static void metrowerks_step_command (char *args, int from_tty) { int async_exec = 0; CORE_ADDR range_start = 0; CORE_ADDR range_stop = 0; int step_into = 0; int num_args = 0; char **argv = NULL; if (args != NULL) async_exec = strip_bg_char (&args); if (event_loop_p && async_exec && !target_can_async_p ()) error ("Asynchronous execution not supported on this target."); /* If we do NOT get a request of running in the bg, then we need * to simulate synchronous (fg) execution. */ if (event_loop_p && !async_exec && target_can_async_p ()) { async_disable_stdin (); } argv = buildargv (args); if (argv == NULL) { num_args = 0; } else { num_args = 0; while (argv[num_args] != NULL) num_args++; } if (num_args != 3 && num_args != 5) error ("Usage: metrowerks-step <start> <stop> <step-into> ?<func_start> <func_end>?"); range_start = strtoul (argv[0], NULL, 16); range_stop = strtoul (argv[1], NULL, 16); step_into = strtoul (argv[2], NULL, 16); if (num_args == 5) { metrowerks_step_func_start = strtoul (argv[3], NULL, 16); metrowerks_step_func_end = strtoul (argv[4], NULL, 16); } else { metrowerks_step_func_start = 0; metrowerks_step_func_end = 0; } if (!target_has_execution) error ("The program is not being run."); metrowerks_step (range_start, range_stop, step_into); }
static struct gdb_exception run_inferior_call (struct thread_info *call_thread, CORE_ADDR real_pc) { volatile struct gdb_exception e; int saved_in_infcall = call_thread->control.in_infcall; ptid_t call_thread_ptid = call_thread->ptid; call_thread->control.in_infcall = 1; clear_proceed_status (); disable_watchpoints_before_interactive_call_start (); /* We want stop_registers, please... */ call_thread->control.proceed_to_finish = 1; TRY_CATCH (e, RETURN_MASK_ALL) { proceed (real_pc, TARGET_SIGNAL_0, 0); /* Inferior function calls are always synchronous, even if the target supports asynchronous execution. Do here what `proceed' itself does in sync mode. */ if (target_can_async_p () && is_running (inferior_ptid)) { wait_for_inferior (); normal_stop (); } }
static struct gdb_exception run_inferior_call (struct thread_info *call_thread, CORE_ADDR real_pc) { volatile struct gdb_exception e; int saved_in_infcall = call_thread->control.in_infcall; ptid_t call_thread_ptid = call_thread->ptid; int saved_sync_execution = sync_execution; /* Infcalls run synchronously, in the foreground. */ if (target_can_async_p ()) sync_execution = 1; call_thread->control.in_infcall = 1; clear_proceed_status (); disable_watchpoints_before_interactive_call_start (); /* We want stop_registers, please... */ call_thread->control.proceed_to_finish = 1; TRY_CATCH (e, RETURN_MASK_ALL) { int was_sync = sync_execution; proceed (real_pc, GDB_SIGNAL_0, 0); /* Inferior function calls are always synchronous, even if the target supports asynchronous execution. Do here what `proceed' itself does in sync mode. */ if (target_can_async_p ()) { wait_for_inferior (); normal_stop (); /* If GDB was previously in sync execution mode, then ensure that it remains so. normal_stop calls async_enable_stdin, so reset it again here. In other cases, stdin will be re-enabled by inferior_event_handler, when an exception is thrown. */ if (was_sync) async_disable_stdin (); } }
void inferior_event_handler (enum inferior_event_type event_type, gdb_client_data client_data) { switch (event_type) { case INF_REG_EVENT: fetch_inferior_event (client_data); break; case INF_EXEC_COMPLETE: if (!non_stop) { /* Unregister the inferior from the event loop. This is done so that when the inferior is not running we don't get distracted by spurious inferior output. */ if (target_has_execution && target_can_async_p ()) target_async (0); } /* Do all continuations associated with the whole inferior (not a particular thread). */ if (!ptid_equal (inferior_ptid, null_ptid)) do_all_inferior_continuations (0); /* When running a command list (from a user command, say), these are only run when the command list is all done. */ if (interpreter_async) { check_frame_language_change (); /* Don't propagate breakpoint commands errors. Either we're stopping or some command resumes the inferior. The user will be informed. */ TRY { bpstat_do_actions (); } CATCH (e, RETURN_MASK_ALL) { exception_print (gdb_stderr, e); } END_CATCH } break; default: printf_unfiltered (_("Event type not recognized.\n")); break; }
/* Quit GDB if SIGTERM is received. GDB would quit anyway, but this way it will clean up properly. */ void handle_sigterm (int sig) { signal (sig, handle_sigterm); /* Call quit_force in a signal safe way. quit_force itself is not signal safe. */ if (target_can_async_p ()) mark_async_signal_handler (async_sigterm_token); else { sync_quit_force_run = 1; set_quit_flag (); } }
/* NOTE: 1999-04-30 This is the asynchronous version of the command_loop function. The command_loop function will be obsolete when we switch to use the event loop at every execution of gdb. */ static void command_handler (char *command) { struct cleanup *old_chain; int stdin_is_tty = ISATTY (stdin); struct continuation_arg *arg1; struct continuation_arg *arg2; long time_at_cmd_start; #ifdef HAVE_SBRK long space_at_cmd_start = 0; #endif extern int display_time; extern int display_space; quit_flag = 0; if (instream == stdin && stdin_is_tty) reinitialize_more_filter (); old_chain = make_cleanup (null_cleanup, 0); /* If readline returned a NULL command, it means that the connection with the terminal is gone. This happens at the end of a testsuite run, after Expect has hung up but GDB is still alive. In such a case, we just quit gdb killing the inferior program too. */ if (command == 0) quit_command ((char *) 0, stdin == instream); time_at_cmd_start = get_run_time (); if (display_space) { #ifdef HAVE_SBRK char *lim = (char *) sbrk (0); space_at_cmd_start = lim - lim_at_start; #endif } execute_command (command, instream == stdin); /* Set things up for this function to be compete later, once the execution has completed, if we are doing an execution command, otherwise, just go ahead and finish. */ if (target_can_async_p () && target_executing) { arg1 = (struct continuation_arg *) xmalloc (sizeof (struct continuation_arg)); arg2 = (struct continuation_arg *) xmalloc (sizeof (struct continuation_arg)); arg1->next = arg2; arg2->next = NULL; arg1->data.longint = time_at_cmd_start; #ifdef HAVE_SBRK arg2->data.longint = space_at_cmd_start; #endif add_continuation (command_line_handler_continuation, arg1); } /* Do any commands attached to breakpoint we stopped at. Only if we are always running synchronously. Or if we have just executed a command that doesn't start the target. */ if (!target_can_async_p () || !target_executing) { bpstat_do_actions (&stop_bpstat); do_cleanups (old_chain); if (display_time) { long cmd_time = get_run_time () - time_at_cmd_start; printf_unfiltered (_("Command execution time: %ld.%06ld\n"), cmd_time / 1000000, cmd_time % 1000000); } if (display_space) { #ifdef HAVE_SBRK char *lim = (char *) sbrk (0); long space_now = lim - lim_at_start; long space_diff = space_now - space_at_cmd_start; printf_unfiltered (_("Space used: %ld (%c%ld for this command)\n"), space_now, (space_diff >= 0 ? '+' : '-'), space_diff); #endif } } }
enum mi_cmd_result mi_execute_async_cli_command (char *mi, char *args, int from_tty) { struct cleanup *old_cleanups; char *run; char *async_args; if (target_can_async_p ()) { async_args = (char *) xmalloc (strlen (args) + 2); make_exec_cleanup (free, async_args); strcpy (async_args, args); strcat (async_args, "&"); run = xstrprintf ("%s %s", mi, async_args); make_exec_cleanup (free, run); add_continuation (mi_exec_async_cli_cmd_continuation, NULL); old_cleanups = NULL; } else { run = xstrprintf ("%s %s", mi, args); old_cleanups = make_cleanup (xfree, run); } if (!target_can_async_p ()) { /* NOTE: For synchronous targets asynchronous behavour is faked by printing out the GDB prompt before we even try to execute the command. */ if (last_async_command) fputs_unfiltered (last_async_command, raw_stdout); fputs_unfiltered ("^running\n", raw_stdout); fputs_unfiltered ("(gdb) \n", raw_stdout); gdb_flush (raw_stdout); } else { /* FIXME: cagney/1999-11-29: Printing this message before calling execute_command is wrong. It should only be printed once gdb has confirmed that it really has managed to send a run command to the target. */ if (last_async_command) fputs_unfiltered (last_async_command, raw_stdout); fputs_unfiltered ("^running\n", raw_stdout); } execute_command ( /*ui */ run, 0 /*from_tty */ ); if (!target_can_async_p ()) { /* Do this before doing any printing. It would appear that some print code leaves garbage around in the buffer. */ do_cleanups (old_cleanups); /* If the target was doing the operation synchronously we fake the stopped message. */ if (last_async_command) fputs_unfiltered (last_async_command, raw_stdout); fputs_unfiltered ("*stopped", raw_stdout); mi_out_put (uiout, raw_stdout); mi_out_rewind (uiout); fputs_unfiltered ("\n", raw_stdout); return MI_CMD_QUIET; } return MI_CMD_DONE; }
static void captured_mi_execute_command (struct ui_out *uiout, void *data) { struct captured_mi_execute_command_args *args = (struct captured_mi_execute_command_args *) data; struct mi_parse *context = args->command; switch (context->op) { case MI_COMMAND: /* A MI command was read from the input stream */ if (mi_debug_p) /* FIXME: gdb_???? */ fprintf_unfiltered (raw_stdout, " token=`%s' command=`%s' args=`%s'\n", context->token, context->command, context->args); /* FIXME: cagney/1999-09-25: Rather than this convoluted condition expression, each function should return an indication of what action is required and then switch on that. */ args->action = EXECUTE_COMMAND_DISPLAY_PROMPT; args->rc = mi_cmd_execute (context); if (!target_can_async_p () || !target_executing) { /* print the result if there were no errors Remember that on the way out of executing a command, you have to directly use the mi_interp's uiout, since the command could have reset the interpreter, in which case the current uiout will most likely crash in the mi_out_* routines. */ if (args->rc == MI_CMD_DONE) { fputs_unfiltered (context->token, raw_stdout); fputs_unfiltered ("^done", raw_stdout); mi_out_put (uiout, raw_stdout); mi_out_rewind (uiout); fputs_unfiltered ("\n", raw_stdout); } else if (args->rc == MI_CMD_ERROR) { if (mi_error_message) { fputs_unfiltered (context->token, raw_stdout); fputs_unfiltered ("^error,msg=\"", raw_stdout); fputstr_unfiltered (mi_error_message, '"', raw_stdout); xfree (mi_error_message); fputs_unfiltered ("\"\n", raw_stdout); } mi_out_rewind (uiout); } else mi_out_rewind (uiout); } else if (sync_execution) { /* Don't print the prompt. We are executing the target in synchronous mode. */ args->action = EXECUTE_COMMAND_SUPRESS_PROMPT; return; } break; case CLI_COMMAND: { char *argv[2]; /* A CLI command was read from the input stream. */ /* This "feature" will be removed as soon as we have a complete set of mi commands. */ /* Echo the command on the console. */ fprintf_unfiltered (gdb_stdlog, "%s\n", context->command); /* Call the "console" interpreter. */ argv[0] = "console"; argv[1] = context->command; args->rc = mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2); /* If we changed interpreters, DON'T print out anything. */ if (current_interp_named_p (INTERP_MI) || current_interp_named_p (INTERP_MI1) || current_interp_named_p (INTERP_MI2) || current_interp_named_p (INTERP_MI3)) { if (args->rc == MI_CMD_DONE) { fputs_unfiltered (context->token, raw_stdout); fputs_unfiltered ("^done", raw_stdout); mi_out_put (uiout, raw_stdout); mi_out_rewind (uiout); fputs_unfiltered ("\n", raw_stdout); args->action = EXECUTE_COMMAND_DISPLAY_PROMPT; } else if (args->rc == MI_CMD_ERROR) { if (mi_error_message) { fputs_unfiltered (context->token, raw_stdout); fputs_unfiltered ("^error,msg=\"", raw_stdout); fputstr_unfiltered (mi_error_message, '"', raw_stdout); xfree (mi_error_message); fputs_unfiltered ("\"\n", raw_stdout); } mi_out_rewind (uiout); } else mi_out_rewind (uiout); } break; } } return; }
static int async_background_execution_p (void) { return (target_can_async_p () && !sync_execution); }