示例#1
0
文件: trap.c 项目: SammokKabasi/OS161
/*
 * Function called when user-level code hits a fatal fault.
 */
static
void
kill_curthread(vaddr_t epc, unsigned code, vaddr_t vaddr)
{
	int sig = 0;

	KASSERT(code < NTRAPCODES);
	switch (code) {
	    case EX_IRQ:
	    	sig = SIGINT;
	    	break;
	    case EX_IBE:
	    	sig = SIGBUS;
	    	break;
	    case EX_DBE:
	    	sig = SIGBUS;
	    	break;
	    case EX_SYS:
		/* should not be seen */
	    	KASSERT(0);
	    	sig = SIGABRT;
	    	break;
	    case EX_MOD:
	    case EX_TLBL:
	    case EX_TLBS:
	    	sig = SIGSEGV;
	    	break;
	    case EX_ADEL:
	    case EX_ADES:
	    	sig = SIGBUS;
	    	break;
	    case EX_BP:
	    	sig = SIGTRAP;
	    	break;
	    case EX_RI:
	    	sig = SIGILL;
	    	break;
	    case EX_CPU:
	    	sig = SIGSEGV;
	    	break;
	    case EX_OVF:
	    	sig = SIGFPE;
	    	break;
	}

	/*
	 * You will probably want to change this.
	 */
	sys__exit(0);

	kprintf("Fatal user mode trap %u sig %d (%s, epc 0x%x, vaddr 0x%x)\n",
		code, sig, trapcodenames[code], epc, vaddr);

	panic("I don't know how to handle this\n");
}
示例#2
0
文件: trap.c 项目: tsetimmy/OS161
/*
 * Function called when user-level code hits a fatal fault.
 */
static
void
kill_curthread(u_int32_t epc, unsigned code, u_int32_t vaddr)
{
	assert(code<NTRAPCODES);
	kprintf("Fatal user mode trap %u (%s, epc 0x%x, vaddr 0x%x)\n",
		code, trapcodenames[code], epc, vaddr);

	/*
	 * You will probably want to change this.
	 */
  sys__exit(code);
	panic("I don't know how to handle this\n");
}
示例#3
0
文件: shell.c 项目: codyd51/axle
void process_command(char* string) {
	prepare_shell();

	if (((string != NULL) && (string[0] == '\0')) || !strlen(string))
		return;

	int argc;
	char *sdup = strdup(string);
	char **argv = buildargv(sdup, &argc);
	kfree(sdup);

	if (argc == 0) {
		freeargv(argv);
		return;
	}

	char* command = argv[0];

	int i = findCommand(command);
	if (i >= 0) {
		void (*command_function)(int, char **) = (void(*)(int, char**))CommandTable[i].function;
		command_function(argc, argv);
	}
	else {
		//not a valid command
		//are we trying to execute a binary?
		FILE* stream = fopen(command, "r");
		if (stream) {
			int pid = sys_fork();
			if (!pid) {
				execve(command, 0, 0);
				sys__exit(1);
			}
			else {
				int status;
				waitpid(pid, &status, 0);
			}
		}
		else {
			//invalid input
			printf("Command '\e[9;%s\e[15;' not found.", command);
		}
		fclose(stream);
	}
示例#4
0
文件: vm.c 项目: zrzahid/os161-kernel
/*
 * Get an empty chunk from the swap area to store a swapped out page 
 * We use a bitmap to describe the swap area. So, just look get an unmarked 
 * bit index from the swap_memmap and return the address of the chunk indexed 
 * by the index found. If there is no empty chunk then we are in great trouble.
 * We can't handle this request, so kill the thread and exit.
 */
u_int32_t get_empty_chunk() 
{
    int spl=splhigh();
    
    unsigned chunk_index;
    int no_free_chunk = bitmap_alloc(swap_memmap, &chunk_index);
    
    if(!no_free_chunk)
    {
        splx(spl);
        return (chunk_index*PAGE_SIZE);
    }    
    else
    {
        splx(spl);
        kprintf("VM: Swap Space full, killing curthread");
        sys__exit(0);
    }    
}
示例#5
0
/* Signal handler to help us recover from dying while we are attached to
 * other threads.
 */
static void SignalHandler(int signum, siginfo_t *si, void *data) {
  if (sig_pids != NULL) {
    if (signum == SIGABRT) {
      while (sig_num_threads-- > 0) {
        /* Not sure if sched_yield is really necessary here, but it does not */
        /* hurt, and it might be necessary for the same reasons that we have */
        /* to do so in sys_ptrace_detach().                                  */
        sys_sched_yield();
        sys_ptrace(PTRACE_KILL, sig_pids[sig_num_threads], 0, 0);
      }
    } else if (sig_num_threads > 0) {
      ResumeAllProcessThreads(sig_num_threads, (int *)sig_pids);
    }
  }
  sig_pids = NULL;
  if (sig_marker >= 0)
    NO_INTR(sys_close(sig_marker));
  sig_marker = -1;
  if (sig_proc >= 0)
    NO_INTR(sys_close(sig_proc));
  sig_proc = -1;

  sys__exit(signum == SIGABRT ? 1 : 2);
}
示例#6
0
文件: syscall.c 项目: Hle14/ASST2
void
mips_syscall(struct trapframe *tf)
{
	int callno;
	int32_t retval;
	int err;

	assert(curspl==0);

	callno = tf->tf_v0;

	/*
	 * Initialize retval to 0. Many of the system calls don't
	 * really return a value, just 0 for success and -1 on
	 * error. Since retval is the value returned on success,
	 * initialize it to 0 by default; thus it's not necessary to
	 * deal with it except for calls that return other values, 
	 * like write.
	 */

	retval = 0;

	switch (callno) {
	    case SYS_reboot:
			err = sys_reboot(tf->tf_a0);
			break;
		
	    case SYS_getpid:
			retval = ((int32_t)sys_getpid());
			err=retval;
			break;
			
		case SYS_waitpid:
			//just passing the the first arg from users waitpid
			err = (sys_waitpid(tf->tf_a0,&retval,0));
			break;
		
		case SYS__exit:
		
			retval = ((int32_t)sys__exit());
			err=retval;
			break;
			
		case SYS_fork:
			//http://jhshi.me/2012/03/21/os161-how-to-add-a-system-call/
			err = ((int32_t)sys_fork(tf));
			break;
		case SYS_execv:
			break;

		case SYS_read:
			//err = ((int32_t)sys_read(tf->tf_a0,(userptr_t)tf->tf_a1,tf->tf_a2)); //original
			err = ((int32_t)sys_read(tf->tf_a0,(char*)tf->tf_a1,tf->tf_a2));
			break;
		case SYS_write:
			err = ((int32_t)sys_write(tf->tf_a0,(char*)tf->tf_a1,tf->tf_a2));
			break;
	    default:
		kprintf("Unknown syscall %d\n", callno);
		err = ENOSYS;
		break;
	}


	if (err) {
		/*
		 * Return the error code. This gets converted at
		 * userlevel to a return value of -1 and the error
		 * code in errno.
		 */
		tf->tf_v0 = err;
		tf->tf_a3 = 1;      /* signal an error */
	}
	else {
		/* Success. */
		tf->tf_v0 = retval;
		tf->tf_a3 = 0;      /* signal no error */
	}
	
	/*
	 * Now, advance the program counter, to avoid restarting
	 * the syscall over and over again.
	 */
	
	tf->tf_epc += 4;

	/* Make sure the syscall code didn't forget to lower spl */
	assert(curspl==0);
}
示例#7
0
文件: syscall.c 项目: ghd213/OS161
/**
 * SPB & FAR
 * System call dispatcher.
 *
 * A pointer to the trapframe created during exception entry (in
 * exception.S) is passed in.
 *
 * The calling conventions for syscalls are as follows: Like ordinary
 * function calls, the first 4 32-bit arguments are passed in the 4
 * argument registers a0-a3. 64-bit arguments are passed in *aligned*
 * pairs of registers, that is, either a0/a1 or a2/a3. This means that
 * if the first argument is 32-bit and the second is 64-bit, a1 is
 * unused.
 *
 * This much is the same as the calling conventions for ordinary
 * function calls. In addition, the system call number is passed in
 * the v0 register.
 *
 * On successful return, the return value is passed back in the v0
 * register, or v0 and v1 if 64-bit. This is also like an ordinary
 * function call, and additionally the a3 register is also set to 0 to
 * indicate success.
 *
 * On an error return, the error code is passed back in the v0
 * register, and the a3 register is set to 1 to indicate failure.
 * (Userlevel code takes care of storing the error code in errno and
 * returning the value -1 from the actual userlevel syscall function.
 * See src/user/lib/libc/arch/mips/syscalls-mips.S and related files.)
 *
 * Upon syscall return the program counter stored in the trapframe
 * must be incremented by one instruction; otherwise the exception
 * return code will restart the "syscall" instruction and the system
 * call will repeat forever.
 *
 * If you run out of registers (which happens quickly with 64-bit
 * values) further arguments must be fetched from the user-level
 * stack, starting at sp+16 to skip over the slots for the
 * registerized values, with copyin().
 */
void
syscall(struct trapframe *tf)
{
	int callno, err;
	int32_t retval;

	off_t pos = 0;
	off_t lsret;
	int whence;

	KASSERT(curthread != NULL);
	KASSERT(curthread->t_curspl == 0);
	KASSERT(curthread->t_iplhigh_count == 0);

	callno = tf->tf_v0;

	/*
	 * Initialize retval to 0. Many of the system calls don't
	 * really return a value, just 0 for success and -1 on
	 * error. Since retval is the value returned on success,
	 * initialize it to 0 by default; thus it's not necessary to
	 * deal with it except for calls that return other values, 
	 * like write.
	 */
	retval = 0;

	switch (callno) {
	    case SYS_reboot:
	    	err = sys_reboot(tf->tf_a0);
		break;

	    case SYS___time:
	    	err = sys___time((userptr_t)tf->tf_a0, (userptr_t)tf->tf_a1);
		break;

	    case SYS_open:
	    	err = sys_open((const char*)tf->tf_a0, tf->tf_a1, &retval);
	    break;

	    case SYS_read:
	    	err = sys_read((int)tf->tf_a0,(void*)tf->tf_a1,(size_t)tf->tf_a2,&retval);
	    break;

	    case SYS_write:
	    	err = sys_write((int)tf->tf_a0,(const void*)tf->tf_a1,(size_t)tf->tf_a2,&retval);	
	    break;

	    case SYS_close:
	    	err = sys_close((int)tf->tf_a0, &retval);
   	    break;

   	    case SYS_lseek:

   	    	pos |= (off_t)tf->tf_a2;
   	    	pos <<= 32;			//puts a2 and a3 into one var.
   	    	pos |= (off_t)tf->tf_a3;

   	    	err = copyin((const userptr_t)tf->tf_sp+16, &whence, sizeof(whence));
   	    	if (err)
   	    		break;

   	    	err = sys_lseek((int)tf->tf_a0, pos, (int)whence, &lsret);
   	    	if(!err){
   	    		retval = lsret>>32;
   	    		tf->tf_v1 = lsret;
   	    	}
   	    break;

   	    case SYS_dup2:
   	    	err = sys_dup2((int)tf->tf_a0 , (int)tf->tf_a1, &retval);
   	    break;

   	    case SYS_chdir:
   	    	err = sys_chdir((const char*)tf->tf_a0);
   	    break;

   	    case SYS___getcwd:
   	    	err = sys___getcwd((char*)tf->tf_a0, (size_t)tf->tf_a1, &retval);
   	    break;

   	    case SYS_fork:
   	    	err = sys_fork(tf, &retval);
   	    break;

   	    case SYS_getpid:
   	    	err = sys_getpid(&retval);
   	    break;

   	    case SYS__exit:
   	    	err = sys__exit((int)tf->tf_a0, &retval);
   	    break;

   	    case SYS_waitpid:
   	    	err = sys_waitpid((int) tf->tf_a0, (int*) tf->tf_a1, tf->tf_a2, &retval);
   	    break;

   	    case SYS_execv:
   	    	err = sys_execv((const char*) tf->tf_a0, (char**) tf->tf_a1, &retval);
   	    break;

	    default:
		kprintf("Unknown syscall %d\n", callno);
		err = ENOSYS;
		break;
	}
示例#8
0
static void ListerThread(struct ListerParams *args) {
  int                found_parent = 0;
  pid_t              clone_pid  = sys_gettid(), ppid = sys_getppid();
  char               proc_self_task[80], marker_name[48], *marker_path;
  const char         *proc_paths[3];
  const char *const  *proc_path = proc_paths;
  int                proc = -1, marker = -1, num_threads = 0;
  int                max_threads = 0, sig;
  struct kernel_stat marker_sb, proc_sb;
  stack_t            altstack;

  /* Create "marker" that we can use to detect threads sharing the same
   * address space and the same file handles. By setting the FD_CLOEXEC flag
   * we minimize the risk of misidentifying child processes as threads;
   * and since there is still a race condition,  we will filter those out
   * later, anyway.
   */
  if ((marker = sys_socket(PF_LOCAL, SOCK_DGRAM, 0)) < 0 ||
      sys_fcntl(marker, F_SETFD, FD_CLOEXEC) < 0) {
  failure:
    args->result = -1;
    args->err    = errno;
    if (marker >= 0)
      NO_INTR(sys_close(marker));
    sig_marker = marker = -1;
    if (proc >= 0)
      NO_INTR(sys_close(proc));
    sig_proc = proc = -1;
    sys__exit(1);
  }

  /* Compute search paths for finding thread directories in /proc            */
  local_itoa(strrchr(strcpy(proc_self_task, "/proc/"), '\000'), ppid);
  strcpy(marker_name, proc_self_task);
  marker_path = marker_name + strlen(marker_name);
  strcat(proc_self_task, "/task/");
  proc_paths[0] = proc_self_task; /* /proc/$$/task/                          */
  proc_paths[1] = "/proc/";       /* /proc/                                  */
  proc_paths[2] = NULL;

  /* Compute path for marker socket in /proc                                 */
  local_itoa(strcpy(marker_path, "/fd/") + 4, marker);
  if (sys_stat(marker_name, &marker_sb) < 0) {
    goto failure;
  }

  /* Catch signals on an alternate pre-allocated stack. This way, we can
   * safely execute the signal handler even if we ran out of memory.
   */
  memset(&altstack, 0, sizeof(altstack));
  altstack.ss_sp    = args->altstack_mem;
  altstack.ss_flags = 0;
  altstack.ss_size  = ALT_STACKSIZE;
  sys_sigaltstack(&altstack, (const stack_t *)NULL);

  /* Some kernels forget to wake up traced processes, when the
   * tracer dies.  So, intercept synchronous signals and make sure
   * that we wake up our tracees before dying. It is the caller's
   * responsibility to ensure that asynchronous signals do not
   * interfere with this function.
   */
  sig_marker = marker;
  sig_proc   = -1;
  for (sig = 0; sig < sizeof(sync_signals)/sizeof(*sync_signals); sig++) {
    struct kernel_sigaction sa;
    memset(&sa, 0, sizeof(sa));
    sa.sa_sigaction_ = SignalHandler;
    sys_sigfillset(&sa.sa_mask);
    sa.sa_flags      = SA_ONSTACK|SA_SIGINFO|SA_RESETHAND;
    sys_sigaction(sync_signals[sig], &sa, (struct kernel_sigaction *)NULL);
  }
  
  /* Read process directories in /proc/...                                   */
  for (;;) {
    /* Some kernels know about threads, and hide them in "/proc"
     * (although they are still there, if you know the process
     * id). Threads are moved into a separate "task" directory. We
     * check there first, and then fall back on the older naming
     * convention if necessary.
     */
    if ((sig_proc = proc = c_open(*proc_path, O_RDONLY|O_DIRECTORY, 0)) < 0) {
      if (*++proc_path != NULL)
        continue;
      goto failure;
    }
    if (sys_fstat(proc, &proc_sb) < 0)
      goto failure;
    
    /* Since we are suspending threads, we cannot call any libc
     * functions that might acquire locks. Most notably, we cannot
     * call malloc(). So, we have to allocate memory on the stack,
     * instead. Since we do not know how much memory we need, we
     * make a best guess. And if we guessed incorrectly we retry on
     * a second iteration (by jumping to "detach_threads").
     *
     * Unless the number of threads is increasing very rapidly, we
     * should never need to do so, though, as our guestimate is very
     * conservative.
     */
    if (max_threads < proc_sb.st_nlink + 100)
      max_threads = proc_sb.st_nlink + 100;
    
    /* scope */ {
      pid_t pids[max_threads];
      int   added_entries = 0;
      sig_num_threads     = num_threads;
      sig_pids            = pids;
      for (;;) {
        struct kernel_dirent *entry;
        char buf[4096];
        ssize_t nbytes = sys_getdents(proc, (struct kernel_dirent *)buf,
                                      sizeof(buf));
        if (nbytes < 0)
          goto failure;
        else if (nbytes == 0) {
          if (added_entries) {
            /* Need to keep iterating over "/proc" in multiple
             * passes until we no longer find any more threads. This
             * algorithm eventually completes, when all threads have
             * been suspended.
             */
            added_entries = 0;
            sys_lseek(proc, 0, SEEK_SET);
            continue;
          }
          break;
        }
        for (entry = (struct kernel_dirent *)buf;
             entry < (struct kernel_dirent *)&buf[nbytes];
             entry = (struct kernel_dirent *)((char *)entry+entry->d_reclen)) {
          if (entry->d_ino != 0) {
            const char *ptr = entry->d_name;
            pid_t pid;
            
            /* Some kernels hide threads by preceding the pid with a '.'     */
            if (*ptr == '.')
              ptr++;
            
            /* If the directory is not numeric, it cannot be a
             * process/thread
             */
            if (*ptr < '0' || *ptr > '9')
              continue;
            pid = local_atoi(ptr);

            /* Attach (and suspend) all threads                              */
            if (pid && pid != clone_pid) {
              struct kernel_stat tmp_sb;
              char fname[entry->d_reclen + 48];
              strcat(strcat(strcpy(fname, "/proc/"),
                            entry->d_name), marker_path);
              
              /* Check if the marker is identical to the one we created      */
              if (sys_stat(fname, &tmp_sb) >= 0 &&
                  marker_sb.st_ino == tmp_sb.st_ino) {
                long i, j;

                /* Found one of our threads, make sure it is no duplicate    */
                for (i = 0; i < num_threads; i++) {
                  /* Linear search is slow, but should not matter much for
                   * the typically small number of threads.
                   */
                  if (pids[i] == pid) {
                    /* Found a duplicate; most likely on second pass         */
                    goto next_entry;
                  }
                }
                
                /* Check whether data structure needs growing                */
                if (num_threads >= max_threads) {
                  /* Back to square one, this time with more memory          */
                  NO_INTR(sys_close(proc));
                  goto detach_threads;
                }

                /* Attaching to thread suspends it                           */
                pids[num_threads++] = pid;
                sig_num_threads     = num_threads;
                if (sys_ptrace(PTRACE_ATTACH, pid, (void *)0,
                               (void *)0) < 0) {
                  /* If operation failed, ignore thread. Maybe it
                   * just died?  There might also be a race
                   * condition with a concurrent core dumper or
                   * with a debugger. In that case, we will just
                   * make a best effort, rather than failing
                   * entirely.
                   */
                  num_threads--;
                  sig_num_threads = num_threads;
                  goto next_entry;
                }
                while (sys_waitpid(pid, (int *)0, __WALL) < 0) {
                  if (errno != EINTR) {
                    sys_ptrace_detach(pid);
                    num_threads--;
                    sig_num_threads = num_threads;
                    goto next_entry;
                  }
                }
                
                if (sys_ptrace(PTRACE_PEEKDATA, pid, &i, &j) || i++ != j ||
                    sys_ptrace(PTRACE_PEEKDATA, pid, &i, &j) || i   != j) {
                  /* Address spaces are distinct, even though both
                   * processes show the "marker". This is probably
                   * a forked child process rather than a thread.
                   */
                  sys_ptrace_detach(pid);
                  num_threads--;
                  sig_num_threads = num_threads;
                } else {
                  found_parent |= pid == ppid;
                  added_entries++;
                }
              }
            }
          }
        next_entry:;
        }
      }
      NO_INTR(sys_close(proc));
      sig_proc = proc = -1;

      /* If we failed to find any threads, try looking somewhere else in
       * /proc. Maybe, threads are reported differently on this system.
       */
      if (num_threads > 1 || !*++proc_path) {
        NO_INTR(sys_close(marker));
        sig_marker = marker = -1;

        /* If we never found the parent process, something is very wrong.
         * Most likely, we are running in debugger. Any attempt to operate
         * on the threads would be very incomplete. Let's just report an
         * error to the caller.
         */
        if (!found_parent) {
          ResumeAllProcessThreads(num_threads, pids);
          sys__exit(3);
        }

        /* Now we are ready to call the callback,
         * which takes care of resuming the threads for us.
         */
        args->result = args->callback(args->parameter, num_threads,
                                      pids, args->ap);
        args->err = errno;

        /* Callback should have resumed threads, but better safe than sorry  */
        if (ResumeAllProcessThreads(num_threads, pids)) {
          /* Callback forgot to resume at least one thread, report error     */
          args->err    = EINVAL;
          args->result = -1;
        }

        sys__exit(0);
      }
    detach_threads:
      /* Resume all threads prior to retrying the operation                  */
      ResumeAllProcessThreads(num_threads, pids);
      sig_pids = NULL;
      num_threads = 0;
      sig_num_threads = num_threads;
      max_threads += 100;
    }
  }
}
示例#9
0
文件: syscall.c 项目: pd-smith/os161
void
syscall(struct trapframe *tf)
{
	int callno;
	int32_t retval;
	int err;

	KASSERT(curthread != NULL);
	KASSERT(curthread->t_curspl == 0);
	KASSERT(curthread->t_iplhigh_count == 0);

	callno = tf->tf_v0;

	/*
	 * Initialize retval to 0. Many of the system calls don't
	 * really return a value, just 0 for success and -1 on
	 * error. Since retval is the value returned on success,
	 * initialize it to 0 by default; thus it's not necessary to
	 * deal with it except for calls that return other values, 
	 * like write.
	 */

	retval = 0;

	uint32_t v0, v1;
	off_t pos;
	int whence;
	//userptr_t *status;

	struct stat statbuf;


	switch (callno) {
	    case SYS_reboot:
		err = sys_reboot(tf->tf_a0);
		break;

	    case SYS___time:
		err = sys___time((userptr_t)tf->tf_a0,
				 (userptr_t)tf->tf_a1);	 /* the syscall ov*/
		break;

	    case SYS_open:
	    err = sys_open((const_userptr_t)tf->tf_a0, tf->tf_a1, (mode_t)tf ->tf_a2, &retval);
	    break;

	    case SYS_close:
	    err = sys_close((tf->tf_a0),&retval);
	    break;

	    case SYS_read:
	    	err = sys_read(tf->tf_a0, (userptr_t)tf->tf_a1, (size_t)tf -> tf_a2, &retval);
	    	//retval = (int32_t)bytes;
	    	break;

	    case SYS_write:
	   	    err = sys_write(tf->tf_a0, (userptr_t)tf->tf_a1, (size_t)tf -> tf_a2, &retval);
	   	    //retval = (int32_t)bytes;
	   	    break;

	    case SYS_lseek:
	    	pos = tf->tf_a2;
	    	pos = pos << 32;
	    	pos += tf -> tf_a3;
	    	err = copyin((const_userptr_t)tf->tf_sp+16,&whence,sizeof(int));
	    	if(err)
	    	{
	    		break;
	    	}
	    	err = sys_lseek(tf->tf_a0, pos, whence, &v0, &v1);
	    	if(err)
	    	{
	    		break;
	    	}
	    	retval = v0;
	    	tf->tf_v1 = v1;
	    	break;

	    case SYS__exit:

	    	sys__exit(tf->tf_a0);


//			We are only here because of one of 2 reasons. We tried to kill the initial thread
//			while there was/were (an) immediate child(ren) of it running.

//			*NOTE* I'm actually NOT sure if that's a valid reason to be here

//			Second reason? Something went horribly, horribly wrong
	    	err = 0;
	    	break;
 
	    case SYS_dup2:

	    	err = sys_dup2(tf->tf_a0,tf->tf_a1,&retval);
	    	break;

	    case SYS_fstat:

	    	err = sys_fstat(tf->tf_a0, &statbuf);
	    	break;

	    case SYS_fork:
	    	err = sys_fork(tf, &retval);
	    	break;

	    case SYS_getpid:
	    	err = sys_getpid(&retval);
	    	break;

	    case SYS_waitpid:
	    	err = sys_waitpid(tf->tf_a0, (int*)tf->tf_a1, (int)tf->tf_a2, &retval);
	    	break;

	    case SYS___getcwd:

	    	err = sys___getcwd((char*)tf->tf_a0,(size_t)tf->tf_a1,&retval);
	    	break;

	    case SYS_chdir:
	    	err = sys_chdir((char*)tf->tf_a0,&retval);
	    	break;

	    case SYS_execv:
	    	err = sys_execv((const char*)tf->tf_a0, (char**)tf->tf_a1);
	    	break;
	    case SYS_sbrk:
	    	err = sbrk((int)tf->tf_a0,&retval);
	    	break;

	    default:
		kprintf("Unknown syscall %d\n", callno);
		err = ENOSYS;
		break;
	}


	if (err) {
		/*
		 * Return the error code. This gets converted at
		 * userlevel to a return value of -1 and the error
		 * code in errno.
		 */
		tf->tf_v0 = err;
		tf->tf_a3 = 1;      /* signal an error */
	}
	else {
		/* Success. */
		tf->tf_v0 = retval;
		tf->tf_a3 = 0;      /* signal no error */
	}
	
	/*
	 * Now, advance the program counter, to avoid restarting
	 * the syscall over and over again.
	 */
	
	tf->tf_epc += 4;

	/* Make sure the syscall code didn't forget to lower spl */
	KASSERT(curthread->t_curspl == 0);
	/* ...or leak any spinlocks */
	KASSERT(curthread->t_iplhigh_count == 0);


}
示例#10
0
文件: syscall.c 项目: ShuranXu/OS161
/* call functions based on the call number.  */
void
mips_syscall(struct trapframe *tf)
{
	int callno;
	int32_t retval;
	int err;

	assert(curspl==0);

	callno = tf->tf_v0; // the system call number is
 	//passed in the v0 register.

	/*
	 * Initialize retval to 0. Many of the system calls don't
	 * really return a value, just 0 for success and -1 on
	 * error. Since retval is the value returned on success,
	 * initialize it to 0 by default; thus it's not necessary to
	 * deal with it except for calls that return other values, 
	 * like write.
	 */

	retval = 0;

	switch (callno) {
	    case SYS_reboot:
		err = sys_reboot(tf->tf_a0);
		break;
		case SYS_execv:
		// err = sys_execv_(tf);
		err = sys_execv(tf->tf_a0, tf->tf_a1);
		break;
		case SYS_fork:
		err = sys_fork(tf, &retval);
		break;
		case SYS_waitpid:
		err = sys_waitpid(tf->tf_a0,tf->tf_a1, &retval);
		break;
		case SYS_getpid:
		err = sys_getpid(&retval);
		break;
		case SYS__exit:
		err = sys__exit(tf->tf_a0, &retval);
		break;
		case SYS_read:
		err = sys_read(tf, &retval);
		break;
		case SYS_write:
		// err = sys_write(tf, &retval);
		err = sys_write(tf->tf_a0, tf->tf_a1, tf->tf_a2, &retval);
		break;
		case SYS_sbrk:
		err = sys_sbrk(tf->tf_a0, &retval);
		break;
	    /* Add stuff here */
 
	    default:
		kprintf("Unknown syscall %d\n", callno);
		err = ENOSYS;
		break;
	}


	if (err) {
		/*
		 * Return the error code. This gets converted at
		 * userlevel to a return value of -1 and the error
		 * code in errno.
		 */
		tf->tf_v0 = err;
		tf->tf_a3 = 1;      /* signal an error */
	}
	else {
		/* Success. */
		tf->tf_v0 = retval;
		tf->tf_a3 = 0;      /* signal no error */
	}
	
	/*
	 * Now, advance the program counter, to avoid restarting
	 * the syscall over and over again.
	 */
	
	tf->tf_epc += 4;

	/* Make sure the syscall code didn't forget to lower spl */
	assert(curspl==0);

}
示例#11
0
/*
 * System call dispatcher.
 *
 * A pointer to the trapframe created during exception entry (in
 * exception.S) is passed in.
 *
 * The calling conventions for syscalls are as follows: Like ordinary
 * function calls, the first 4 32-bit arguments are passed in the 4
 * argument registers a0-a3. 64-bit arguments are passed in *aligned*
 * pairs of registers, that is, either a0/a1 or a2/a3. This means that
 * if the first argument is 32-bit and the second is 64-bit, a1 is
 * unused.
 *
 * This much is the same as the calling conventions for ordinary
 * function calls. In addition, the system call number is passed in
 * the v0 register.
 *
 * On successful return, the return value is passed back in the v0
 * register, or v0 and v1 if 64-bit. This is also like an ordinary
 * function call, and additionally the a3 register is also set to 0 to
 * indicate success.
 *
 * On an error return, the error code is passed back in the v0
 * register, and the a3 register is set to 1 to indicate failure.
 * (Userlevel code takes care of storing the error code in errno and
 * returning the value -1 from the actual userlevel syscall function.
 * See src/user/lib/libc/arch/mips/syscalls-mips.S and related files.)
 *
 * Upon syscall return the program counter stored in the trapframe
 * must be incremented by one instruction; otherwise the exception
 * return code will restart the "syscall" instruction and the system
 * call will repeat forever.
 *
 * If you run out of registers (which happens quickly with 64-bit
 * values) further arguments must be fetched from the user-level
 * stack, starting at sp+16 to skip over the slots for the
 * registerized values, with copyin().
 */
void
syscall(struct trapframe *tf)
{
	int callno;
	int32_t retval;
	int err;

	KASSERT(curthread != NULL);
	KASSERT(curthread->t_curspl == 0);
	KASSERT(curthread->t_iplhigh_count == 0);

	callno = tf->tf_v0;

	/*
	 * Initialize retval to 0. Many of the system calls don't
	 * really return a value, just 0 for success and -1 on
	 * error. Since retval is the value returned on success,
	 * initialize it to 0 by default; thus it's not necessary to
	 * deal with it except for calls that return other values,
	 * like write.
	 */

	retval = 0;

	/* note the casts to userptr_t */

	switch (callno) {
	    case SYS_reboot:
		err = sys_reboot(tf->tf_a0);
		break;

	    case SYS___time:
		err = sys___time((userptr_t)tf->tf_a0,
				 (userptr_t)tf->tf_a1);
		break;


	    /* process calls */

	    case SYS_fork:
		err = sys_fork(tf, &retval);
		break;

	    case SYS_execv:
		err = sys_execv(
			(userptr_t)tf->tf_a0,
			(userptr_t)tf->tf_a1);
		break;

	    case SYS__exit:
		sys__exit(tf->tf_a0);
		panic("Returning from exit\n");

	    case SYS_waitpid:
		err = sys_waitpid(
			tf->tf_a0,
			(userptr_t)tf->tf_a1,
			tf->tf_a2, 
			&retval);
		break;

	    case SYS_getpid:
		err = sys_getpid(&retval);
		break;


	    /* file calls */

	    case SYS_open:
		err = sys_open(
			(userptr_t)tf->tf_a0,
			tf->tf_a1,
			tf->tf_a2,
			&retval);
		break;

	    case SYS_dup2:
		err = sys_dup2(
			tf->tf_a0,
			tf->tf_a1,
			&retval);
		break;

	    case SYS_close:
		err = sys_close(tf->tf_a0);
		break;

	    case SYS_read:
		err = sys_read(
			tf->tf_a0,
			(userptr_t)tf->tf_a1,
			tf->tf_a2,
			&retval);
		break;
	    case SYS_write:
		err = sys_write(
			tf->tf_a0,
			(userptr_t)tf->tf_a1,
			tf->tf_a2,
			&retval);
		break;
	    case SYS_lseek:
		{
			/*
			 * Because the position argument is 64 bits wide,
			 * it goes in the a2/a3 registers and we have to
			 * get "whence" from the stack. Furthermore, the
			 * return value is 64 bits wide, so the extra
			 * part of it goes in the v1 register.
			 *
			 * This is a trifle messy.
			 */
			uint64_t offset;
			int whence;
			off_t retval64;

			join32to64(tf->tf_a2, tf->tf_a3, &offset);

			err = copyin((userptr_t)tf->tf_sp + 16,
				     &whence, sizeof(int));
			if (err) {
				break;
			}

			err = sys_lseek(tf->tf_a0, offset, whence, &retval64);
			if (err) {
				break;
			}

			split64to32(retval64, &tf->tf_v0, &tf->tf_v1);
			retval = tf->tf_v0;
		}	
		break;

	    case SYS_chdir:
		err = sys_chdir((userptr_t)tf->tf_a0);
		break;

	    case SYS___getcwd:
		err = sys___getcwd(
			(userptr_t)tf->tf_a0,
			tf->tf_a1,
			&retval);
		break;


	    /* Even more system calls will go here */

 
	    default:
		kprintf("Unknown syscall %d\n", callno);
		err = ENOSYS;
		break;
	}


	if (err) {
		/*
		 * Return the error code. This gets converted at
		 * userlevel to a return value of -1 and the error
		 * code in errno.
		 */
		tf->tf_v0 = err;
		tf->tf_a3 = 1;      /* signal an error */
	}
	else {
		/* Success. */
		tf->tf_v0 = retval;
		tf->tf_a3 = 0;      /* signal no error */
	}

	/*
	 * Now, advance the program counter, to avoid restarting
	 * the syscall over and over again.
	 */

	tf->tf_epc += 4;

	/* Make sure the syscall code didn't forget to lower spl */
	KASSERT(curthread->t_curspl == 0);
	/* ...or leak any spinlocks */
	KASSERT(curthread->t_iplhigh_count == 0);
}
void
mips_syscall(struct trapframe *tf)
{
	int callno;
	int32_t retval;
	int err;

	assert(curspl==0);

	callno = tf->tf_v0;

	/*
	 * Initialize retval to 0. Many of the system calls don't
	 * really return a value, just 0 for success and -1 on
	 * error. Since retval is the value returned on success,
	 * initialize it to 0 by default; thus it's not necessary to
	 * deal with it except for calls that return other values, 
	 * like write.
	 */
	retval = 0;

	switch (callno) {
	    case SYS_reboot:
			err = sys_reboot(tf->tf_a0);
			break;

#if OPT_A2
	    case SYS_open:
			err = sys_open((char *)tf->tf_a0, tf->tf_a1, tf->tf_a2);
			if (err > 0)
			{
				retval = err;
				err = 0;
			}
			break;

	    case SYS_close:
	    	err = sys_close(tf->tf_a0);
			break;

	    case SYS_read:
	    	err = sys_read(tf->tf_a0, (void *)tf->tf_a1, tf->tf_a2);

			if (err > 0)
			{
				retval = err;
				err = 0;
			}
			break;

	    case SYS_write:
			err = sys_write(tf->tf_a0, (void *)tf->tf_a1, tf->tf_a2);

			if (err > 0)
			{
				retval = err;
				err = 0;
			}
			break;

	    case SYS_fork:
			err = sys_fork(tf);

            if (err >= 0)
            {
                retval = err;
                err = 0;
            }
			break;

	    case SYS_getpid:
            err = sys_getpid();
            
            if (err > 0)
            {
                retval = err;
                err = 0;
            }
            break;

	    case SYS_waitpid:
            err = sys_waitpid(tf->tf_a0, (int *)tf->tf_a1, (int)tf->tf_a2);
			break;

	    case SYS__exit:
	    	sys__exit(0);
			break;

	    case SYS_execv:
			err = sys_execv((char *)tf->tf_a0, (char **)tf->tf_a1);
			break;
#endif	    
	    default:
			kprintf("Unknown syscall %d\n", callno);
			err = ENOSYS;
			break;
	}

    
	if (err < 0) {
		/*
		 * Return the error code. This gets converted at
		 * userlevel to a return value of -1 and the error
		 * code in errno.
		 */
		tf->tf_v0 = (-1)*(err);
		tf->tf_a3 = 1;      /* signal an error */
	}
	else {
		/* Success. */
		tf->tf_v0 = retval;
		tf->tf_a3 = 0;      /* signal no error */
	}
	
	/*
	 * Now, advance the program counter, to avoid restarting
	 * the syscall over and over again.
	 */
	tf->tf_epc += 4;

	/* Make sure the syscall code didn't forget to lower spl */
	assert(curspl==0);
}
示例#13
0
文件: syscall.c 项目: roopaliv/os161
/*
 * System call dispatcher.
 *
 * A pointer to the trapframe created during exception entry (in
 * exception-*.S) is passed in.
 *
 * The calling conventions for syscalls are as follows: Like ordinary
 * function calls, the first 4 32-bit arguments are passed in the 4
 * argument registers a0-a3. 64-bit arguments are passed in *aligned*
 * pairs of registers, that is, either a0/a1 or a2/a3. This means that
 * if the first argument is 32-bit and the second is 64-bit, a1 is
 * unused.
 *
 * This much is the same as the calling conventions for ordinary
 * function calls. In addition, the system call number is passed in
 * the v0 register.
 *
 * On successful return, the return value is passed back in the v0
 * register, or v0 and v1 if 64-bit. This is also like an ordinary
 * function call, and additionally the a3 register is also set to 0 to
 * indicate success.
 *
 * On an error return, the error code is passed back in the v0
 * register, and the a3 register is set to 1 to indicate failure.
 * (Userlevel code takes care of storing the error code in errno and
 * returning the value -1 from the actual userlevel syscall function.
 * See src/user/lib/libc/arch/mips/syscalls-mips.S and related files.)
 *
 * Upon syscall return the program counter stored in the trapframe
 * must be incremented by one instruction; otherwise the exception
 * return code will restart the "syscall" instruction and the system
 * call will repeat forever.
 *
 * If you run out of registers (which happens quickly with 64-bit
 * values) further arguments must be fetched from the user-level
 * stack, starting at sp+16 to skip over the slots for the
 * registerized values, with copyin().
 */
void
syscall(struct trapframe *tf)
{
	int callno;
	int32_t retval;
	int err;

	KASSERT(curthread != NULL);
	KASSERT(curthread->t_curspl == 0);
	KASSERT(curthread->t_iplhigh_count == 0);

	callno = tf->tf_v0;

	/*
	 * Initialize retval to 0. Many of the system calls don't
	 * really return a value, just 0 for success and -1 on
	 * error. Since retval is the value returned on success,
	 * initialize it to 0 by default; thus it's not necessary to
	 * deal with it except for calls that return other values,
	 * like write.
	 */

	retval = 0;

	int whence = 0;
    off_t position = 0;
	int32_t retval2 = 0; 

	switch (callno) {
	    case SYS_reboot:
		err = sys_reboot(tf->tf_a0);
		break;

	    case SYS___time:
		err = sys___time((userptr_t)tf->tf_a0,
				 (userptr_t)tf->tf_a1);
		break;

	    /* Add stuff here */
	    case SYS_write:
		err = sys_write((int)tf->tf_a0,(const void *)tf->tf_a1,(size_t)tf->tf_a2, &retval);
		break;

 		case SYS_read:
		err = sys_read(tf->tf_a0, (void *) tf->tf_a1, (size_t) tf->tf_a2, &retval);
		break;
		
		case SYS_open:
		err = sys_open((char *)tf->tf_a0, tf->tf_a1, (mode_t)tf->tf_a2, &retval);
		break;

		case SYS_close:
		err = sys_close(tf->tf_a0);
		break;

		case SYS_dup2:
		err = sys_dup2(tf->tf_a0, tf->tf_a1, &retval);
		break;

   	    case SYS_lseek:
    	position |= (off_t)tf->tf_a2;
    	position <<= 32;
    	position |= (off_t)tf->tf_a3;

    	err = copyin((const userptr_t)tf->tf_sp+16, &whence, sizeof(whence));
    	if (err)
    		break;
    	err = sys_lseek((int)tf->tf_a0, position, (int)whence, &retval, &retval2);
    	if(!err) 
			tf->tf_v1 = retval2;
   	    break;

		case SYS_fork:
		err = sys_fork(tf,&retval);
		break;

		case SYS_getpid:
		err = sys_getpid((pid_t *)&retval);
		break;
		case SYS_waitpid:
		  err = sys_waitpid((pid_t)tf->tf_a0, (userptr_t)tf->tf_a1, (int)tf->tf_a2, (pid_t *)&retval);
	  	break;

		case SYS__exit:
	  	sys__exit((int)tf->tf_a0);
	  	err = -1;
	  	//will never come here as it doesnt return
	  	break;
		
		case SYS_execv:
		err=sys_execv((const char *)tf->tf_a0,(char **)tf->tf_a1);
		break;

		case SYS_sbrk:
		err=(int)sys_sbrk((intptr_t)tf->tf_a0, (vaddr_t *)&retval);
		break;
	    default:
		kprintf("Unknown syscall %d\n", callno);
		err = ENOSYS;
		break;
	}


	if (err) {
		/*
		 * Return the error code. This gets converted at
		 * userlevel to a return value of -1 and the error
		 * code in errno.
		 */
		tf->tf_v0 = err;
		tf->tf_a3 = 1;      /* signal an error */
	}
	else {
		/* Success. */
		tf->tf_v0 = retval;
		tf->tf_a3 = 0;      /* signal no error */
	}

	/*
	 * Now, advance the program counter, to avoid restarting
	 * the syscall over and over again.
	 */

	tf->tf_epc += 4;

	/* Make sure the syscall code didn't forget to lower spl */
	KASSERT(curthread->t_curspl == 0);
	/* ...or leak any spinlocks */
	KASSERT(curthread->t_iplhigh_count == 0);
}
示例#14
0
/*
 * System call dispatcher.
 *
 * A pointer to the trapframe created during exception entry (in
 * exception-*.S) is passed in.
 *
 * The calling conventions for syscalls are as follows: Like ordinary
 * function calls, the first 4 32-bit arguments are passed in the 4
 * argument registers a0-a3. 64-bit arguments are passed in *aligned*
 * pairs of registers, that is, either a0/a1 or a2/a3. This means that
 * if the first argument is 32-bit and the second is 64-bit, a1 is
 * unused.
 *
 * This much is the same as the calling conventions for ordinary
 * function calls. In addition, the system call number is passed in
 * the v0 register.
 *
 * On successful return, the return value is passed back in the v0
 * register, or v0 and v1 if 64-bit. This is also like an ordinary
 * function call, and additionally the a3 register is also set to 0 to
 * indicate success.
 *
 * On an error return, the error code is passed back in the v0
 * register, and the a3 register is set to 1 to indicate failure.
 * (Userlevel code takes care of storing the error code in errno and
 * returning the value -1 from the actual userlevel syscall function.
 * See src/user/lib/libc/arch/mips/syscalls-mips.S and related files.)
 *
 * Upon syscall return the program counter stored in the trapframe
 * must be incremented by one instruction; otherwise the exception
 * return code will restart the "syscall" instruction and the system
 * call will repeat forever.
 *
 * If you run out of registers (which happens quickly with 64-bit
 * values) further arguments must be fetched from the user-level
 * stack, starting at sp+16 to skip over the slots for the
 * registerized values, with copyin().
 */
void
syscall(struct trapframe *tf)
{
	int callno;
	int32_t retval;
	int32_t retval1;
	int err;
	off_t pos;
	int whence;
	KASSERT(curthread != NULL);
	KASSERT(curthread->t_curspl == 0);
	KASSERT(curthread->t_iplhigh_count == 0);

	callno = tf->tf_v0;

	/*
	 * Initialize retval to 0. Many of the system calls don't
	 * really return a value, just 0 for success and -1 on
	 * error. Since retval is the value returned on success,
	 * initialize it to 0 by default; thus it's not necessary to
	 * deal with it except for calls that return other values,
	 * like write.
	 */

	retval = 0;

	switch (callno) {
	    case SYS_reboot:
		err = sys_reboot(tf->tf_a0);
		break;

	    case SYS___time:
		err = sys___time((userptr_t)tf->tf_a0,
				 (userptr_t)tf->tf_a1);
		break;

	    /* Start of process system calls */
	    case SYS_fork:
	    	err = sys_fork(tf, &retval);
	    break;
	    case SYS_execv:
	    	err = sys_execv((const char*)tf->tf_a0,(char **) tf->tf_a1);
	    break;
	    case SYS__exit:
	    	sys__exit(tf->tf_a0);
	    break;
	    case SYS_waitpid:
	    	err =  sys_waitpid((pid_t)tf->tf_a0, (int *)tf->tf_a1, tf->tf_a2, &retval);
	    break;
	    case SYS_getpid:
	    	err = sys_getpid(&retval);
	    break;

	    /* End of process system calls */

		case SYS_open:
			err = sys_open((char *)tf->tf_a0,tf->tf_a1,(mode_t)tf->tf_a2,&retval);
		break;
		case SYS_close :
			err = sys_close(tf->tf_a0, &retval);
		break;
		case SYS_write :
			err = sys_write(tf->tf_a0,(void *) tf->tf_a1,(size_t)tf->tf_a2, &retval);
	  break;
		case SYS_read:
			err = sys_read(tf->tf_a0,(void *) tf->tf_a1,(size_t)tf->tf_a2, &retval);
		break;
		case SYS_lseek:
			pos =  (  (off_t)tf->tf_a2 << 32 | tf->tf_a3);
			if (copyin((const_userptr_t) tf->tf_sp+16, &whence, sizeof(int)) ) {
				err = EINVAL ; // definitely an error
				break;
			}
			err = sys_lseek(tf->tf_a0, pos,whence, &retval, &retval1);
			if (err == 0) { // if call has passed, then we need to copy retval1 to tf->tf_v1 (low32)
				tf->tf_v1 = retval1;
			}
		break;
		case SYS___getcwd:
			//char *buf, size_t buflen, int *retval
			err = sys__getcwd((char *)tf->tf_a0, (size_t) tf->tf_a1, &retval);
		break;
		case SYS_dup2:
			err = sys_dup2(tf->tf_a0, tf->tf_a1, &retval);
		break;
		case SYS_chdir:
			err = sys_chdir((const char *)tf->tf_a0,&retval);
		break;
	  default:
			kprintf("Unknown syscall %d\n", callno);
			err = ENOSYS;
		break;
	}


	if (err) {
		/*
		 * Return the error code. This gets converted at
		 * userlevel to a return value of -1 and the error
		 * code in errno.
		 */
		tf->tf_v0 = err;
		tf->tf_a3 = 1;      /* signal an error */
	}
	else {
		/* Success. */
		tf->tf_v0 = retval;
		tf->tf_a3 = 0;      /* signal no error */
	}

	/*
	 * Now, advance the program counter, to avoid restarting
	 * the syscall over and over again.
	 */

	tf->tf_epc += 4;

	/* Make sure the syscall code didn't forget to lower spl */
	KASSERT(curthread->t_curspl == 0);
	/* ...or leak any spinlocks */
	KASSERT(curthread->t_iplhigh_count == 0);
}
示例#15
0
/*
 * System call dispatcher.
 *
 * A pointer to the trapframe created during exception entry (in
 * exception.S) is passed in.
 *
 * The calling conventions for syscalls are as follows: Like ordinary
 * function calls, the first 4 32-bit arguments are passed in the 4
 * argument registers a0-a3. 64-bit arguments are passed in *aligned*
 * pairs of registers, that is, either a0/a1 or a2/a3. This means that
 * if the first argument is 32-bit and the second is 64-bit, a1 is
 * unused.
 *
 * This much is the same as the calling conventions for ordinary
 * function calls. In addition, the system call number is passed in
 * the v0 register.
 *
 * On successful return, the return value is passed back in the v0
 * register, or v0 and v1 if 64-bit. This is also like an ordinary
 * function call, and additionally the a3 register is also set to 0 to
 * indicate success.
 *
 * On an error return, the error code is passed back in the v0
 * register, and the a3 register is set to 1 to indicate failure.
 * (Userlevel code takes care of storing the error code in errno and
 * returning the value -1 from the actual userlevel syscall function.
 * See src/user/lib/libc/arch/mips/syscalls-mips.S and related files.)
 *
 * Upon syscall return the program counter stored in the trapframe
 * must be incremented by one instruction; otherwise the exception
 * return code will restart the "syscall" instruction and the system
 * call will repeat forever.
 *
 * If you run out of registers (which happens quickly with 64-bit
 * values) further arguments must be fetched from the user-level
 * stack, starting at sp+16 to skip over the slots for the
 * registerized values, with copyin().
 */
void
syscall(struct trapframe *tf)
{
    //kprintf("Starting syscall\n");
	int callno;
	int32_t retval;
	int err;

	KASSERT(curthread != NULL);
	KASSERT(curthread->t_curspl == 0);
	KASSERT(curthread->t_iplhigh_count == 0);

	callno = tf->tf_v0;

	/*
	 * Initialize retval to 0. Many of the system calls don't
	 * really return a value, just 0 for success and -1 on
	 * error. Since retval is the value returned on success,
	 * initialize it to 0 by default; thus it's not necessary to
	 * deal with it except for calls that return other values, 
	 * like write.
	 */

	retval = 0;

	switch (callno) {
	    case SYS_reboot:
		err = sys_reboot(tf->tf_a0);
		break;

	    case SYS___time:
		err = sys___time((userptr_t)tf->tf_a0,
				 (userptr_t)tf->tf_a1);
		break;
#ifdef UW
	case SYS_write:
	  err = sys_write((int)tf->tf_a0,
			  (userptr_t)tf->tf_a1,
			  (int)tf->tf_a2,
			  (int *)(&retval));
	  break;
	case SYS__exit:
	  sys__exit((int)tf->tf_a0);
	  /* sys__exit does not return, execution should not get here */
	  panic("unexpected return from sys__exit");
	  break;
	case SYS_getpid:
	  err = sys_getpid((pid_t *)&retval);
	  break;
	case SYS_waitpid:
	  err = sys_waitpid((pid_t)tf->tf_a0,
			    (userptr_t)tf->tf_a1,
			    (int)tf->tf_a2,
			    (pid_t *)&retval);
	  break;
	case SYS_fork:
	    err = sys_fork(tf, (pid_t *)&retval);
	    break;
	case SYS_execv:
	    err=sys_execv((char *)tf->tf_a0, (char **) tf->tf_a1);
	    break;
#endif // UW

	    /* Add stuff here */
 
	default:
	  kprintf("Unknown syscall %d\n", callno);
	  err = ENOSYS;
	  break;
	}


	if (err) {
		/*
		 * Return the error code. This gets converted at
		 * userlevel to a return value of -1 and the error
		 * code in errno.
		 */
		tf->tf_v0 = err;
		tf->tf_a3 = 1;      /* signal an error */
	}
	else {
		/* Success. */
		tf->tf_v0 = retval;
		tf->tf_a3 = 0;      /* signal no error */
	}
	
	/*
	 * Now, advance the program counter, to avoid restarting
	 * the syscall over and over again.
	 */
	
	tf->tf_epc += 4;

	/* Make sure the syscall code didn't forget to lower spl */
	KASSERT(curthread->t_curspl == 0);
	/* ...or leak any spinlocks */
	KASSERT(curthread->t_iplhigh_count == 0);
}
/*
 * System call dispatcher.
 *
 * A pointer to the trapframe created during exception entry (in
 * exception-*.S) is passed in.
 *
 * The calling conventions for syscalls are as follows: Like ordinary
 * function calls, the first 4 32-bit arguments are passed in the 4
 * argument registers a0-a3. 64-bit arguments are passed in *aligned*
 * pairs of registers, that is, either a0/a1 or a2/a3. This means that
 * if the first argument is 32-bit and the second is 64-bit, a1 is
 * unused.
 *
 * This much is the same as the calling conventions for ordinary
 * function calls. In addition, the system call number is passed in
 * the v0 register.
 *
 * On successful return, the return value is passed back in the v0
 * register, or v0 and v1 if 64-bit. This is also like an ordinary
 * function call, and additionally the a3 register is also set to 0 to
 * indicate success.
 *
 * On an error return, the error code is passed back in the v0
 * register, and the a3 register is set to 1 to indicate failure.
 * (Userlevel code takes care of storing the error code in errno and
 * returning the value -1 from the actual userlevel syscall function.
 * See src/user/lib/libc/arch/mips/syscalls-mips.S and related files.)
 *
 * Upon syscall return the program counter stored in the trapframe
 * must be incremented by one instruction; otherwise the exception
 * return code will restart the "syscall" instruction and the system
 * call will repeat forever.
 *
 * If you run out of registers (which happens quickly with 64-bit
 * values) further arguments must be fetched from the user-level
 * stack, starting at sp+16 to skip over the slots for the
 * registerized values, with copyin().
 */
void syscall(struct trapframe *tf) {
	int callno;
	int32_t retval;
	int err;

	KASSERT(curthread != NULL);
	KASSERT(curthread->t_curspl == 0);
	KASSERT(curthread->t_iplhigh_count == 0);

	callno = tf->tf_v0;

	/*
	 * Initialize retval to 0. Many of the system calls don't
	 * really return a value, just 0 for success and -1 on
	 * error. Since retval is the value returned on success,
	 * initialize it to 0 by default; thus it's not necessary to
	 * deal with it except for calls that return other values,
	 * like write.
	 */

	retval = 0;


	off_t pos, new_pos;
	switch (callno) {
	case SYS_reboot:
		err = sys_reboot(tf->tf_a0);
		break;

	case SYS___time:
		err = sys___time((userptr_t) tf->tf_a0, (userptr_t) tf->tf_a1);
		break;

	case SYS_open:
		err = sys_open((userptr_t) tf->tf_a0, (int) tf->tf_a1,
				(int) tf->tf_a2, &retval);
		break;

	case SYS_read:
		err = sys_read((int) tf->tf_a0, (userptr_t) tf->tf_a1,
				(int) tf->tf_a2, &retval);
		break;

	case SYS_write:
		err = sys_write((int) tf->tf_a0, (userptr_t) tf->tf_a1,
				(int) tf->tf_a2, &retval);
		break;
	case SYS_lseek:

		pos = (((off_t)tf->tf_a2 << 32) | tf->tf_a3);
		err = sys_lseek((userptr_t) tf->tf_a0, pos,
				(userptr_t)(tf->tf_sp+16), &new_pos);

		if (err == 0)
		{
			retval = (int32_t)(new_pos >> 32);
			tf->tf_v1 = (int32_t)(new_pos & 0xFFFFFFFF);
		}


		break;

	case SYS_close:
		err = sys_close((userptr_t) tf->tf_a0, &retval);
		break;

	case SYS_dup2:
		err = sys_dup2((userptr_t) tf->tf_a0, (userptr_t) tf->tf_a1, &retval);
		break;

	case SYS_getpid:
		err = sys_getpid(&retval);
		break;
	case SYS_sbrk:
		err = sys_sbrk((userptr_t)tf->tf_a0, &retval);
		break;
	case SYS_fork:
		err = sys_fork(tf, &retval);
		break;
	case SYS_execv:
		err = sys_execv((userptr_t) tf->tf_a0, (userptr_t) tf->tf_a1, &retval);
		retval = 0;
		break;
	case SYS_waitpid:
		err = sys_waitpid((userptr_t) tf->tf_a0, (userptr_t) tf->tf_a1,
				(userptr_t) tf->tf_a2, &retval);
		break;
	case SYS__exit:
		//kprintf("TEMPPPP:Exit has been called!	\n");
		err = sys__exit((int) tf->tf_a0);
		break;
		/* Add stuff here */

	default:
		kprintf("Unknown syscall %d\n", callno);
		err = ENOSYS;
		break;
	}
示例#17
0
/*
 * System call dispatcher.
 *
 * A pointer to the trapframe created during exception entry (in
 * exception-*.S) is passed in.
 *
 * The calling conventions for syscalls are as follows: Like ordinary
 * function calls, the first 4 32-bit arguments are passed in the 4
 * argument registers a0-a3. 64-bit arguments are passed in *aligned*
 * pairs of registers, that is, either a0/a1 or a2/a3. This means that
 * if the first argument is 32-bit and the second is 64-bit, a1 is
 * unused.
 *
 * This much is the same as the calling conventions for ordinary
 * function calls. In addition, the system call number is passed in
 * the v0 register.
 *
 * On successful return, the return value is passed back in the v0
 * register, or v0 and v1 if 64-bit. This is also like an ordinary
 * function call, and additionally the a3 register is also set to 0 to
 * indicate success.
 *
 * On an error return, the error code is passed back in the v0
 * register, and the a3 register is set to 1 to indicate failure.
 * (Userlevel code takes care of storing the error code in errno and
 * returning the value -1 from the actual userlevel syscall function.
 * See src/user/lib/libc/arch/mips/syscalls-mips.S and related files.)
 *
 * Upon syscall return the program counter stored in the trapframe
 * must be incremented by one instruction; otherwise the exception
 * return code will restart the "syscall" instruction and the system
 * call will repeat forever.
 *
 * If you run out of registers (which happens quickly with 64-bit
 * values) further arguments must be fetched from the user-level
 * stack, starting at sp+16 to skip over the slots for the
 * registerized values, with copyin().
 */
void
syscall(struct trapframe *tf)
{
	int callno;
	int32_t retval;
	int err;

	KASSERT(curthread != NULL);
	KASSERT(curthread->t_curspl == 0);
	KASSERT(curthread->t_iplhigh_count == 0);

	callno = tf->tf_v0;

	/*
	 * Initialize retval to 0. Many of the system calls don't
	 * really return a value, just 0 for success and -1 on
	 * error. Since retval is the value returned on success,
	 * initialize it to 0 by default; thus it's not necessary to
	 * deal with it except for calls that return other values,
	 * like write.
	 */

	retval = 0;

	switch (callno) {
	    case SYS_reboot:
		err = sys_reboot(tf->tf_a0);
		break;
		
		case SYS_open:
		{
			err = sys_open((const_userptr_t)tf->tf_a0, tf->tf_a1, tf->tf_a2, &retval);
			break;
		}

		case SYS_close:
		{
			err = sys_close(tf->tf_a0);
			break;
		
		}

	   
		case SYS_read:
		{
			err = sys_read(tf->tf_a0, (userptr_t)tf->tf_a1, tf->tf_a2, &retval);
			break;
		
		}

	  
		case SYS_write:
		{
			err = sys_write(tf->tf_a0, (const userptr_t)tf->tf_a1, tf->tf_a2, &retval);
			break;		
		
		}


		case SYS_lseek:
		{
			// a little tricky, one of the inputs and the return value are 64 bits long.
			int fd = tf->tf_a0;
			off_t pos_left32 = tf->tf_a2;
			off_t pos_right32 = tf->tf_a3;
			//pos_left32 <<= 32; // pos_right32 is changing after this line . WTF !!! .. FOLLOW UP !!
			off_t left = pos_left32 << 32;
			//off_t pos = pos_left32 | pos_right32;
			off_t pos = left | pos_right32;
			int whence;
			err  = copyin((const userptr_t)tf->tf_sp+16, (void*)&whence, sizeof(int));
			if(err)
				break;

	
			off_t lseek_retval;		
			err = sys_lseek(fd, pos, whence, &lseek_retval);
			if(err)
				break;

			// check this. how does the value get copied
			retval = lseek_retval >> 32;
			off_t lseek_right32 = lseek_retval;


			lseek_right32 = lseek_right32  <<  32;
			lseek_right32 = lseek_right32 >> 32;

			tf->tf_v1 = lseek_right32;
			break;		
		
		}


		
		case SYS_dup2:
		{
			err = sys_dup2(tf->tf_a0, tf->tf_a1, &retval);
			break;
		
		
		}

		case SYS_chdir:
		{
			err = sys_chdir((const userptr_t)tf->tf_a0);
			break;
		}

		case SYS___getcwd:
		{

			err = sys_getcwd((userptr_t)tf->tf_a0, tf->tf_a1);
			break;
		}

		case SYS___time:
		err = sys___time((userptr_t)tf->tf_a0,
				 (userptr_t)tf->tf_a1);
		break;

	    /* Add stuff here */
        case SYS_fork:
            err = sys_fork(tf, &retval);
            break;

        case SYS_getpid:
            err = sys_getpid(&retval);
            break;
        case SYS__exit:
            err = sys__exit(tf->tf_a0);
            break;
        case SYS_waitpid:
            err = sys_waitpid(tf->tf_a0, (userptr_t)tf->tf_a1, tf->tf_a2, &retval);
            break;
        case SYS_execv:
            err = sys_execv((userptr_t)tf->tf_a0, (userptr_t *)tf->tf_a1);
            break;
        case SYS_sbrk:
        	err = sys_sbrk((intptr_t)tf->tf_a0, &retval);
        	break;
	    default:
		    kprintf("Unknown syscall %d\n", callno);
		    err = ENOSYS;
		break;
	}


	if (err) {
		/*
		 * Return the error code. This gets converted at
		 * userlevel to a return value of -1 and the error
		 * code in errno.
		 */
		tf->tf_v0 = err;
		tf->tf_a3 = 1;      /* signal an error */
	}
	else {
		/* Success. */
		tf->tf_v0 = retval;
		tf->tf_a3 = 0;      /* signal no error */
	}

	/*
	 * Now, advance the program counter, to avoid restarting
	 * the syscall over and over again.
	 */

	tf->tf_epc += 4;

	/* Make sure the syscall code didn't forget to lower spl */
	KASSERT(curthread->t_curspl == 0);
	/* ...or leak any spinlocks */
	KASSERT(curthread->t_iplhigh_count == 0);
}