示例#1
0
/** System shutdown thread.
 * @param _action	Action to perform once the system has been shut down.
 * @param arg2		Unused. */
static void shutdown_thread_entry(void *_action, void *arg2) {
	int action = (int)((ptr_t)_action);

	thread_wire(curr_thread);
	thread_disable_preempt();

	kprintf(LOG_NOTICE, "system: terminating all processes...\n");
	process_shutdown();
	kprintf(LOG_NOTICE, "system: unmounting filesystems...\n");
	fs_shutdown();
	#if CONFIG_SMP
	kprintf(LOG_NOTICE, "system: shutting down other CPUs...\n");
	smp_call_broadcast(shutdown_call_func, NULL, 0);
	#endif

	switch(action) {
	case SHUTDOWN_REBOOT:
		kprintf(LOG_NOTICE, "system: rebooting...\n");
		platform_reboot();
		break;
	case SHUTDOWN_POWEROFF:
		kprintf(LOG_NOTICE, "system: powering off...\n");
		platform_poweroff();
		break;
	}

	kprintf(LOG_NOTICE, "system: halted.\n");
	arch_cpu_halt();
}
示例#2
0
/** Kernel initialization thread.
 *
 * kinit takes care of higher level kernel
 * initialization (i.e. thread creation,
 * userspace initialization etc.).
 *
 * @param arg Not used.
 */
void kinit(void *arg)
{
	thread_t *thread;
	
	/*
	 * Detach kinit as nobody will call thread_join_timeout() on it.
	 */
	thread_detach(THREAD);
	
	interrupts_disable();
	
#ifdef CONFIG_SMP
	if (config.cpu_count > 1) {
		waitq_initialize(&ap_completion_wq);
		
		/*
		 * Create the kmp thread and wait for its completion.
		 * cpu1 through cpuN-1 will come up consecutively and
		 * not mess together with kcpulb threads.
		 * Just a beautification.
		 */
		thread = thread_create(kmp, NULL, TASK,
		    THREAD_FLAG_UNCOUNTED, "kmp");
		if (thread != NULL) {
			thread_wire(thread, &cpus[0]);
			thread_ready(thread);
		} else
			panic("Unable to create kmp thread.");
		
		thread_join(thread);
		thread_detach(thread);
		
		/*
		 * For each CPU, create its load balancing thread.
		 */
		unsigned int i;
		
		for (i = 0; i < config.cpu_count; i++) {
			thread = thread_create(kcpulb, NULL, TASK,
			    THREAD_FLAG_UNCOUNTED, "kcpulb");
			if (thread != NULL) {
				thread_wire(thread, &cpus[i]);
				thread_ready(thread);
			} else
				printf("Unable to create kcpulb thread for cpu%u\n", i);
		}
	}
#endif /* CONFIG_SMP */
	
	/*
	 * At this point SMP, if present, is configured.
	 */
	arch_post_smp_init();
	
	/* Start thread computing system load */
	thread = thread_create(kload, NULL, TASK, THREAD_FLAG_NONE,
	    "kload");
	if (thread != NULL)
		thread_ready(thread);
	else
		printf("Unable to create kload thread\n");
	
#ifdef CONFIG_KCONSOLE
	if (stdin) {
		/*
		 * Create kernel console.
		 */
		thread = thread_create(kconsole_thread, NULL, TASK,
		    THREAD_FLAG_NONE, "kconsole");
		if (thread != NULL)
			thread_ready(thread);
		else
			printf("Unable to create kconsole thread\n");
	}
#endif /* CONFIG_KCONSOLE */
	
	interrupts_enable();
	
	/*
	 * Create user tasks, load RAM disk images.
	 */
	size_t i;
	program_t programs[CONFIG_INIT_TASKS];
	
	for (i = 0; i < init.cnt; i++) {
		if (init.tasks[i].paddr % FRAME_SIZE) {
			printf("init[%zu]: Address is not frame aligned\n", i);
			programs[i].task = NULL;
			continue;
		}
		
		/*
		 * Construct task name from the 'init:' prefix and the
		 * name stored in the init structure (if any).
		 */
		
		char namebuf[TASK_NAME_BUFLEN];
		
		const char *name = init.tasks[i].name;
		if (name[0] == 0)
			name = "<unknown>";
		
		ASSERT(TASK_NAME_BUFLEN >= INIT_PREFIX_LEN);
		str_cpy(namebuf, TASK_NAME_BUFLEN, INIT_PREFIX);
		str_cpy(namebuf + INIT_PREFIX_LEN,
		    TASK_NAME_BUFLEN - INIT_PREFIX_LEN, name);
		
		/*
		 * Create virtual memory mappings for init task images.
		 */
		uintptr_t page = km_map(init.tasks[i].paddr,
		    init.tasks[i].size,
		    PAGE_READ | PAGE_WRITE | PAGE_CACHEABLE);
		ASSERT(page);
		
		int rc = program_create_from_image((void *) page, namebuf,
		    &programs[i]);
		
		if (rc == 0) {
			if (programs[i].task != NULL) {
				/*
				 * Set capabilities to init userspace tasks.
				 */
				cap_set(programs[i].task, CAP_CAP | CAP_MEM_MANAGER |
				    CAP_IO_MANAGER | CAP_IRQ_REG);
				
				if (!ipc_phone_0)
					ipc_phone_0 = &programs[i].task->answerbox;
			}
			
			/*
			 * If programs[i].task == NULL then it is
			 * the program loader and it was registered
			 * successfully.
			 */
		} else if (i == init.cnt - 1) {
			/*
			 * Assume the last task is the RAM disk.
			 */
			init_rd((void *) init.tasks[i].paddr, init.tasks[i].size);
		} else
			printf("init[%zu]: Init binary load failed "
			    "(error %d, loader status %u)\n", i, rc,
			    programs[i].loader_status);
	}
	
	/*
	 * Run user tasks.
	 */
	for (i = 0; i < init.cnt; i++) {
		if (programs[i].task != NULL)
			program_ready(&programs[i]);
	}
	
#ifdef CONFIG_KCONSOLE
	if (!stdin) {
		thread_sleep(10);
		printf("kinit: No stdin\nKernel alive: .");
		
		unsigned int i = 0;
		while (true) {
			printf("\b%c", alive[i % ALIVE_CHARS]);
			thread_sleep(1);
			i++;
		}
	}
#endif /* CONFIG_KCONSOLE */
}
示例#3
0
const char *test_smpcall1(void)
{
	/* Number of received calls that were sent by cpu[i]. */
	size_t call_cnt[MAX_CPUS] = {0};
	thread_t *thread[MAX_CPUS] = { NULL };
	
	unsigned int cpu_count = min(config.cpu_active, MAX_CPUS);
	size_t running_thread_cnt = 0;

	TPRINTF("Spawning threads on %u cpus.\n", cpu_count);
	
	/* Create a wired thread on each cpu. */
	for (unsigned int id = 0; id < cpu_count; ++id) {
		thread[id] = thread_create(test_thread, &call_cnt[id], TASK, 
			THREAD_FLAG_NONE, "smp-call-test");
		
		if (thread[id]) {
			thread_wire(thread[id], &cpus[id]);
			++running_thread_cnt;
		} else {
			TPRINTF("Failed to create thread on cpu%u.\n", id);
		}
	}

	size_t exp_calls = calc_exp_calls(running_thread_cnt);
	size_t exp_calls_sum = exp_calls * cpu_count;
	
	TPRINTF("Running %zu wired threads. Expecting %zu calls. Be patient.\n", 
		running_thread_cnt, exp_calls_sum);

	for (unsigned int i = 0; i < cpu_count; ++i) {
		if (thread[i] != NULL) {
			thread_ready(thread[i]);
		}
	}
	
	/* Wait for threads to complete. */
	for (unsigned int i = 0; i < cpu_count; ++i) {
		if (thread[i] != NULL) {
			thread_join(thread[i]);
			thread_detach(thread[i]);
		}
	}

	TPRINTF("Threads finished. Checking number of smp_call()s.\n");
	
	bool ok = true;
	size_t calls_sum = 0;
	
	for (size_t i = 0; i < cpu_count; ++i) {
		if (thread[i] != NULL) {
			if (call_cnt[i] != exp_calls) {
				ok = false;
				TPRINTF("Error: %zu instead of %zu cpu%zu's calls were"
					" acknowledged.\n", call_cnt[i], exp_calls, i);
			} 
		}
		
		calls_sum += call_cnt[i];
	}
	
	if (calls_sum != exp_calls_sum) {
		TPRINTF("Error: total acknowledged sum: %zu instead of %zu.\n",
			calls_sum, exp_calls_sum);
		
		ok = false;
	}
	
	if (ok) {
		TPRINTF("Success: number of received smp_calls is as expected (%zu).\n",
			exp_calls_sum);
		return NULL;
	} else
		return "Failed: incorrect acknowledged smp_calls.\n";
	
}
示例#4
0
文件: kinit.c 项目: jvesely/helenos
/** Kernel initialization thread.
 *
 * kinit takes care of higher level kernel
 * initialization (i.e. thread creation,
 * userspace initialization etc.).
 *
 * @param arg Not used.
 */
void kinit(void *arg)
{
	thread_t *thread;
	
	/*
	 * Detach kinit as nobody will call thread_join_timeout() on it.
	 */
	thread_detach(THREAD);

	interrupts_disable();
	
	/* Start processing RCU callbacks. RCU is fully functional afterwards. */
	rcu_kinit_init();
	
	/*
	 * Start processing work queue items. Some may have been queued during boot.
	 */
	workq_global_worker_init();
	
#ifdef CONFIG_SMP
	if (config.cpu_count > 1) {
		waitq_initialize(&ap_completion_wq);
		
		/*
		 * Create the kmp thread and wait for its completion.
		 * cpu1 through cpuN-1 will come up consecutively and
		 * not mess together with kcpulb threads.
		 * Just a beautification.
		 */
		thread = thread_create(kmp, NULL, TASK,
		    THREAD_FLAG_UNCOUNTED, "kmp");
		if (thread != NULL) {
			thread_wire(thread, &cpus[0]);
			thread_ready(thread);
		} else
			panic("Unable to create kmp thread.");
		
		thread_join(thread);
		thread_detach(thread);
		
		/*
		 * For each CPU, create its load balancing thread.
		 */
		unsigned int i;
		
		for (i = 0; i < config.cpu_count; i++) {
			thread = thread_create(kcpulb, NULL, TASK,
			    THREAD_FLAG_UNCOUNTED, "kcpulb");
			if (thread != NULL) {
				thread_wire(thread, &cpus[i]);
				thread_ready(thread);
			} else
				log(LF_OTHER, LVL_ERROR,
				    "Unable to create kcpulb thread for cpu%u", i);
		}
	}
#endif /* CONFIG_SMP */
	
	/*
	 * At this point SMP, if present, is configured.
	 */
	ARCH_OP(post_smp_init);
	
	/* Start thread computing system load */
	thread = thread_create(kload, NULL, TASK, THREAD_FLAG_NONE,
	    "kload");
	if (thread != NULL)
		thread_ready(thread);
	else
		log(LF_OTHER, LVL_ERROR, "Unable to create kload thread");
	
#ifdef CONFIG_KCONSOLE
	if (stdin) {
		/*
		 * Create kernel console.
		 */
		thread = thread_create(kconsole_thread, NULL, TASK,
		    THREAD_FLAG_NONE, "kconsole");
		if (thread != NULL)
			thread_ready(thread);
		else
			log(LF_OTHER, LVL_ERROR,
			    "Unable to create kconsole thread");
	}
#endif /* CONFIG_KCONSOLE */
	
	/*
	 * Store the default stack size in sysinfo so that uspace can create
	 * stack with this default size.
	 */
	sysinfo_set_item_val("default.stack_size", NULL, STACK_SIZE_USER);
	
	interrupts_enable();
	
	/*
	 * Create user tasks, load RAM disk images.
	 */
	size_t i;
	program_t programs[CONFIG_INIT_TASKS];
	
	// FIXME: do not propagate arguments through sysinfo
	// but pass them directly to the tasks
	for (i = 0; i < init.cnt; i++) {
		const char *arguments = init.tasks[i].arguments;
		if (str_length(arguments) == 0)
			continue;
		if (str_length(init.tasks[i].name) == 0)
			continue;
		size_t arguments_size = str_size(arguments);

		void *arguments_copy = malloc(arguments_size, 0);
		if (arguments_copy == NULL)
			continue;
		memcpy(arguments_copy, arguments, arguments_size);

		char item_name[CONFIG_TASK_NAME_BUFLEN + 15];
		snprintf(item_name, CONFIG_TASK_NAME_BUFLEN + 15,
		    "init_args.%s", init.tasks[i].name);

		sysinfo_set_item_data(item_name, NULL, arguments_copy, arguments_size);
	}

	for (i = 0; i < init.cnt; i++) {
		if (init.tasks[i].paddr % FRAME_SIZE) {
			log(LF_OTHER, LVL_ERROR,
			    "init[%zu]: Address is not frame aligned", i);
			programs[i].task = NULL;
			continue;
		}
		
		/*
		 * Construct task name from the 'init:' prefix and the
		 * name stored in the init structure (if any).
		 */
		
		char namebuf[TASK_NAME_BUFLEN];
		
		const char *name = init.tasks[i].name;
		if (name[0] == 0)
			name = "<unknown>";
		
		STATIC_ASSERT(TASK_NAME_BUFLEN >= INIT_PREFIX_LEN);
		str_cpy(namebuf, TASK_NAME_BUFLEN, INIT_PREFIX);
		str_cpy(namebuf + INIT_PREFIX_LEN,
		    TASK_NAME_BUFLEN - INIT_PREFIX_LEN, name);
		
		/*
		 * Create virtual memory mappings for init task images.
		 */
		uintptr_t page = km_map(init.tasks[i].paddr,
		    init.tasks[i].size,
		    PAGE_READ | PAGE_WRITE | PAGE_CACHEABLE);
		ASSERT(page);
		
		int rc = program_create_from_image((void *) page, namebuf,
		    &programs[i]);
		
		if (rc == 0) {
			if (programs[i].task != NULL) {
				/*
				 * Set capabilities to init userspace tasks.
				 */
				cap_set(programs[i].task, CAP_CAP | CAP_MEM_MANAGER |
				    CAP_IO_MANAGER | CAP_IRQ_REG);
				
				if (!ipc_phone_0) {
					ipc_phone_0 = &programs[i].task->answerbox;
					/*
					 * Hold the first task so that the
					 * ipc_phone_0 remains a valid pointer
					 * even if the first task exits for
					 * whatever reason.
					 */
					task_hold(programs[i].task);
				}
			}
			
			/*
			 * If programs[i].task == NULL then it is
			 * the program loader and it was registered
			 * successfully.
			 */
		} else if (i == init.cnt - 1) {
			/*
			 * Assume the last task is the RAM disk.
			 */
			init_rd((void *) init.tasks[i].paddr, init.tasks[i].size);
		} else
			log(LF_OTHER, LVL_ERROR,
			    "init[%zu]: Init binary load failed "
			    "(error %d, loader status %u)", i, rc,
			    programs[i].loader_status);
	}
	
	/*
	 * Run user tasks.
	 */
	for (i = 0; i < init.cnt; i++) {
		if (programs[i].task != NULL)
			program_ready(&programs[i]);
	}
	
#ifdef CONFIG_KCONSOLE
	if (!stdin) {
		thread_sleep(10);
		printf("kinit: No stdin\nKernel alive: .");
		
		unsigned int i = 0;
		while (true) {
			printf("\b%c", alive[i % ALIVE_CHARS]);
			thread_sleep(1);
			i++;
		}
	}
#endif /* CONFIG_KCONSOLE */
}