示例#1
0
void problem_init(int argc, char* argv[]){
	// Setup constants
#ifdef GRAVITY_TREE
	opening_angle2	= .5;
#endif
	OMEGA 				= 0.00013143527;	// 1/s
	tmax				= 2.*M_PI/OMEGA;
	G 				= 6.67428e-11;		// N / (1e-5 kg)^2 m^2
	softening 			= 0.1;			// m
	dt 				= 1e-2*2.*M_PI/OMEGA;	// s
	root_nx = 8; root_ny = 8; root_nz = 1;
	nghostx = 2; nghosty = 2; nghostz = 0; 			// Use three ghost rings
	double surfacedensity 		= 418; 			// kg/m^2
	double particle_density		= 400;			// kg/m^3
	double particle_radius_min 	= 1;			// m
	double particle_radius_max 	= 4;			// m
	double particle_radius_slope 	= -3;	
	boxsize 			= 70.7;
	if (argc>1){						// Try to read boxsize from command line
		boxsize = atof(argv[1]);
	}
	init_box();
	
	// Initial conditions
	// Use Bridges et al coefficient of restitution.
	coefficient_of_restitution_for_velocity = coefficient_of_restitution_bridges;
	minimum_collision_velocity = particle_radius_min*OMEGA*0.001;  // small fraction of the shear
	double total_mass = surfacedensity*boxsize*boxsize;
	for(int i=0;i<root_n;i++){
#ifdef MPI
		if (communication_mpi_rootbox_is_local(i)==0) continue;
#endif
		// Ring particles
		double mass = 0;
		while(mass<total_mass){
			struct particle pt;
			int ri = i%root_nx;
			int rj = ((i-ri)/root_nx)%root_ny;
			int xmin = -boxsize_x/2.+(double)(ri)*boxsize;
			int ymin = -boxsize_y/2.+(double)(rj)*boxsize;
			pt.x 		= tools_uniform(xmin,xmin+boxsize);
			pt.y 		= tools_uniform(ymin,ymin+boxsize);
			pt.z 		= tools_normal(1.);					// m
			pt.vx 		= 0;
			pt.vy 		= -1.5*pt.x*OMEGA;
			pt.vz 		= 0;
			pt.ax 		= 0;
			pt.ay 		= 0;
			pt.az 		= 0;
			double radius 	= tools_powerlaw(particle_radius_min,particle_radius_max,particle_radius_slope);
#ifndef COLLISIONS_NONE
			pt.r 		= radius;						// m
#endif // COLLISIONS_NONE
			double	particle_mass = particle_density*4./3.*M_PI*radius*radius*radius;
			pt.m 		= particle_mass; 	// kg
			particles_add(pt);
			mass += particle_mass;
		}
	}
}
示例#2
0
void problem_init(int argc, char* argv[]){
	// Setup constants
#ifdef GRAVITY_TREE
	opening_angle2	= .5;
#endif // GRAVITY_TREE
	OMEGA 				= 0.00013143527;	// 1/s
	G 				= 6.67428e-11;		// N / (1e-5 kg)^2 m^2
	softening 			= 0.1;			// m
	dt 				= 1e-3*2.*M_PI/OMEGA;	// s
#ifdef OPENGL
	display_rotate_z		= 20;			// Rotate the box by 20 around the z axis, then 
	display_rotate_x		= 60;			// rotate the box by 60 degrees around the x axis	
#ifdef LIBPNG
	system("mkdir png");
#endif // LIBPNG
#endif // OPENGL
	root_nx = 2; root_ny = 2; root_nz = 1;
	nghostx = 2; nghosty = 2; nghostz = 0; 			// Use two ghost rings
	double surfacedensity 		= 400; 			// kg/m^2
	double particle_density		= 400;			// kg/m^3
	double particle_radius_min 	= 1;			// m
	double particle_radius_max 	= 4;			// m
	double particle_radius_slope 	= -3;	
	boxsize 			= 100;			// m
	if (argc>1){						// Try to read boxsize from command line
		boxsize = atof(argv[1]);
	}
	init_box();
	
	// Initial conditions
	printf("Toomre wavelength: %f\n",2.*M_PI*M_PI*surfacedensity/OMEGA/OMEGA*G);
	// Use Bridges et al coefficient of restitution.
	coefficient_of_restitution_for_velocity = coefficient_of_restitution_bridges;
	minimum_collision_velocity = particle_radius_min*OMEGA*0.001;  // small fraction of the shear
	double total_mass = surfacedensity*boxsize_x*boxsize_y;
	double mass = 0;
	while(mass<total_mass){
		struct particle pt;
		pt.x 		= tools_uniform(-boxsize_x/2.,boxsize_x/2.);
		pt.y 		= tools_uniform(-boxsize_y/2.,boxsize_y/2.);
		pt.z 		= tools_normal(1.);					// m
		pt.vx 		= 0;
		pt.vy 		= -1.5*pt.x*OMEGA;
		pt.vz 		= 0;
		pt.ax 		= 0;
		pt.ay 		= 0;
		pt.az 		= 0;
		double radius 	= tools_powerlaw(particle_radius_min,particle_radius_max,particle_radius_slope);
#ifndef COLLISIONS_NONE
		pt.r 		= radius;						// m
#endif
		double		particle_mass = particle_density*4./3.*M_PI*radius*radius*radius;
		pt.m 		= particle_mass; 	// kg
		particles_add(pt);
		mass += particle_mass;
	}
}
示例#3
0
void problem_init(int argc, char* argv[]){
	// Setup constants
#ifdef GRAVITY_TREE
	opening_angle2	= .5;
#endif
	OMEGA 				= 0.00013143527;	// 1/s
	G 				= 6.67428e-11;		// N / (1e-5 kg)^2 m^2
	softening 			= 0.1;			// m
	dt 				= 1e-3*2.*M_PI/OMEGA;	// s
	root_nx = 2; root_ny = 2; root_nz = 1;
	nghostx = 2; nghosty = 2; nghostz = 0; 			// Use two ghost rings
	double surfacedensity 		= 400; 			// kg/m^2
	double particle_density		= 400;			// kg/m^3
	double particle_radius_min 	= 1;			// m
	double particle_radius_max 	= 4;			// m
	double particle_radius_slope 	= -3;	
	boxsize 			= 100;
	if (argc>1){						// Try to read boxsize from command line
		boxsize = atof(argv[1]);
	}
	init_box();
	
	// Initial conditions
	printf("Toomre wavelength: %f\n",2.*M_PI*M_PI*surfacedensity/OMEGA/OMEGA*G);
	// Use Bridges et al coefficient of restitution.
	coefficient_of_restitution_for_velocity = coefficient_of_restitution_bridges;
	minimum_collision_velocity = particle_radius_min*OMEGA*0.001;  // small fraction of the shear
	double total_mass = surfacedensity*boxsize_x*boxsize_y;
#ifdef MPI
	// Only initialise particles on master. This should also be parallelied but the details depend on the individual problem.
	if (mpi_id==0){
#endif
		double mass = 0;
		while(mass<total_mass){
			struct particle pt;
			pt.x 		= tools_uniform(-boxsize_x/2.,boxsize_x/2.);
			pt.y 		= tools_uniform(-boxsize_y/2.,boxsize_y/2.);
			pt.z 		= tools_normal(1.);					// m
			pt.vx 		= 0;
			pt.vy 		= -1.5*pt.x*OMEGA;
			pt.vz 		= 0;
			pt.ax 		= 0;
			pt.ay 		= 0;
			pt.az 		= 0;
			double radius 	= tools_powerlaw(particle_radius_min,particle_radius_max,particle_radius_slope);
#ifndef COLLISIONS_NONE
			pt.r 		= radius;						// m
#endif
			double		particle_mass = particle_density*4./3.*M_PI*radius*radius*radius;
			pt.m 		= particle_mass; 	// kg
			particles_add(pt);
			mass += particle_mass;
		}
#ifdef MPI
	}
#endif
}
示例#4
0
void problem_init(int argc, char* argv[]){
	// Setup constants
	OMEGA 				= 0.00013143527;	// 1/s
	G 				= 6.67428e-11;		// N / (1e-5 kg)^2 m^2
	dt 				= 1e-3*2.*M_PI/OMEGA;	// s
	root_nx = 10; root_ny = 1; root_nz = 1;
	nghostx = 1; nghosty = 1; nghostz = 0; 			// Use two one ring (+cutoff, see below)
	double surfacedensity 		= 400; 			// kg/m^2
	double particle_density		= 400;			// kg/m^3
	double particle_radius_min 	= 1;			// m
	double particle_radius_max 	= 4;			// m
	double particle_radius_slope 	= -3;	
	boxsize 			= 100;
	if (argc>1){						// Try to read boxsize from command line
		boxsize = atof(argv[1]);
	}
	init_box();
#ifdef GRAVITY_GRAPE
	gravity_range = boxsize/2.;
#endif // GRAVITY_GRAPE
	
	// Initial conditions
	printf("Toomre wavelength: %f\n",2.*M_PI*M_PI*surfacedensity/OMEGA/OMEGA*G);
#ifndef COLLISIONS_NONE
	// Use Bridges et al coefficient of restitution.
	coefficient_of_restitution_for_velocity	= coefficient_of_restitution_bridges;
	minimum_collision_velocity		= particle_radius_min*OMEGA*0.001;  // small fraction of the shear
	softening 				= 0.1;			// m
#else  // COLLISIONS_NONE
	softening				= particle_radius_max;
#endif // COLLISIONS_NONE
	double total_mass = surfacedensity*boxsize_x*boxsize_y;
	double mass = 0;
	while(mass<total_mass){
		struct particle pt;
		pt.x 		= tools_uniform(-boxsize_x/2.,boxsize_x/2.);
		pt.y 		= tools_uniform(-boxsize_y/2.,boxsize_y/2.);
		pt.z 		= tools_normal(1.);					// m
		pt.vx 		= 0;
		pt.vy 		= -1.5*pt.x*OMEGA;
		pt.vz 		= 0;
		pt.ax 		= 0;
		pt.ay 		= 0;
		pt.az 		= 0;
		double radius 	= tools_powerlaw(particle_radius_min,particle_radius_max,particle_radius_slope);
#ifndef COLLISIONS_NONE
		pt.r 		= radius;						// m
#endif
		double		particle_mass = particle_density*4./3.*M_PI*radius*radius*radius;
		pt.m 		= particle_mass; 	// kg
		particles_add(pt);
		mass += particle_mass;
	}
}
示例#5
0
void problem_init(int argc, char* argv[]){
	// Setup constants
#ifdef GRAVITY_TREE
	opening_angle2	= .5;
#endif // GRAVITY_TREE
	integrator			= SEI;
	OMEGA 				= 0.00013143527;	// 1/s
	G 				= 6.67428e-11;		// N / (1e-5 kg)^2 m^2
	softening 			= 0.1;			// m
	dt 				= 1e-3*2.*M_PI/OMEGA;	// s
	root_nx = 2; root_ny = 2; root_nz = 1;
	nghostx = 2; nghosty = 2; nghostz = 0; 			// Use two ghost rings
	double surfacedensity 		= 840; 			// kg/m^2
	double particle_density		= 900;			// kg/m^3
	double particle_radius_min 	= 1.;			// m
	double particle_radius_max 	= 1.;			// m
	double particle_radius_slope 	= -3;	
	boxsize 			= 40;			// m
	if (argc>1){						// Try to read boxsize from command line
		boxsize = atof(argv[1]);
	}
	init_box();
	
	// Initial conditions
	printf("Toomre wavelength: %f\n",4.*M_PI*M_PI*surfacedensity/OMEGA/OMEGA*G);
	// Use Bridges et al coefficient of restitution.
	coefficient_of_restitution_for_velocity = coefficient_of_restitution_bridges;
	// Change collision_resolve routing from default.
	collision_resolve = collision_resolve_hardsphere_pullaway;
	// Small residual velocity to avoid particles from sinking into each other.
	minimum_collision_velocity = particle_radius_min*OMEGA*0.001;  // small fraction of the shear
	double total_mass = surfacedensity*boxsize_x*boxsize_y;
	double mass = 0;
	while(mass<total_mass){
		struct particle pt;
		pt.x 		= tools_uniform(-boxsize_x/2.,boxsize_x/2.);
		pt.y 		= tools_uniform(-boxsize_y/2.,boxsize_y/2.);
		pt.z 		= tools_normal(1.);					// m
		pt.vx 		= 0;
		pt.vy 		= -1.5*pt.x*OMEGA;
		pt.vz 		= 0;
		pt.ax 		= 0;
		pt.ay 		= 0;
		pt.az 		= 0;
		double radius 	= tools_powerlaw(particle_radius_min,particle_radius_max,particle_radius_slope);
#ifndef COLLISIONS_NONE
		pt.r 		= radius;						// m
#endif
		double		particle_mass = particle_density*4./3.*M_PI*radius*radius*radius;
		pt.m 		= particle_mass; 	// kg
		particles_add(pt);
		mass += particle_mass;
	}
}
示例#6
0
void problem_init(int argc, char* argv[]){
	// Setup constants
	opening_angle2	= 1.5;		// This constant determines the accuracy of the tree code gravity estimate.
	G 		= 1;		
	softening 	= 0.01;		// Gravitational softening length
	dt 		= 3e-3;		// Timestep
	boxsize 	= 1.2;		// Particles outside the box are removed
	root_nx = 1; root_ny = 1; root_nz = 1;
	nghostx = 0; nghosty = 0; nghostz = 0; 		
	init_box();

	// Setup particles
	double disc_mass = 2e-1;	// Total disc mass
	int _N = 10000;			// Number of particles
	// Initial conditions
	struct particle star;
	star.x 		= 0; star.y 	= 0; star.z	= 0;
	star.vx 	= 0; star.vy 	= 0; star.vz 	= 0;
	star.ax 	= 0; star.ay 	= 0; star.az 	= 0;
	star.m 		= 1;
#ifdef INTEGRATOR_WH
	// Insert particle manually. Don't add it to tree.
	Nmax 			+= 128;
	particles 		= realloc(particles,sizeof(struct particle)*Nmax);
	particles[N] 		= star;
	N++;
#else // INTEGRATOR_WH
	particles_add(star);
#endif // INTEGRATOR_WH
	while(N<_N){
		struct particle pt;
		double a	= tools_powerlaw(boxsize/10.,boxsize/2./1.2,-1.5);
		double phi 	= tools_uniform(0,2.*M_PI);
		pt.x 		= a*cos(phi);
		pt.y 		= a*sin(phi);
		pt.z 		= a*tools_normal(0.001);
		double mu 	= star.m + disc_mass * (pow(a,-3./2.)-pow(boxsize/10.,-3./2.))/(pow(boxsize/2./1.2,-3./2.)-pow(boxsize/10.,-3./2.));
		double vkep 	= sqrt(G*mu/a);
		pt.vx 		=  vkep * sin(phi);
		pt.vy 		= -vkep * cos(phi);
		pt.vz 		= 0;
		pt.ax 		= 0;
		pt.ay 		= 0;
		pt.az 		= 0;
		pt.m 		= disc_mass/(double)_N;
		particles_add(pt);
	}
}
示例#7
0
void problem_init(int argc, char* argv[]){
	// Setup constants
	G 		= 1;		
	integrator	= LEAPFROG;
	softening 	= 0.01;		
	dt 		= 3e-3;
	boxsize 	= 1.2;
	root_nx = 1; root_ny = 1; root_nz = 1;
	nghostx = 0; nghosty = 0; nghostz = 0; 		
	init_box();

	// Setup particles
	double disc_mass = 2e-1;
	int _N = 10000;
	// Initial conditions
	struct particle star;
	star.x 		= 0; star.y 	= 0; star.z	= 0;
	star.vx 	= 0; star.vy 	= 0; star.vz 	= 0;
	star.ax 	= 0; star.ay 	= 0; star.az 	= 0;
	star.m 		= 1;
#ifdef INTEGRATOR_WH
	// Insert particle manually. Don't add it to tree.
	Nmax 			+= 128;
	particles 		= realloc(particles,sizeof(struct particle)*Nmax);
	particles[N] 		= star;
	N++;
#else // INTEGRATOR_WH
	particles_add(star);
#endif // INTEGRATOR_WH
	while(N<_N){
		struct particle pt;
		double a	= tools_powerlaw(boxsize/10.,boxsize/2./1.2,-1.5);
		double phi 	= tools_uniform(0,2.*M_PI);
		pt.x 		= a*cos(phi);
		pt.y 		= a*sin(phi);
		pt.z 		= a*tools_normal(0.001);
		double mu 	= star.m + disc_mass * (pow(a,-3./2.)-pow(boxsize/10.,-3./2.))/(pow(boxsize/2./1.2,-3./2.)-pow(boxsize/10.,-3./2.));
		double vkep 	= sqrt(G*mu/a);
		pt.vx 		=  vkep * sin(phi);
		pt.vy 		= -vkep * cos(phi);
		pt.vz 		= 0;
		pt.ax 		= 0;
		pt.ay 		= 0;
		pt.az 		= 0;
		pt.m 		= disc_mass/(double)_N;
		particles_add(pt);
	}
}
示例#8
0
void problem_init(int argc, char* argv[]){
	// Setup constants
	integrator	= WH;
	G 		= 1;		
	N_active	= 1;
	N_collisions	= 1; 	// Don't detect collisions for the star.
	softening 	= 0.01;		
	dt 		= 1e-3;
	boxsize 	= 2.4;
	root_nx = 1; root_ny = 1; root_nz = 1;
	nghostx = 0; nghosty = 0; nghostz = 0; 		
	init_box();

	// Setup particles
	int _N = 1000;
	// Initial conditions
	struct particle star;
	star.x 		= 0; star.y 	= 0; star.z	= 0;
	star.vx 	= 0; star.vy 	= 0; star.vz 	= 0;
	star.ax 	= 0; star.ay 	= 0; star.az 	= 0;
	star.m 		= 1;
	star.r		= 0.01;
	particles_add(star);
	while(N<_N){
		struct particle pt;
		double a	= tools_powerlaw(boxsize/2.9,boxsize/3.1,.5);
		double phi 	= tools_uniform(0,2.*M_PI);
		pt.x 		= a*cos(phi);
		pt.y 		= a*sin(phi);
		pt.z 		= a*tools_normal(0.0001);
		double vkep 	= sqrt(G*star.m/a);
		pt.vx 		=  vkep * sin(phi);
		pt.vy 		= -vkep * cos(phi);
		pt.vz 		= 0;
		pt.ax 		= 0;
		pt.ay 		= 0;
		pt.az 		= 0;
		pt.m 		= 0.0001;
		pt.r 		= .3/sqrt((double)_N);
		particles_add(pt);
	}
}
示例#9
0
void problem_init(int argc, char* argv[]){
	// Setup constants
	G 		= 1;		
	softening 	= 0.01;		
	dt 		= 3e-3;
	boxsize 	= 2.4;
	integrator	= LEAPFROG;
	root_nx = 1; root_ny = 1; root_nz = 1;
	nghostx = 0; nghosty = 0; nghostz = 0; 		
	init_box();

	// Initial conditions
	struct particle star;
	star.x 		= 0; star.y 	= 0; star.z	= 0;
	star.vx 	= 0; star.vy 	= 0; star.vz 	= 0;
	star.ax 	= 0; star.ay 	= 0; star.az 	= 0;
	star.m 		= 1;
	particles_add(star);
	
	// Setup disk particles
	double disc_mass = 2e-1;
	int _N = 1024*4;
	while(N<_N){
		struct particle pt;
		double a	= tools_powerlaw(boxsize/20.,boxsize/4./1.2,-1.5);
		double phi 	= tools_uniform(0,2.*M_PI);
		pt.x 		= a*cos(phi);
		pt.y 		= a*sin(phi);
		pt.z 		= a*tools_normal(0.001);
		double mu 	= star.m + disc_mass * (pow(a,-3./2.)-pow(boxsize/20.,-3./2.))/(pow(boxsize/4./1.2,-3./2.)-pow(boxsize/20.,-3./2.));
		double vkep 	= sqrt(G*mu/a);
		pt.vx 		=  vkep * sin(phi);
		pt.vy 		= -vkep * cos(phi);
		pt.vz 		= 0;
		pt.ax 		= 0;
		pt.ay 		= 0;
		pt.az 		= 0;
		pt.m 		= disc_mass/(double)_N;
		particles_add(pt);
	}
}