void decrement_task(task_id task) {        
     task_t* current = &open_tasks[task];
     while (current != 0) {
         if (!waiting_on_task) {
             evaluate_dependencies();
         }
         
         task_t* deletion = current;
         int items = atomic_decrement(current->open_work_items);
         if (items == 0) {
             if (current->parent != kNullTask) {
                 current = &open_tasks[current->parent];
             }
             else {
                 current = 0;
             }
                             
             // remove the task from the open_list
             atomic_decrement(num_tasks);
             task_id deletedid = deletion->id;
             task_initialize(deletion);
             availableIds.push(deletedid);
         }
         else {
             current = 0;
         }
     }
 }
示例#2
0
task_t *dummyParentTask(void *payload, task_t *task)
{
    task_t *newTask = task_initialize(dummyChildTask, NULL);

    atomic_increment(&gParentWorkCount);
    task_setFinishes(newTask, task);
    tasks_schedule(newTask);
    return NULL;
}
    task_manager(size_t maxTasks, size_t numThreads = -1)
    : tasks(maxTasks),
      max_tasks(maxTasks),
      num_tasks(0),
	  kill(false),
      waiting_on_task(false) {
		if (numThreads == -1) {
			numThreads = internal::number_of_cores() - 1;
		}
        
        open_tasks = new task_t[maxTasks];
        for (int i = 0; i < maxTasks; ++i) {
            availableIds.push(i);
            task_initialize(&open_tasks[i]);
        }
          
		for (int i = 0; i < numThreads; ++i) {
			worker_thread_data worker;
			worker.thread_ = thread(worker_thread_func);
			worker.scheduler_ = this;
			workers_.push_back(worker);
			workers_[i].thread_.start(this);
		}
	}
void object_initialize( void )
{
	alarm_initialize();
	resource_initialize();
	task_initialize();
}
示例#5
0
文件: kernel_cfg.c 项目: k1254/ETrobo
void object_initialize( void )
{
	task_initialize();
}
示例#6
0
文件: main.c 项目: s1mme/OrbitOS
void start_kernel(struct multiboot *mbp, unsigned int magic,u32 esp)
 {
	 u32 initrd_location = *((u32*)mbp->mods_addr);
	 u32 initrd_end = *(u32*)(mbp->mods_addr+4);

	 __asm__ __volatile__("cli");
	 cpu_init();
	 placement_pointer = initrd_end;
	 vmmngr_initialize(mbp->mem_upper + mbp->mem_lower);	
	
	 kheap = _heapmngr_initialize(0x02000000, 0x20000000, 0x200000);

	 con_init();

	 init_IRQ();
	 time_init();
    
     _kbd_init_hook();
     /*setup_irq(2, &irq2); 
     setup_irq(3, &irq3 ); 
     setup_irq(4, &irq4 ); 
     setup_irq(5, &irq5 ); 

     setup_irq(8, &irq8 );
	*/
	 //auto_fpu();
	 task_initialize();
	 syscalls_install();
	 fs_root_initrd = install_initrd(initrd_location);
	
	 
	 //pci_inst_check();
	 //enable_pci_master(0,3,0);		//8139 need this
     struct request *info = 0;
	 probe_ide(info);
	 hd_init_hook_();
     putch('P');
     double test = 3.14444;
     printk("test ::: %d\n", test);
    //serial_install();

    //unsigned long cpu_khz = init_tsc();
   	//u32 *pf = (u32 *)0xffff0000;
	//*pf = 10;
	ext2_read_superblock();
	register_filesystem();

	__asm__ __volatile__("sti");
	//graphics_install_bochs(1024,768);
	//heaptest();
	//create_thread(test_task,1);
	while(1)
	{

	if(getch_polling() == 'i')
	{
	const char *filename = "test__2";
	
		//execve__((char*)filename,0,0);
		load_elf((char*)filename,0,0);
		//show_state();
		}
	}
}
示例#7
0
void os_start(void)
{
  int i;

  slldbg("Entry\n");

  /* Initialize RTOS Data ***************************************************/
  /* Initialize all task lists */

  dq_init(&g_readytorun);
  dq_init(&g_pendingtasks);
  dq_init(&g_waitingforsemaphore);
#ifndef CONFIG_DISABLE_SIGNALS
  dq_init(&g_waitingforsignal);
#endif
#ifndef CONFIG_DISABLE_MQUEUE
  dq_init(&g_waitingformqnotfull);
  dq_init(&g_waitingformqnotempty);
#endif
#ifdef CONFIG_PAGING
  dq_init(&g_waitingforfill);
#endif
  dq_init(&g_inactivetasks);
  sq_init(&g_delayed_kufree);
#if (defined(CONFIG_BUILD_PROTECTED) || defined(CONFIG_BUILD_KERNEL)) && \
     defined(CONFIG_MM_KERNEL_HEAP)
  sq_init(&g_delayed_kfree);
#endif

  /* Initialize the logic that determine unique process IDs. */

  g_lastpid = 0;
  for (i = 0; i < CONFIG_MAX_TASKS; i++)
    {
      g_pidhash[i].tcb = NULL;
      g_pidhash[i].pid = INVALID_PROCESS_ID;
    }

  /* Assign the process ID of ZERO to the idle task */

  g_pidhash[PIDHASH(0)].tcb = &g_idletcb.cmn;
  g_pidhash[PIDHASH(0)].pid = 0;

  /* Initialize the IDLE task TCB *******************************************/
  /* Initialize a TCB for this thread of execution.  NOTE:  The default
   * value for most components of the g_idletcb are zero.  The entire
   * structure is set to zero.  Then only the (potentially) non-zero
   * elements are initialized. NOTE:  The idle task is the only task in
   * that has pid == 0 and sched_priority == 0.
   */

  bzero((void*)&g_idletcb, sizeof(struct task_tcb_s));
  g_idletcb.cmn.task_state = TSTATE_TASK_RUNNING;
  g_idletcb.cmn.entry.main = (main_t)os_start;
  g_idletcb.cmn.flags      = TCB_FLAG_TTYPE_KERNEL;

  /* Set the IDLE task name */

#if CONFIG_TASK_NAME_SIZE > 0
  strncpy(g_idletcb.cmn.name, g_idlename, CONFIG_TASK_NAME_SIZE);
  g_idletcb.cmn.name[CONFIG_TASK_NAME_SIZE] = '\0';
#endif /* CONFIG_TASK_NAME_SIZE */

  /* Configure the task name in the argument list.  The IDLE task does
   * not really have an argument list, but this name is still useful
   * for things like the NSH PS command.
   *
   * In the kernel mode build, the arguments are saved on the task's stack
   * and there is no support that yet.
   */

#if CONFIG_TASK_NAME_SIZE > 0
  g_idleargv[0]  = g_idletcb.cmn.name;
#else
  g_idleargv[0]  = (FAR char *)g_idlename;
#endif /* CONFIG_TASK_NAME_SIZE */
  g_idleargv[1]  = NULL;
  g_idletcb.argv = g_idleargv;

  /* Then add the idle task's TCB to the head of the ready to run list */

  dq_addfirst((FAR dq_entry_t*)&g_idletcb, (FAR dq_queue_t*)&g_readytorun);

  /* Initialize the processor-specific portion of the TCB */

  up_initial_state(&g_idletcb.cmn);

  /* Initialize RTOS facilities *********************************************/
  /* Initialize the semaphore facility.  This has to be done very early
   * because many subsystems depend upon fully functional semaphores.
   */

  sem_initialize();

#if defined(MM_KERNEL_USRHEAP_INIT) || defined(CONFIG_MM_KERNEL_HEAP) || defined(CONFIG_MM_PGALLOC)
  /* Initialize the memory manager */

  {
    FAR void *heap_start;
    size_t heap_size;

#ifdef MM_KERNEL_USRHEAP_INIT
    /* Get the user-mode heap from the platform specific code and configure
     * the user-mode memory allocator.
     */

    up_allocate_heap(&heap_start, &heap_size);
    kumm_initialize(heap_start, heap_size);
#endif

#ifdef CONFIG_MM_KERNEL_HEAP
    /* Get the kernel-mode heap from the platform specific code and configure
     * the kernel-mode memory allocator.
     */

    up_allocate_kheap(&heap_start, &heap_size);
    kmm_initialize(heap_start, heap_size);
#endif

#ifdef CONFIG_MM_PGALLOC
    /* If there is a page allocator in the configuration, then get the page
     * heap information from the platform-specific code and configure the
     * page allocator.
     */

    up_allocate_pgheap(&heap_start, &heap_size);
    mm_pginitialize(heap_start, heap_size);
#endif
  }
#endif

#if defined(CONFIG_SCHED_HAVE_PARENT) && defined(CONFIG_SCHED_CHILD_STATUS)
  /* Initialize tasking data structures */

#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (task_initialize != NULL)
#endif
    {
      task_initialize();
    }
#endif

  /* Initialize the interrupt handling subsystem (if included) */

#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (irq_initialize != NULL)
#endif
    {
      irq_initialize();
    }

  /* Initialize the watchdog facility (if included in the link) */

#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (wd_initialize != NULL)
#endif
    {
      wd_initialize();
    }

  /* Initialize the POSIX timer facility (if included in the link) */

#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (clock_initialize != NULL)
#endif
    {
      clock_initialize();
    }

#ifndef CONFIG_DISABLE_POSIX_TIMERS
#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (timer_initialize != NULL)
#endif
    {
      timer_initialize();
    }
#endif

#ifndef CONFIG_DISABLE_SIGNALS
  /* Initialize the signal facility (if in link) */

#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (sig_initialize != NULL)
#endif
    {
      sig_initialize();
    }
#endif

#ifndef CONFIG_DISABLE_MQUEUE
  /* Initialize the named message queue facility (if in link) */

#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (mq_initialize != NULL)
#endif
    {
      mq_initialize();
    }
#endif

#ifndef CONFIG_DISABLE_PTHREAD
  /* Initialize the thread-specific data facility (if in link) */

#ifdef CONFIG_HAVE_WEAKFUNCTIONS
  if (pthread_initialize != NULL)
#endif
    {
      pthread_initialize();
    }
#endif

#if CONFIG_NFILE_DESCRIPTORS > 0
  /* Initialize the file system (needed to support device drivers) */

  fs_initialize();
#endif

#ifdef CONFIG_NET
  /* Initialize the networking system.  Network initialization is
   * performed in two steps:  (1) net_setup() initializes static
   * configuration of the network support.  This must be done prior
   * to registering network drivers by up_initialize().  This step
   * cannot require upon any hardware-depending features such as
   * timers or interrupts.
   */

  net_setup();
#endif

  /* The processor specific details of running the operating system
   * will be handled here.  Such things as setting up interrupt
   * service routines and starting the clock are some of the things
   * that are different for each  processor and hardware platform.
   */

  up_initialize();

#ifdef CONFIG_NET
  /* Complete initialization the networking system now that interrupts
   * and timers have been configured by up_initialize().
   */

  net_initialize();
#endif

#ifdef CONFIG_MM_SHM
  /* Initialize shared memory support */

  shm_initialize();
#endif

  /* Initialize the C libraries.  This is done last because the libraries
   * may depend on the above.
   */

  lib_initialize();

  /* IDLE Group Initialization **********************************************/
#ifdef HAVE_TASK_GROUP
  /* Allocate the IDLE group */

  DEBUGVERIFY(group_allocate(&g_idletcb, g_idletcb.cmn.flags));
#endif

#if CONFIG_NFILE_DESCRIPTORS > 0 || CONFIG_NSOCKET_DESCRIPTORS > 0
  /* Create stdout, stderr, stdin on the IDLE task.  These will be
   * inherited by all of the threads created by the IDLE task.
   */

  DEBUGVERIFY(group_setupidlefiles(&g_idletcb));
#endif

#ifdef HAVE_TASK_GROUP
  /* Complete initialization of the IDLE group.  Suppress retention
   * of child status in the IDLE group.
   */

  DEBUGVERIFY(group_initialize(&g_idletcb));
  g_idletcb.cmn.group->tg_flags = GROUP_FLAG_NOCLDWAIT;
#endif

  /* Bring Up the System ****************************************************/
  /* Create initial tasks and bring-up the system */

  DEBUGVERIFY(os_bringup());

  /* The IDLE Loop **********************************************************/
  /* When control is return to this point, the system is idle. */

  sdbg("Beginning Idle Loop\n");
  for (;;)
    {
      /* Perform garbage collection (if it is not being done by the worker
       * thread).  This cleans-up memory de-allocations that were queued
       * because they could not be freed in that execution context (for
       * example, if the memory was freed from an interrupt handler).
       */

#ifndef CONFIG_SCHED_WORKQUEUE
      /* We must have exclusive access to the memory manager to do this
       * BUT the idle task cannot wait on a semaphore.  So we only do
       * the cleanup now if we can get the semaphore -- this should be
       * possible because if the IDLE thread is running, no other task is!
       *
       * WARNING: This logic could have undesirable side-effects if priority
       * inheritance is enabled.  Imaginee the possible issues if the
       * priority of the IDLE thread were to get boosted!  Moral: If you
       * use priority inheritance, then you should also enable the work
       * queue so that is done in a safer context.
       */

      if (kmm_trysemaphore() == 0)
        {
          sched_garbagecollection();
          kmm_givesemaphore();
        }
#endif

      /* Perform any processor-specific idle state operations */

      up_idle();
    }
}
示例#8
0
文件: kernel.c 项目: Kloniks/muk
void kernel_main(unsigned long magic,
		 unsigned long addr)
{
  multiboot_info_t *mbi;

  if (magic != MULTIBOOT_BOOTLOADER_MAGIC)
    return;

  mbi = (multiboot_info_t*)addr;

  /* kernel init
   */
  serial_init(DEBUG_SERIAL_PORT,
	      DEBUG_SERIAL_SPEED,
	      UART_8BITS_WORD,
	      UART_NO_PARITY,
	      UART_1_STOP_BIT);
  cls();

  cpu_cli();
  printf("[x] interrupts disabled\n");

  gdt_initialize();
  printf("[x] gdt initialized\n");

  idt_initialize();
  printf("[x] idt initialized\n");

  breakpoint_initialize();

#if defined(USE_APIC)
  apic_initialize();
  serial_printl("[x] apic initialized\n");
#else
  pic_initialize();
  serial_printl("[x] pic initialized\n");
#endif /* USE_APIC */

  /* initialize the kernel
   */
  {
    kernel_init(mbi);
  }

  /* memory initialization
   */
  {
    phys_init(mbi);
    phys_debug();
/*     vm_init(); */
/*     unit_test_vm(); */
/*     cpu_hlt(); */
  }

#if defined(USE_PCI)
  pci_initialize();
  pci_list();
#endif

  cpu_sti();

#if defined(USE_TASK)
 {
   /* subsystems
    */
   event_initialize();
   sched_initialize();
   task_initialize();

   /* tasks
    */
   idle_initialize();
   muksh_initialize();
   net_initialize();

/*    task_test(); */

   /* start scheduling
    */
   sched_start();
 }
#endif

 /* endless loop
  */
 serial_printl("[?] kernel loop\n");
 while (1)
   {
     serial_printl("k");
     cpu_hlt();
   }
}