示例#1
0
int tMPI_Scan(void* sendbuf, void* recvbuf, int count,
              tMPI_Datatype datatype, tMPI_Op op, tMPI_Comm comm)
{
    struct tmpi_thread *cur=tMPI_Get_current();
    int myrank=tMPI_Comm_seek_rank(comm, cur);
    int N=tMPI_Comm_N(comm);
    int prev=myrank - 1; /* my previous neighbor */
    int next=myrank + 1; /* my next neighbor */

#ifdef TMPI_PROFILE
    tMPI_Profile_count_start(cur);
#endif
#ifdef TMPI_TRACE
    tMPI_Trace_print("tMPI_Scan(%p, %p, %d, %p, %p, %p)",
                     sendbuf, recvbuf, count, datatype, op, comm);
#endif
    if (count==0)
        return TMPI_SUCCESS;
    if (!recvbuf)
    {
        return tMPI_Error(comm, TMPI_ERR_BUF);
    }
    if (sendbuf==TMPI_IN_PLACE) 
    {
        sendbuf=recvbuf;
    }

    /* we set our send and recv buffers */
    tMPI_Atomic_ptr_set(&(comm->reduce_sendbuf[myrank]),sendbuf);
    tMPI_Atomic_ptr_set(&(comm->reduce_recvbuf[myrank]),recvbuf);

    /* now wait for the previous rank to finish */
    if (myrank > 0)
    {
        void *a, *b;
        int ret;

#if defined(TMPI_PROFILE) && defined(TMPI_CYCLE_COUNT)
        tMPI_Profile_wait_start(cur);
#endif
        /* wait for the previous neighbor's data to be ready */
        tMPI_Event_wait( &(comm->csync[myrank].events[prev]) );
        tMPI_Event_process( &(comm->csync[myrank].events[prev]), 1);
#if defined(TMPI_PROFILE) && defined(TMPI_CYCLE_COUNT)
        tMPI_Profile_wait_stop(cur, TMPIWAIT_Reduce);
#endif
#ifdef TMPI_DEBUG
        printf("%d: scanning with %d \n", myrank, prev, iteration);
        fflush(stdout);
#endif
        /* now do the reduction */
        if (prev > 0)
        {
            a = (void*)tMPI_Atomic_ptr_get(&(comm->reduce_recvbuf[prev]));
        }
        else
        {
            a = (void*)tMPI_Atomic_ptr_get(&(comm->reduce_sendbuf[prev]));
        }
        b = sendbuf;

        if ((ret=tMPI_Reduce_run_op(recvbuf, a, b, datatype,
                                    count, op, comm)) != TMPI_SUCCESS)
        {
            return ret;
        }

        /* signal to my previous neighbor that I'm done with the data */
        tMPI_Event_signal( &(comm->csync[prev].events[prev]) );
    }
    else
    {
        if (sendbuf != recvbuf)
        {
            /* copy the data if this is rank 0, and not MPI_IN_PLACE */
            memcpy(recvbuf, sendbuf, count*datatype->size);
        }
    }

    if (myrank < N-1)
    {
        /* signal to my next neighbor that I have the data */
        tMPI_Event_signal( &(comm->csync[next].events[myrank]) );
        /* and wait for my next neighbor to finish */
        tMPI_Event_wait( &(comm->csync[myrank].events[myrank]) );
        tMPI_Event_process( &(comm->csync[myrank].events[myrank]), 1);
    }


#if defined(TMPI_PROFILE) && defined(TMPI_CYCLE_COUNT)
    tMPI_Profile_wait_start(cur);
#endif
    /*tMPI_Barrier_wait( &(comm->barrier));*/
#if defined(TMPI_PROFILE)
    /*tMPI_Profile_wait_stop(cur, TMPIWAIT_Reduce);*/
    tMPI_Profile_count_stop(cur, TMPIFN_Scan);
#endif
    return TMPI_SUCCESS;
}
示例#2
0
/* this is the main comm creation function. All other functions that create
    comms use this*/
int tMPI_Comm_split(tMPI_Comm comm, int color, int key, tMPI_Comm *newcomm)
{
    int                 i, j;
    int                 N = tMPI_Comm_N(comm);
    volatile tMPI_Comm *newcomm_list;
    volatile int        colors[MAX_PREALLOC_THREADS]; /* array with the colors
                                                         of each thread */
    volatile int        keys[MAX_PREALLOC_THREADS];   /* same for keys (only one of
                                                         the threads actually suplies
                                                         these arrays to the comm
                                                         structure) */
    tmpi_bool          i_am_first = FALSE;
    int                myrank     = tMPI_Comm_seek_rank(comm, tMPI_Get_current());
    struct tmpi_split *spl;
    int                ret;

#ifdef TMPI_TRACE
    tMPI_Trace_print("tMPI_Comm_split(%p, %d, %d, %p)", comm, color, key,
                     newcomm);
#endif
    if (!comm)
    {
        *newcomm = NULL;
        return tMPI_Error(TMPI_COMM_WORLD, TMPI_ERR_COMM);
    }

    ret = tMPI_Thread_mutex_lock(&(comm->comm_create_lock));
    if (ret != 0)
    {
        return tMPI_Error(TMPI_COMM_WORLD, TMPI_ERR_IO);
    }
    /* first get the colors */
    if (!comm->new_comm)
    {
        /* i am apparently  first */
        comm->split    = (struct tmpi_split*)tMPI_Malloc(sizeof(struct tmpi_split));
        comm->new_comm = (tMPI_Comm*)tMPI_Malloc(N*sizeof(tMPI_Comm));
        if (N <= MAX_PREALLOC_THREADS)
        {
            comm->split->colors = colors;
            comm->split->keys   = keys;
        }
        else
        {
            comm->split->colors = (int*)tMPI_Malloc(N*sizeof(int));
            comm->split->keys   = (int*)tMPI_Malloc(N*sizeof(int));
        }
        comm->split->Ncol_init  = tMPI_Comm_N(comm);
        comm->split->can_finish = FALSE;
        i_am_first              = TRUE;
        /* the main communicator contains a list the size of grp.N */
    }
    newcomm_list        = comm->new_comm; /* we copy it to the local stacks because
                                             we can later erase comm->new_comm safely */
    spl                 = comm->split;    /* we do the same for spl */
    spl->colors[myrank] = color;
    spl->keys[myrank]   = key;
    spl->Ncol_init--;

    if (spl->Ncol_init == 0)
    {
        ret = tMPI_Thread_cond_signal(&(comm->comm_create_prep));
        if (ret != 0)
        {
            return tMPI_Error(TMPI_COMM_WORLD, TMPI_ERR_IO);
        }
    }

    if (!i_am_first)
    {
        /* all other threads can just wait until the creator thread is
           finished */
        while (!spl->can_finish)
        {
            ret = tMPI_Thread_cond_wait(&(comm->comm_create_finish),
                                        &(comm->comm_create_lock) );
            if (ret != 0)
            {
                return tMPI_Error(TMPI_COMM_WORLD, TMPI_ERR_IO);
            }
        }
    }
    else
    {
        int        Ncomms = 0;
        int        comm_color_[MAX_PREALLOC_THREADS];
        int        comm_N_[MAX_PREALLOC_THREADS];
        int       *comm_color = comm_color_; /* there can't be more comms than N*/
        int       *comm_N     = comm_N_;     /* the number of procs in a group */

        int       *comm_groups;              /* the groups */
        tMPI_Comm *comms;                    /* the communicators */

        /* wait for the colors to be done */
        /*if (N>1)*/
        while (spl->Ncol_init > 0)
        {
            ret = tMPI_Thread_cond_wait(&(comm->comm_create_prep),
                                        &(comm->comm_create_lock));
            if (ret != 0)
            {
                return tMPI_Error(TMPI_COMM_WORLD, TMPI_ERR_IO);
            }
        }

        /* reset the state so that a new comm creating function can run */
        spl->Ncol_destroy = N;
        comm->new_comm    = 0;
        comm->split       = 0;

        comm_groups = (int*)tMPI_Malloc(N*N*sizeof(int));
        if (N > MAX_PREALLOC_THREADS)
        {
            comm_color = (int*)tMPI_Malloc(N*sizeof(int));
            comm_N     = (int*)tMPI_Malloc(N*sizeof(int));
        }

        /* count colors, allocate and split up communicators */
        tMPI_Split_colors(N, (int*)spl->colors,
                          (int*)spl->keys,
                          &Ncomms,
                          comm_N, comm_color, comm_groups);


        /* allocate a bunch of communicators */
        comms = (tMPI_Comm*)tMPI_Malloc(Ncomms*sizeof(tMPI_Comm));
        for (i = 0; i < Ncomms; i++)
        {
            ret = tMPI_Comm_alloc(&(comms[i]), comm, comm_N[i]);
            if (ret != TMPI_SUCCESS)
            {
                return ret;
            }
        }

        /* now distribute the comms */
        for (i = 0; i < Ncomms; i++)
        {
            comms[i]->grp.N = comm_N[i];
            for (j = 0; j < comm_N[i]; j++)
            {
                comms[i]->grp.peers[j] =
                    comm->grp.peers[comm_groups[i*comm->grp.N + j]];
            }
        }
        /* and put them into the newcomm_list */
        for (i = 0; i < N; i++)
        {
            newcomm_list[i] = TMPI_COMM_NULL;
            for (j = 0; j < Ncomms; j++)
            {
                if (spl->colors[i] == comm_color[j])
                {
                    newcomm_list[i] = comms[j];
                    break;
                }
            }
        }

#ifdef TMPI_DEBUG
        /* output */
        for (i = 0; i < Ncomms; i++)
        {
            printf("Group %d (color %d) has %d members: ",
                   i, comm_color[i], comm_N[i]);
            for (j = 0; j < comm_N[i]; j++)
            {
                printf(" %d ", comm_groups[comm->grp.N*i + j]);
            }

            printf(" rank: ");
            for (j = 0; j < comm_N[i]; j++)
            {
                printf(" %d ", spl->keys[comm_groups[N*i + j]]);
            }
            printf(" color: ");
            for (j = 0; j < comm_N[i]; j++)
            {
                printf(" %d ", spl->colors[comm_groups[N*i + j]]);
            }
            printf("\n");
        }
#endif
        if (N > MAX_PREALLOC_THREADS)
        {
            free((int*)spl->colors);
            free((int*)spl->keys);
            free(comm_color);
            free(comm_N);
        }
        free(comm_groups);
        free(comms);
        spl->can_finish = TRUE;

        /* tell the waiting threads that there's a comm ready */
        ret = tMPI_Thread_cond_broadcast(&(comm->comm_create_finish));
        if (ret != 0)
        {
            return tMPI_Error(TMPI_COMM_WORLD, TMPI_ERR_IO);
        }
    }
    /* here the individual threads get their comm object */
    *newcomm = newcomm_list[myrank];

    /* free when we have assigned them all, so we can reuse the object*/
    spl->Ncol_destroy--;
    if (spl->Ncol_destroy == 0)
    {
        free((void*)newcomm_list);
        free(spl);
    }

    ret = tMPI_Thread_mutex_unlock(&(comm->comm_create_lock));
    if (ret != 0)
    {
        return tMPI_Error(TMPI_COMM_WORLD, TMPI_ERR_IO);
    }

    return TMPI_SUCCESS;
}