already in the swap cache? If so, then
	 * we can just drop our reference to it without doing
	 * any IO - it's already up-to-date on disk.
	 *
	 * Return 0, as we didn't actually free any real
	 * memory, and we should just continue our scan.
	 */
	if (PageSwapCache(page)) {
		entry.val = page->index;
		if (pte_dirty(pte))
			set_page_dirty(page);
set_swap_pte:
		swap_duplicate(entry);
		set_pte(page_table, swp_entry_to_pte(entry));
drop_pte:
		UnlockPage(page);
		mm->rss--;
		flush_tlb_page(vma, address);
		deactivate_page(page);
		page_cache_release(page);
out_failed:
		return 0;
	}

	/*
	 * Is it a clean page? Then it must be recoverable
	 * by just paging it in again, and we can just drop
	 * it..
	 *
	 * However, this won't actually free any real
	 * memory, as the page will just be in the page cache
	 * somewhere, and as such we should just continue
	 * our scan.
	 *
	 * Basically, this just makes it possible for us to do
	 * some real work in the future in "refill_inactive()".
	 */
	flush_cache_page(vma, address);
	if (!pte_dirty(pte))
		goto drop_pte;

	/*
	 * Ok, it's really dirty. That means that
	 * we should either create a new swap cache
	 * entry for it, or we should write it back
	 * to its own backing store.
	 */
	if (page->mapping) {
		set_page_dirty(page);
		goto drop_pte;
	}

	/*
	 * This is a dirty, swappable page.  First of all,
	 * get a suitable swap entry for it, and make sure
	 * we have the swap cache set up to associate the
	 * page with that swap entry.
	 */
	entry = get_swap_page();
	if (!entry.val)
		goto out_unlock_restore; /* No swap space left */

	/* Add it to the swap cache and mark it dirty */
	add_to_swap_cache(page, entry);
	set_page_dirty(page);
	goto set_swap_pte;

out_unlock_restore:
	set_pte(page_table, pte);
	UnlockPage(page);
	return 0;
}