示例#1
0
static void test_arm(void)
{
    uc_engine *uc;
    uc_err err;
    uc_hook trace1, trace2;

    int r0 = 0x1234;     // R0 register
    int r2 = 0x6789;     // R1 register
    int r3 = 0x3333;     // R2 register
    int r1;     // R1 register

    printf("Emulate ARM code\n");

    // Initialize emulator in ARM mode
    err = uc_open(UC_ARCH_ARM, UC_MODE_ARM, &uc);
    if (err) {
        printf("Failed on uc_open() with error returned: %u (%s)\n",
                err, uc_strerror(err));
        return;
    }

    // map 2MB memory for this emulation
    uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);

    // write machine code to be emulated to memory
    uc_mem_write(uc, ADDRESS, ARM_CODE, sizeof(ARM_CODE) - 1);

    // initialize machine registers
    uc_reg_write(uc, UC_ARM_REG_R0, &r0);
    uc_reg_write(uc, UC_ARM_REG_R2, &r2);
    uc_reg_write(uc, UC_ARM_REG_R3, &r3);

    // tracing all basic blocks with customized callback
    uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, 1, 0);

    // tracing one instruction at ADDRESS with customized callback
    uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, ADDRESS, ADDRESS);

    // emulate machine code in infinite time (last param = 0), or when
    // finishing all the code.
    err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(ARM_CODE) -1, UC_SECOND_SCALE * TIMEOUT, 0);
    if (err) {
        printf("Failed on uc_emu_start() with error returned: %u\n", err);
    }

    // now print out some registers
    printf(">>> Emulation done. Below is the CPU context\n");

    uc_reg_read(uc, UC_ARM_REG_R0, &r0);
    uc_reg_read(uc, UC_ARM_REG_R1, &r1);
    printf(">>> R0 = 0x%x\n", r0);
    printf(">>> R1 = 0x%x\n", r1);

    uc_close(uc);
}
示例#2
0
// emulate code that jump to invalid memory
static void test_i386_jump_invalid(void)
{
    uc_engine *uc;
    uc_err err;
    uc_hook trace1, trace2;

    int r_ecx = 0x1234;     // ECX register
    int r_edx = 0x7890;     // EDX register

    printf("===================================\n");
    printf("Emulate i386 code that jumps to invalid memory\n");

    // Initialize emulator in X86-32bit mode
    err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
    if (err) {
        printf("Failed on uc_open() with error returned: %u\n", err);
        return;
    }

    // map 2MB memory for this emulation
    uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);

    // write machine code to be emulated to memory
    if (uc_mem_write(uc, ADDRESS, X86_CODE32_JMP_INVALID, sizeof(X86_CODE32_JMP_INVALID) - 1)) {
        printf("Failed to write emulation code to memory, quit!\n");
        return;
    }

    // initialize machine registers
    uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
    uc_reg_write(uc, UC_X86_REG_EDX, &r_edx);

    // tracing all basic blocks with customized callback
    uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, 1, 0);

    // tracing all instructions by having @begin > @end
    uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, 1, 0);

    // emulate machine code in infinite time
    err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_JMP_INVALID) - 1, 0, 0);
    if (err) {
        printf("Failed on uc_emu_start() with error returned %u: %s\n",
                err, uc_strerror(err));
    }

    // now print out some registers
    printf(">>> Emulation done. Below is the CPU context\n");

    uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
    uc_reg_read(uc, UC_X86_REG_EDX, &r_edx);
    printf(">>> ECX = 0x%x\n", r_ecx);
    printf(">>> EDX = 0x%x\n", r_edx);

    uc_close(uc);
}
示例#3
0
static void test_sparc(void)
{
    uc_engine *uc;
    uc_err err;
    uc_hook trace1, trace2;

    int g1 = 0x1230;     // G1 register
    int g2 = 0x6789;     // G2 register
    int g3 = 0x5555;     // G3 register

    printf("Emulate SPARC code\n");

    // Initialize emulator in Sparc mode
    err = uc_open(UC_ARCH_SPARC, UC_MODE_32, &uc);
    if (err) {
        printf("Failed on uc_open() with error returned: %u (%s)\n",
                err, uc_strerror(err));
        return;
    }

    // map 2MB memory for this emulation
    uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);

    // write machine code to be emulated to memory
    uc_mem_write(uc, ADDRESS, SPARC_CODE, sizeof(SPARC_CODE) - 1);

    // initialize machine registers
    uc_reg_write(uc, UC_SPARC_REG_G1, &g1);
    uc_reg_write(uc, UC_SPARC_REG_G2, &g2);
    uc_reg_write(uc, UC_SPARC_REG_G3, &g3);

    // tracing all basic blocks with customized callback
    uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, (uint64_t)1, (uint64_t)0);

    // tracing all instructions with customized callback
    uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, (uint64_t)1, (uint64_t)0);

    // emulate machine code in infinite time (last param = 0), or when
    // finishing all the code.
    err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(SPARC_CODE) - 1, 0, 0);
    if (err) {
        printf("Failed on uc_emu_start() with error returned: %u (%s)\n",
                err, uc_strerror(err));
    }

    // now print out some registers
    printf(">>> Emulation done. Below is the CPU context\n");

    uc_reg_read(uc, UC_SPARC_REG_G3, &g3);
    printf(">>> G3 = 0x%x\n", g3);

    uc_close(uc);
}
示例#4
0
static void test_arm64(void)
{
    uc_engine *uc;
    uc_err err;
    uc_hook trace1, trace2;

    int64_t x11 = 0x1234;     // X11 register
    int64_t x13 = 0x6789;     // X13 register
    int64_t x15 = 0x3333;     // X15 register

    printf("Emulate ARM64 code\n");

    // Initialize emulator in ARM mode
    err = uc_open(UC_ARCH_ARM64, UC_MODE_ARM, &uc);
    if (err) {
        printf("Failed on uc_open() with error returned: %u (%s)\n",
                err, uc_strerror(err));
        return;
    }

    // map 2MB memory for this emulation
    uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);

    // write machine code to be emulated to memory
    uc_mem_write(uc, ADDRESS, ARM_CODE, sizeof(ARM_CODE) - 1);

    // initialize machine registers
    uc_reg_write(uc, UC_ARM64_REG_X11, &x11);
    uc_reg_write(uc, UC_ARM64_REG_X13, &x13);
    uc_reg_write(uc, UC_ARM64_REG_X15, &x15);

    // tracing all basic blocks with customized callback
    uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, (uint64_t)1, (uint64_t)0);

    // tracing one instruction at ADDRESS with customized callback
    uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, (uint64_t)ADDRESS, (uint64_t)ADDRESS);

    // emulate machine code in infinite time (last param = 0), or when
    // finishing all the code.
    err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(ARM_CODE) -1, 0, 0);
    if (err) {
        printf("Failed on uc_emu_start() with error returned: %u\n", err);
    }

    // now print out some registers
    printf(">>> Emulation done. Below is the CPU context\n");

    uc_reg_read(uc, UC_ARM64_REG_X11, &x11);
    printf(">>> X11 = 0x%" PRIx64 "\n", x11);

    uc_close(uc);
}
示例#5
0
static void test_x86_16(void)
{
    uc_engine *uc;
    uc_err err;
    uint8_t tmp;

    int32_t eax = 7;
    int32_t ebx = 5;
    int32_t esi = 6;

    printf("Emulate x86 16-bit code\n");

    // Initialize emulator in X86-16bit mode
    err = uc_open(UC_ARCH_X86, UC_MODE_16, &uc);
    if (err) {
        printf("Failed on uc_open() with error returned: %u\n", err);
        return;
    }

    // map 8KB memory for this emulation
    uc_mem_map(uc, 0, 8 * 1024, UC_PROT_ALL);

    // write machine code to be emulated to memory
    if (uc_mem_write(uc, 0, X86_CODE16, sizeof(X86_CODE16) - 1)) {
        printf("Failed to write emulation code to memory, quit!\n");
        return;
    }

    // initialize machine registers
    uc_reg_write(uc, UC_X86_REG_EAX, &eax);
    uc_reg_write(uc, UC_X86_REG_EBX, &ebx);
    uc_reg_write(uc, UC_X86_REG_ESI, &esi);

    // emulate machine code in infinite time (last param = 0), or when
    // finishing all the code.
    err = uc_emu_start(uc, 0, sizeof(X86_CODE16) - 1, 0, 0);
    if (err) {
        printf("Failed on uc_emu_start() with error returned %u: %s\n",
                err, uc_strerror(err));
    }

    // now print out some registers
    printf(">>> Emulation done. Below is the CPU context\n");

    // read from memory
    if (!uc_mem_read(uc, 11, &tmp, 1))
        printf(">>> Read 1 bytes from [0x%x] = 0x%x\n", 11, tmp);
    else
        printf(">>> Failed to read 1 bytes from [0x%x]\n", 11);

    uc_close(uc);
}
示例#6
0
// emulate code that loop forever
static void test_i386_loop(void)
{
    uc_engine *uc;
    uc_err err;

    int r_ecx = 0x1234;     // ECX register
    int r_edx = 0x7890;     // EDX register

    printf("===================================\n");
    printf("Emulate i386 code that loop forever\n");

    // Initialize emulator in X86-32bit mode
    err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
    if (err) {
        printf("Failed on uc_open() with error returned: %u\n", err);
        return;
    }

    // map 2MB memory for this emulation
    uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);

    // write machine code to be emulated to memory
    if (uc_mem_write(uc, ADDRESS, X86_CODE32_LOOP, sizeof(X86_CODE32_LOOP) - 1)) {
        printf("Failed to write emulation code to memory, quit!\n");
        return;
    }

    // initialize machine registers
    uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
    uc_reg_write(uc, UC_X86_REG_EDX, &r_edx);

    // emulate machine code in 2 seconds, so we can quit even
    // if the code loops
    err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_LOOP) - 1, 2 * UC_SECOND_SCALE, 0);
    if (err) {
        printf("Failed on uc_emu_start() with error returned %u: %s\n",
                err, uc_strerror(err));
    }

    // now print out some registers
    printf(">>> Emulation done. Below is the CPU context\n");

    uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
    uc_reg_read(uc, UC_X86_REG_EDX, &r_edx);
    printf(">>> ECX = 0x%x\n", r_ecx);
    printf(">>> EDX = 0x%x\n", r_edx);

    uc_close(uc);
}
示例#7
0
// emulate code that loop forever
static void test_i386_loop(void **state)
{
    uc_engine *uc;
    uc_err err;

    int r_ecx = 0x1234;     // ECX register
    int r_edx = 0x7890;     // EDX register

    static const uint64_t address = 0x1000000;
    static const uint8_t code[] = {
        0x41,           // inc ecx
        0x4a,           // dec edx
        0xEB, 0xFE,     // jmp $
    };

    // Initialize emulator in X86-32bit mode
    err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
    uc_assert_success(err);

    // map 2MB memory for this emulation
    err = uc_mem_map(uc, address, 2 * 1024 * 1024, UC_PROT_ALL);
    uc_assert_success(err);

    // write machine code to be emulated to memory
    err = uc_mem_write(uc, address, code, sizeof(code));
    uc_assert_success(err);

    // initialize machine registers
    err = uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
    uc_assert_success(err);
    err = uc_reg_write(uc, UC_X86_REG_EDX, &r_edx);
    uc_assert_success(err);

    // emulate machine code in 2 seconds, so we can quit even
    // if the code loops
    err = uc_emu_start(uc, address, address+sizeof(code), 2*UC_SECOND_SCALE, 0);
    uc_assert_success(err);

    // verify register values
    uc_assert_success(uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx));
    uc_assert_success(uc_reg_read(uc, UC_X86_REG_EDX, &r_edx));

    assert_int_equal(r_ecx, 0x1235);
    assert_int_equal(r_edx, 0x788F);

    uc_assert_success(uc_close(uc));
}
示例#8
0
文件: main.c 项目: Nico01/unidos
static size_t load_com(uc_engine *uc, uint8_t *memory, const char *fname)
{
    FILE *f = fopen(fname, "rb");
    if (f == NULL) {
        perror("Error");
        uc_close(uc);
        exit(EXIT_FAILURE);
    }

    // find the file size
    fseek(f, 0, SEEK_END);      // seek to end of file
    size_t fsize = ftell(f);    // get current file pointer
    fseek(f, 0, SEEK_SET);      // seek back to beginning of file

    // check .com size 
    if (fsize == 0 || fsize > 0xff00) {
        fprintf(stderr, "Invalid file size\n");
        fclose(f);
        uc_close(uc);
        exit(EXIT_FAILURE);
    }

    // copy data in from 0x100
    memset(memory, 0, MEM_SIZE);
    fread(memory + DOS_ADDR, fsize, 1, f);

    // initialize stack pointer
    uint16_t r_sp = 0xfffe;
    uc_reg_write(uc, UC_X86_REG_SP, &r_sp);

    // initialize segment registers
    uint16_t r_cs = 0,
             r_ds = 0,
             r_es = 0,
             r_ss = 0;

    uc_reg_write(uc, UC_X86_REG_CS, &r_cs);
    uc_reg_write(uc, UC_X86_REG_DS, &r_ds);
    uc_reg_write(uc, UC_X86_REG_ES, &r_es);
    uc_reg_write(uc, UC_X86_REG_SS, &r_ss);

    fclose(f);

    return fsize;
}
示例#9
0
static void test_x86_16(void **state)
{
    uc_engine *uc;
    uc_err err;
    uint8_t tmp;

    static const uint64_t address = 0;
    static const uint8_t code[] = {
        0x00, 0x00,         // add   byte ptr [bx + si], al
    };

    int32_t eax = 7;
    int32_t ebx = 5;
    int32_t esi = 6;

    // Initialize emulator in X86-16bit mode
    err = uc_open(UC_ARCH_X86, UC_MODE_16, &uc);
    uc_assert_success(err);

    // map 8KB memory for this emulation
    err = uc_mem_map(uc, address, 8 * 1024, UC_PROT_ALL);
    uc_assert_success(err);

    // write machine code to be emulated to memory
    err = uc_mem_write(uc, address, code, sizeof(code));
    uc_assert_success(err);

    // initialize machine registers
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_EAX, &eax));
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_EBX, &ebx));
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_ESI, &esi));

    // emulate machine code in infinite time (last param = 0), or when
    // finishing all the code.
    err = uc_emu_start(uc, address, address+sizeof(code), 0, 0);
    uc_assert_success(err);

    // read from memory
    uc_assert_success(uc_mem_read(uc, 11, &tmp, 1));
    assert_int_equal(7, tmp);

    uc_assert_success(uc_close(uc));
}
示例#10
0
// callback for SYSCALL instruction (X86).
static void hook_syscall(uc_engine *uc, void *user_data)
{
    uint64_t rax;

    uc_assert_success(uc_reg_read(uc, UC_X86_REG_RAX, &rax));
    assert_int_equal(0x100, rax);

    rax = 0x200;
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_RAX, &rax));
}
示例#11
0
// callback for SYSCALL instruction (X86).
static void hook_syscall(uc_engine *uc, void *user_data)
{
    uint64_t rax;

    uc_reg_read(uc, UC_X86_REG_RAX, &rax);
    if (rax == 0x100) {
        rax = 0x200;
        uc_reg_write(uc, UC_X86_REG_RAX, &rax);
    } else
        printf("ERROR: was not expecting rax=0x%"PRIx64 " in syscall\n", rax);
}
示例#12
0
static void test_x86_64_syscall(void)
{
    uc_engine *uc;
    uc_hook trace1;
    uc_err err;

    int64_t rax = 0x100;

    printf("===================================\n");
    printf("Emulate x86_64 code with 'syscall' instruction\n");

    // Initialize emulator in X86-64bit mode
    err = uc_open(UC_ARCH_X86, UC_MODE_64, &uc);
    if (err) {
        printf("Failed on uc_open() with error returned: %u\n", err);
        return;
    }

    // map 2MB memory for this emulation
    uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);

    // write machine code to be emulated to memory
    if (uc_mem_write(uc, ADDRESS, X86_CODE64_SYSCALL, sizeof(X86_CODE64_SYSCALL) - 1)) {
        printf("Failed to write emulation code to memory, quit!\n");
        return;
    }

    // hook interrupts for syscall
    uc_hook_add(uc, &trace1, UC_HOOK_INSN, hook_syscall, NULL, 1, 0, UC_X86_INS_SYSCALL);

    // initialize machine registers
    uc_reg_write(uc, UC_X86_REG_RAX, &rax);

    // emulate machine code in infinite time (last param = 0), or when
    // finishing all the code.
    err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE64_SYSCALL) - 1, 0, 0);
    if (err) {
        printf("Failed on uc_emu_start() with error returned %u: %s\n",
                err, uc_strerror(err));
    }

    // now print out some registers
    printf(">>> Emulation done. Below is the CPU context\n");

    uc_reg_read(uc, UC_X86_REG_RAX, &rax);

    printf(">>> RAX = 0x%" PRIx64 "\n", rax);

    uc_close(uc);
}
示例#13
0
static void test_thumb(void)
{
    uc_engine *uc;
    uc_err err;
    uc_hook trace1, trace2;

    int sp = 0x1234;     // R0 register

    printf("Emulate THUMB code\n");

    // Initialize emulator in ARM mode
    err = uc_open(UC_ARCH_ARM, UC_MODE_THUMB, &uc);
    if (err) {
        printf("Failed on uc_open() with error returned: %u (%s)\n",
                err, uc_strerror(err));
        return;
    }

    // map 2MB memory for this emulation
    uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);

    // write machine code to be emulated to memory
    uc_mem_write(uc, ADDRESS, THUMB_CODE, sizeof(THUMB_CODE) - 1);

    // initialize machine registers
    uc_reg_write(uc, UC_ARM_REG_SP, &sp);

    // tracing all basic blocks with customized callback
    uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, 1, 0);

    // tracing one instruction at ADDRESS with customized callback
    uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, ADDRESS, ADDRESS);

    // emulate machine code in infinite time (last param = 0), or when
    // finishing all the code.
    // Note we start at ADDRESS | 1 to indicate THUMB mode.
    err = uc_emu_start(uc, ADDRESS | 1, ADDRESS + sizeof(THUMB_CODE) -1, 0, 0);
    if (err) {
        printf("Failed on uc_emu_start() with error returned: %u\n", err);
    }

    // now print out some registers
    printf(">>> Emulation done. Below is the CPU context\n");

    uc_reg_read(uc, UC_ARM_REG_SP, &sp);
    printf(">>> SP = 0x%x\n", sp);

    uc_close(uc);
}
示例#14
0
static void test_mips_el(void)
{
    uc_engine *uc;
    uc_err err;
    uc_hook trace1, trace2;

    int r1 = 0x6789;     // R1 register

    printf("===========================\n");
    printf("Emulate MIPS code (little-endian)\n");

    // Initialize emulator in MIPS mode
    err = uc_open(UC_ARCH_MIPS, UC_MODE_MIPS32, &uc);
    if (err) {
        printf("Failed on uc_open() with error returned: %u (%s)\n",
                err, uc_strerror(err));
        return;
    }

    // map 2MB memory for this emulation
    uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);

    // write machine code to be emulated to memory
    uc_mem_write(uc, ADDRESS, MIPS_CODE_EL, sizeof(MIPS_CODE_EL) - 1);

    // initialize machine registers
    uc_reg_write(uc, UC_MIPS_REG_1, &r1);

    // tracing all basic blocks with customized callback
    uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, (uint64_t)1, (uint64_t)0);

    // tracing one instruction at ADDRESS with customized callback
    uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, (uint64_t)ADDRESS, (uint64_t)ADDRESS);

    // emulate machine code in infinite time (last param = 0), or when
    // finishing all the code.
    err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(MIPS_CODE_EL) - 1, 0, 0);
    if (err) {
        printf("Failed on uc_emu_start() with error returned: %u (%s)\n", err, uc_strerror(err));
    }

    // now print out some registers
    printf(">>> Emulation done. Below is the CPU context\n");

    uc_reg_read(uc, UC_MIPS_REG_1, &r1);
    printf(">>> R1 = 0x%x\n", r1);

    uc_close(uc);
}
示例#15
0
static void test_x86_64_syscall(void **state)
{
    uc_engine *uc;
    uc_hook trace1;
    uc_err err;

    static const uint64_t address = 0x1000000;
    static const uint8_t code[] = {
        0x0F, 0x05,     // SYSCALL
    };

    int64_t rax = 0x100;

    // Initialize emulator in X86-64bit mode
    err = uc_open(UC_ARCH_X86, UC_MODE_64, &uc);
    uc_assert_success(err);

    // map 2MB memory for this emulation
    err = uc_mem_map(uc, address, 2 * 1024 * 1024, UC_PROT_ALL);
    uc_assert_success(err);

    // write machine code to be emulated to memory
    err = uc_mem_write(uc, address, code, sizeof(code));
    uc_assert_success(err);

    // hook interrupts for syscall
    err = uc_hook_add(uc, &trace1, UC_HOOK_INSN, hook_syscall, NULL, 1, 0, UC_X86_INS_SYSCALL);
    uc_assert_success(err);

    // initialize machine registers
    err = uc_reg_write(uc, UC_X86_REG_RAX, &rax);
    uc_assert_success(err);

    // emulate machine code in infinite time (last param = 0), or when
    // finishing all the code.
    err = uc_emu_start(uc, address, address + sizeof(code), 0, 0);
    uc_assert_success(err);

    // verify register values
    uc_assert_success(uc_reg_read(uc, UC_X86_REG_RAX, &rax));
    assert_int_equal(0x200, rax);

    uc_assert_success(uc_close(uc));
}
示例#16
0
//if a read is performed from a big address whith a non-zero last digit, multiple read events are triggered
static void test_high_address_reads(void **state)
{
    uc_engine *uc = *state;
    uc_hook trace2;

    uint64_t addr = 0x0010000000000001; 
    //addr = 0x0010000000000000; // uncomment to fix wrong? behaviour
    //addr = 90000000; // uncomment to fix wrong? behaviour
    //
    uc_mem_map(uc, addr-(addr%4096), 4096*2, UC_PROT_ALL);
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_RAX, &addr));
    const uint64_t base_addr = 0x40000;
    uint8_t code[] = {0x48,0x8b,0x00,0x90,0x90,0x90,0x90}; // mov rax, [rax], nops
    uc_assert_success(uc_mem_map(uc, base_addr, 4096, UC_PROT_ALL));
    uc_assert_success(uc_mem_write(uc, base_addr, code, 7));
    uc_assert_success(uc_hook_add(uc, &trace2, UC_HOOK_MEM_READ, hook_mem64, NULL, (uint64_t)1, (uint64_t)0));
    uc_assert_success(uc_emu_start(uc, base_addr, base_addr + 3, 0, 0));
    if(number_of_memory_reads != 1) {
        fail_msg("wrong number of memory reads for instruction %i", number_of_memory_reads);
    }
}
示例#17
0
//if a read is performed from a big address whith a non-zero last digit, 0 will be read
static void test_high_address_read_values(void **state)
{
    uc_engine *uc = *state;

    uint64_t addr = 0x0010000000000001; 
    //addr = 0x000ffffffffffff8; // uncomment to fix wrong behaviour
    //addr = 90000000; // uncomment to fix wrong behaviour
    //
    uint8_t content[] = {0x42,0x42,0x42,0x42, 0x42,0x42,0x42,0x42};
    uc_assert_success(uc_mem_map(uc, addr-(addr%4096), 4096*2, UC_PROT_ALL));
    uc_assert_success(uc_mem_write(uc, addr, content, 8));
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_RAX, &addr));
    const uint64_t base_addr = 0x40000;
    uint8_t code[] = {0x48,0x8b,0x00,0x90,0x90,0x90,0x90}; // mov rax, [rax], nops
    uc_assert_success(uc_mem_map(uc, base_addr, 4096, UC_PROT_ALL));
    uc_assert_success(uc_mem_write(uc, base_addr, code, 7));
    uc_assert_success(uc_emu_start(uc, base_addr, base_addr + 3, 0, 0));
    uint64_t rax = 0;
    uc_assert_success(uc_reg_read(uc, UC_X86_REG_RAX, &rax));
    if(rax != 0x4242424242424242) {
        fail_msg("wrong memory read from code %"PRIx64, rax);
    }
}
示例#18
0
static void test_m68k(void)
{
    uc_engine *uc;
    uc_hook trace1, trace2;
    uc_err err;

    int d0 = 0x0000;     // d0 data register
    int d1 = 0x0000;     // d1 data register
    int d2 = 0x0000;     // d2 data register
    int d3 = 0x0000;     // d3 data register
    int d4 = 0x0000;     // d4 data register
    int d5 = 0x0000;     // d5 data register
    int d6 = 0x0000;     // d6 data register
    int d7 = 0x0000;     // d7 data register

    int a0 = 0x0000;     // a0 address register
    int a1 = 0x0000;     // a1 address register
    int a2 = 0x0000;     // a2 address register
    int a3 = 0x0000;     // a3 address register
    int a4 = 0x0000;     // a4 address register
    int a5 = 0x0000;     // a5 address register
    int a6 = 0x0000;     // a6 address register
    int a7 = 0x0000;     // a6 address register

    int pc = 0x0000;     // program counter
    int sr = 0x0000;     // status register

    printf("Emulate M68K code\n");

    // Initialize emulator in M68K mode
    err = uc_open(UC_ARCH_M68K, UC_MODE_BIG_ENDIAN, &uc);
    if (err) {
        printf("Failed on uc_open() with error returned: %u (%s)\n",
                err, uc_strerror(err));
        return;
    }

    // map 2MB memory for this emulation
    uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);

    // write machine code to be emulated to memory
    uc_mem_write(uc, ADDRESS, M68K_CODE, sizeof(M68K_CODE) - 1);

    // initialize machine registers
    uc_reg_write(uc, UC_M68K_REG_D0, &d0);
    uc_reg_write(uc, UC_M68K_REG_D1, &d1);
    uc_reg_write(uc, UC_M68K_REG_D2, &d2);
    uc_reg_write(uc, UC_M68K_REG_D3, &d3);
    uc_reg_write(uc, UC_M68K_REG_D4, &d4);
    uc_reg_write(uc, UC_M68K_REG_D5, &d5);
    uc_reg_write(uc, UC_M68K_REG_D6, &d6);
    uc_reg_write(uc, UC_M68K_REG_D7, &d7);

    uc_reg_write(uc, UC_M68K_REG_A0, &a0);
    uc_reg_write(uc, UC_M68K_REG_A1, &a1);
    uc_reg_write(uc, UC_M68K_REG_A2, &a2);
    uc_reg_write(uc, UC_M68K_REG_A3, &a3);
    uc_reg_write(uc, UC_M68K_REG_A4, &a4);
    uc_reg_write(uc, UC_M68K_REG_A5, &a5);
    uc_reg_write(uc, UC_M68K_REG_A6, &a6);
    uc_reg_write(uc, UC_M68K_REG_A7, &a7);

    uc_reg_write(uc, UC_M68K_REG_PC, &pc);
    uc_reg_write(uc, UC_M68K_REG_SR, &sr);

    // tracing all basic blocks with customized callback
    uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, 1, 0);

    // tracing all instruction
    uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, 1, 0);

    // emulate machine code in infinite time (last param = 0), or when
    // finishing all the code.
    err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(M68K_CODE)-1, 0, 0);
    if (err) {
        printf("Failed on uc_emu_start() with error returned: %u\n", err);
    }

    // now print out some registers
    printf(">>> Emulation done. Below is the CPU context\n");

    uc_reg_read(uc, UC_M68K_REG_D0, &d0);
    uc_reg_read(uc, UC_M68K_REG_D1, &d1);
    uc_reg_read(uc, UC_M68K_REG_D2, &d2);
    uc_reg_read(uc, UC_M68K_REG_D3, &d3);
    uc_reg_read(uc, UC_M68K_REG_D4, &d4);
    uc_reg_read(uc, UC_M68K_REG_D5, &d5);
    uc_reg_read(uc, UC_M68K_REG_D6, &d6);
    uc_reg_read(uc, UC_M68K_REG_D7, &d7);

    uc_reg_read(uc, UC_M68K_REG_A0, &a0);
    uc_reg_read(uc, UC_M68K_REG_A1, &a1);
    uc_reg_read(uc, UC_M68K_REG_A2, &a2);
    uc_reg_read(uc, UC_M68K_REG_A3, &a3);
    uc_reg_read(uc, UC_M68K_REG_A4, &a4);
    uc_reg_read(uc, UC_M68K_REG_A5, &a5);
    uc_reg_read(uc, UC_M68K_REG_A6, &a6);
    uc_reg_read(uc, UC_M68K_REG_A7, &a7);

    uc_reg_read(uc, UC_M68K_REG_PC, &pc);
    uc_reg_read(uc, UC_M68K_REG_SR, &sr);

    printf(">>> A0 = 0x%x\t\t>>> D0 = 0x%x\n", a0, d0);
    printf(">>> A1 = 0x%x\t\t>>> D1 = 0x%x\n", a1, d1);
    printf(">>> A2 = 0x%x\t\t>>> D2 = 0x%x\n", a2, d2);
    printf(">>> A3 = 0x%x\t\t>>> D3 = 0x%x\n", a3, d3);
    printf(">>> A4 = 0x%x\t\t>>> D4 = 0x%x\n", a4, d4);
    printf(">>> A5 = 0x%x\t\t>>> D5 = 0x%x\n", a5, d5);
    printf(">>> A6 = 0x%x\t\t>>> D6 = 0x%x\n", a6, d6);
    printf(">>> A7 = 0x%x\t\t>>> D7 = 0x%x\n", a7, d7);
    printf(">>> PC = 0x%x\n", pc);
    printf(">>> SR = 0x%x\n", sr);

    uc_close(uc);
}
示例#19
0
文件: mem_exec.c 项目: 4577/unicorn
int main(int argc, char **argv, char **envp)
{
    uc_engine *uc;
    uc_hook trace1, trace2;
    uc_err err;
    uint32_t esp, eip;
    int32_t buf1[1024], buf2[1024], readbuf[1024];
    int i;

    //don't really care about quality of randomness
    srand(time(NULL));
    for (i = 0; i < 1024; i++) {
        buf1[i] = rand();
        buf2[i] = rand();
    }

    printf("# Memory protect test\n");

    // Initialize emulator in X86-32bit mode
    err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
    if (err) {
        printf("not ok %d - Failed on uc_open() with error returned: %u\n", log_num++, err);
        return 1;
    } else {
        printf("ok %d - uc_open() success\n", log_num++);
    }

    uc_mem_map(uc, 0x100000, 0x1000, UC_PROT_READ | UC_PROT_EXEC);
    uc_mem_map(uc, 0x1ff000, 0x2000, UC_PROT_READ | UC_PROT_WRITE);
    uc_mem_map(uc, 0x300000, 0x2000, UC_PROT_READ);
    uc_mem_map(uc, 0xf00000, 0x1000, UC_PROT_READ | UC_PROT_WRITE);

    esp = 0xf00000 + 0x1000;

    // Setup stack pointer
    if (uc_reg_write(uc, UC_X86_REG_ESP, &esp)) {
        printf("not ok %d - Failed to set esp. quit!\n", log_num++);
        return 2;
    } else {
        printf("ok %d - ESP set\n", log_num++);
    }

    // fill in sections that shouldn't get touched
    if (uc_mem_write(uc, 0x1ff000, buf1, sizeof(buf1))) {
        printf("not ok %d - Failed to write random buffer 1 to memory, quit!\n", log_num++);
        return 3;
    } else {
        printf("ok %d - Random buffer 1 written to memory\n", log_num++);
    }

    if (uc_mem_write(uc, 0x301000, buf2, sizeof(buf2))) {
        printf("not ok %d - Failed to write random buffer 2 to memory, quit!\n", log_num++);
        return 4;
    } else {
        printf("ok %d - Random buffer 2 written to memory\n", log_num++);
    }

    // write machine code to be emulated to memory
    if (uc_mem_write(uc, 0x100000, PROGRAM, sizeof(PROGRAM))) {
        printf("not ok %d - Failed to write emulation code to memory, quit!\n", log_num++);
        return 5;
    } else {
        printf("ok %d - Program written to memory\n", log_num++);
    }

    if (uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, 1, 0) != UC_ERR_OK) {
        printf("not ok %d - Failed to install UC_HOOK_CODE ucr\n", log_num++);
        return 6;
    } else {
        printf("ok %d - UC_HOOK_CODE installed\n", log_num++);
    }

    // intercept memory write events
    if (uc_hook_add(uc, &trace1, UC_HOOK_MEM_WRITE, hook_mem_write, NULL, 1, 0) != UC_ERR_OK) {
        printf("not ok %d - Failed to install UC_HOOK_MEM_WRITE ucr\n", log_num++);
        return 7;
    } else {
        printf("ok %d - UC_HOOK_MEM_WRITE installed\n", log_num++);
    }

    // intercept invalid memory events
    if (uc_hook_add(uc, &trace1, UC_HOOK_MEM_WRITE_PROT | UC_HOOK_MEM_FETCH_PROT, hook_mem_invalid, NULL, 1, 0) != UC_ERR_OK) {
        printf("not ok %d - Failed to install memory invalid handler\n", log_num++);
        return 8;
    } else {
        printf("ok %d - memory invalid handler installed\n", log_num++);
    }

    // emulate machine code until told to stop by hook_code
    printf("# BEGIN execution\n");
    err = uc_emu_start(uc, 0x100000, 0x400000, 0, 0);
    if (err != UC_ERR_OK) {
        printf("not ok %d - Failure on uc_emu_start() with error %u:%s\n", log_num++, err, uc_strerror(err));
        return 9;
    } else {
        printf("ok %d - uc_emu_start complete\n", log_num++);
    }
    printf("# END execution\n");

    // get ending EIP
    if (uc_reg_read(uc, UC_X86_REG_EIP, &eip)) {
        printf("not ok %d - Failed to read eip.\n", log_num++);
    } else {
        printf("ok %d - Ending EIP 0x%x\n", log_num++, eip);
    }

    //make sure that random blocks didn't get nuked
    // fill in sections that shouldn't get touched
    if (uc_mem_read(uc, 0x1ff000, readbuf, sizeof(readbuf))) {
        printf("not ok %d - Failed to read random buffer 1 from memory\n", log_num++);
    } else {
        printf("ok %d - Random buffer 1 read from memory\n", log_num++);
        if (memcmp(buf1, readbuf, 4096)) {
            printf("not ok %d - Random buffer 1 contents are incorrect\n", log_num++);
        } else {
            printf("ok %d - Random buffer 1 contents are correct\n", log_num++);
        }
    }

    if (uc_mem_read(uc, 0x301000, readbuf, sizeof(readbuf))) {
        printf("not ok %d - Failed to read random buffer 2 from memory\n", log_num++);
    } else {
        printf("ok %d - Random buffer 2 read from memory\n", log_num++);
        if (memcmp(buf2, readbuf, 4096)) {
            printf("not ok %d - Random buffer 2 contents are incorrect\n", log_num++);
        } else {
            printf("ok %d - Random buffer 2 contents are correct\n", log_num++);
        }
    }

    if (uc_close(uc) == UC_ERR_OK) {
        printf("ok %d - uc_close complete\n", log_num++);
    } else {
        printf("not ok %d - uc_close complete\n", log_num++);
    }

    return 0;
}
示例#20
0
static void test_tb_x86_64_32_imul_Gv_Ev_Ib(void **state)
{
    uc_engine *uc = *state;
    uc_hook trace1, trace2;
    void *mem;
#ifdef RIP_NEXT_TO_THE_SELFMODIFY_OPCODE
    // These values assumes just before PC = 0x60000021
    int64_t eax = 0x00000041;
    int64_t ecx = 0x5ffffff8;
    int64_t edx = 0x5ffffff8;
    int64_t ebx = 0x034a129b;
    int64_t esp = 0x6010229a;
    int64_t ebp = 0x60000002;
    int64_t esi = 0x1f350211;
    int64_t edi = 0x488ac239;
#else
    //  These values assumes PC == 0x6000000
    int64_t eax = 0x73952c43;
    int64_t ecx = 0x6010229a;
    int64_t edx = 0x2a500e50;
    int64_t ebx = 0x034a1295;
    int64_t esp = 0x6010229a;
    int64_t ebp = 0x60000000;
    int64_t esi = 0x1f350211;
    int64_t edi = 0x488ac239;
#endif

    mem = calloc(1, CODE_SPACE);
    assert_int_not_equal(0, mem);

    uc_assert_success(uc_open(UC_ARCH_X86, 
                              UC_MODE_32, 
                              &uc));
    uc_assert_success(uc_mem_map(uc, 
                                 PHY_STACK_REGION, 
                                 CODE_SPACE, 
                                 UC_PROT_ALL));
    uc_assert_success(uc_mem_write(uc,
                                   PHY_STACK_REGION,
                                   X86_CODE32_ALPHA_MIXED,
                                   sizeof(X86_CODE32_ALPHA_MIXED) - 1));
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_EAX, &eax));
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_ECX, &ecx));
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_EDX, &edx));
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_EBX, &ebx));
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_ESP, &esp));
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_EBP, &ebp));
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_ESI, &esi));
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_EDI, &edi));

    uc_assert_success(uc_hook_add(uc,
                &trace1,
                UC_HOOK_CODE,
                hook_code32,
                NULL,
                (uint64_t)1,
                (uint64_t)0));

    uc_assert_success(uc_hook_add(uc,
                &trace2,
                UC_HOOK_MEM_VALID,
                hook_mem32,
                NULL,
                (uint64_t)1,
                (uint64_t)0));

    uc_assert_success(uc_emu_start(uc,
#ifdef RIP_NEXT_TO_THE_SELFMODIFY_OPCODE
    //  Register set (before self-modifying IMUL opcode)
    //  Start at "0x00000021: xorb   %al, 0x30(%ecx)
    //  Start at "0x00000021: xor    byte ptr [ecx + 0x30], al
                       PHY_STACK_REGION+0x0021,   //  0x0024 didn't work
#else
                       PHY_STACK_REGION+0x0000,
#endif
                       PHY_STACK_REGION+sizeof(X86_CODE32_ALPHA_MIXED) - 1,
                       0, 0));

    uc_assert_success(uc_close(uc));
}
示例#21
0
static void VM_exec()
{
    uc_engine *uc;
    uc_err err;
    uc_hook trace;
    unsigned int r_eax, eflags, r_esp, r_edi, r_ecx;

    r_eax = 0xbaadbabe;
    r_esp = ADDRESS+0x20;
    r_edi = ADDRESS+0x300; //some safe distance from main code.
    eflags = 0x00000206;
    r_ecx = ECX_OPS;

    // Initialize emulator in X86-32bit mode
    err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
    if(err)
    {
        printf("Failed on uc_open() with error returned: %s\n", uc_strerror(err));
        return;
    }

    err = uc_mem_map(uc, ADDRESS, (2 * 1024 * 1024), UC_PROT_ALL);
    if(err != UC_ERR_OK)
    {
        printf("Failed to map memory %s\n", uc_strerror(err));
        return;
    }

    // write machine code to be emulated to memory
    err = uc_mem_write(uc, ADDRESS, X86_CODE32, sizeof(X86_CODE32) - 1);
    if(err != UC_ERR_OK)
    {
        printf("Failed to write emulation code to memory, quit!: %s(len %lu)\n", uc_strerror(err), (unsigned long)sizeof(X86_CODE32) - 1);
        return;
    }

    // initialize machine registers
    uc_reg_write(uc, UC_X86_REG_EAX, &r_eax);
    uc_reg_write(uc, UC_X86_REG_EDI, &r_edi);
    uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
    uc_reg_write(uc, UC_X86_REG_ESP, &r_esp); //make stack pointer point to already mapped memory so we don't need to hook.
    uc_reg_write(uc, UC_X86_REG_EFLAGS, &eflags);

    uc_hook_add(uc, &trace, UC_HOOK_CODE, (void *)hook_ins, NULL, 1, 0);

    // emulate machine code in infinite time
    err = uc_emu_start(uc, ADDRESS, ADDRESS + (sizeof(X86_CODE32) - 1), 0, 0);
    if(err)
    {
        printf("Failed on uc_emu_start() with error returned %u: %s\n", err, uc_strerror(err));

        uc_close(uc);
        return;
    }

    uc_reg_read(uc, UC_X86_REG_EAX, &r_eax);
    uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
    uc_reg_read(uc, UC_X86_REG_EDI, &r_edi);
    uc_reg_read(uc, UC_X86_REG_EFLAGS, &eflags);

    uc_close(uc);

    printf("\n>>> Emulation done. Below is the CPU context\n");
    printf(">>> EAX = 0x%08X\n", r_eax);
    printf(">>> ECX = 0x%08X\n", r_ecx);
    printf(">>> EDI = 0x%08X\n", r_edi);
    printf(">>> EFLAGS = 0x%08X\n", eflags);

    printf("\nHook called %lu times. Test %s\n", hook_called, (hook_called == ECX_OPS ? "PASSED!!" : "FAILED!!!"));

}
示例#22
0
文件: uc.c 项目: hugoreinaldo/unicorn
UNICORN_EXPORT
uc_err uc_emu_start(uc_engine* uc, uint64_t begin, uint64_t until, uint64_t timeout, size_t count)
{
    // reset the counter
    uc->emu_counter = 0;
    uc->stop_request = false;
    uc->invalid_error = UC_ERR_OK;
    uc->block_full = false;
    uc->emulation_done = false;

    switch(uc->arch) {
        default:
            break;

        case UC_ARCH_M68K:
            uc_reg_write(uc, UC_M68K_REG_PC, &begin);
            break;

        case UC_ARCH_X86:
            switch(uc->mode) {
                default:
                    break;
                case UC_MODE_16:
                    uc_reg_write(uc, UC_X86_REG_IP, &begin);
                    break;
                case UC_MODE_32:
                    uc_reg_write(uc, UC_X86_REG_EIP, &begin);
                    break;
                case UC_MODE_64:
                    uc_reg_write(uc, UC_X86_REG_RIP, &begin);
                    break;
            }
            break;

        case UC_ARCH_ARM:
            switch(uc->mode) {
                default:
                    break;
                case UC_MODE_THUMB:
                case UC_MODE_ARM:
                    uc_reg_write(uc, UC_ARM_REG_R15, &begin);
                    break;
            }
            break;

        case UC_ARCH_ARM64:
            uc_reg_write(uc, UC_ARM64_REG_PC, &begin);
            break;

        case UC_ARCH_MIPS:
            // TODO: MIPS32/MIPS64/BIGENDIAN etc
            uc_reg_write(uc, UC_MIPS_REG_PC, &begin);
            break;

        case UC_ARCH_SPARC:
            // TODO: Sparc/Sparc64
            uc_reg_write(uc, UC_SPARC_REG_PC, &begin);
            break;
    }

    uc->emu_count = count;
    if (count > 0) {
        uc->hook_insn = true;
    }

    uc->addr_end = until;

    uc->vm_start(uc);
    if (timeout)
        enable_emu_timer(uc, timeout * 1000);   // microseconds -> nanoseconds
    uc->pause_all_vcpus(uc);
    // emulation is done
    uc->emulation_done = true;

    if (timeout) {
        // wait for the timer to finish
        qemu_thread_join(&uc->timer);
    }

    return uc->invalid_error;
}
示例#23
0
static void VM_exec()
{
    uc_engine *uc;
    uc_err err;
    uint32_t tmp;
    uc_hook trace1, trace2;
    unsigned int r_eax, r_ebx, r_ecx, r_edx, r_ebp, r_esp, r_esi, r_edi, r_eip, eflags;
    unsigned int tr_eax, tr_ebx, tr_ecx, tr_edx, tr_ebp, tr_esp, tr_esi, tr_edi, tr_eip, t_eflags;


    r_eax = tr_eax = 0x1DB10106;
    r_ebx = tr_ebx = 0x7EFDE000;
    r_ecx = tr_ecx = 0x7EFDE000;
    r_edx = tr_edx = 0x00001DB1;
    r_ebp = tr_ebp = 0x0018FF88;
    r_esp = tr_esp = 0x0018FF14;
    r_esi = tr_esi = 0x0;
    r_edi = tr_edi = 0x0;
    r_eip = tr_eip = 0x004939F3;
    t_eflags = eflags = 0x00000206;

    // Initialize emulator in X86-32bit mode
    err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
    if(err)
    {
        printf("Failed on uc_open() with error returned: %s", uc_strerror(err));
        return;
    }

    err = uc_mem_map(uc, ADDRESS, (4 * 1024 * 1024), UC_PROT_ALL);
    if(err != UC_ERR_OK)
    {
        printf("Failed to map memory %s", uc_strerror(err));
        return;
    }

    // write machine code to be emulated to memory
    err = uc_mem_write(uc, ADDRESS, X86_CODE32, sizeof(X86_CODE32) - 1);
    if(err != UC_ERR_OK)
    {
        printf("Failed to write emulation code to memory, quit!: %s(len %lu)", uc_strerror(err), sizeof(X86_CODE32) - 1);
        return;
    }

    // initialize machine registers
    uc_reg_write(uc, UC_X86_REG_EAX, &r_eax);
    uc_reg_write(uc, UC_X86_REG_EBX, &r_ebx);
    uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
    uc_reg_write(uc, UC_X86_REG_EDX, &r_edx);
    uc_reg_write(uc, UC_X86_REG_EBP, &r_ebp);
    uc_reg_write(uc, UC_X86_REG_ESP, &r_esp);
    uc_reg_write(uc, UC_X86_REG_ESI, &r_esi);
    uc_reg_write(uc, UC_X86_REG_EDI, &r_edi);
    uc_reg_write(uc, UC_X86_REG_EFLAGS, &eflags);

    uc_hook_add(uc, &trace1, UC_HOOK_MEM_READ_UNMAPPED | UC_HOOK_MEM_WRITE_UNMAPPED, (void *)hook_invalid_mem, NULL, 1, 0);

    // tracing all instruction by having @begin > @end
    uc_hook_add(uc, &trace2, UC_HOOK_CODE, (void *)hook_ins, NULL, 1, 0);

    // emulate machine code in infinite time
    err = uc_emu_start(uc, ADDRESS, ADDRESS + (sizeof(X86_CODE32) - 1), 0, 0);
    if(err)
    {
        printf("Failed on uc_emu_start() with error returned %u: %s", err, uc_strerror(err));
        instructions = 0;

        uc_close(uc);
        return;
    }

    uc_reg_read(uc, UC_X86_REG_EAX, &r_eax);
    uc_reg_read(uc, UC_X86_REG_EBX, &r_ebx);
    uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
    uc_reg_read(uc, UC_X86_REG_EDX, &r_edx);
    uc_reg_read(uc, UC_X86_REG_EBP, &r_ebp);
    uc_reg_read(uc, UC_X86_REG_ESP, &r_esp);
    uc_reg_read(uc, UC_X86_REG_ESI, &r_esi);
    uc_reg_read(uc, UC_X86_REG_EDI, &r_edi);
    uc_reg_read(uc, UC_X86_REG_EIP, &r_eip);
    uc_reg_read(uc, UC_X86_REG_EFLAGS, &eflags);

    uc_close(uc);

    printf(">>> Emulation done. Below is the CPU context\n");
    printf(">>> EAX = 0x%08X %s\n", r_eax, (r_eax == tr_eax ? "" : "(m)"));
    printf(">>> EBX = 0x%08X %s\n", r_ebx, (r_ebx == tr_ebx ? "" : "(m)"));
    printf(">>> ECX = 0x%08X %s\n", r_ecx, (r_ecx == tr_ecx ? "" : "(m)"));
    printf(">>> EDX = 0x%08X %s\n", r_edx, (r_edx == tr_edx ? "" : "(m)"));
    printf(">>> EBP = 0x%08X %s\n", r_ebp, (r_ebp == tr_ebp ? "" : "(m)"));
    printf(">>> ESP = 0x%08X %s\n", r_esp, (r_esp == tr_esp ? "" : "(m)"));
    printf(">>> ESI = 0x%08X %s\n", r_esi, (r_esi == tr_esi ? "" : "(m)"));
    printf(">>> EDI = 0x%08X %s\n", r_edi, (r_edi == tr_edi ? "" : "(m)"));
    printf(">>> EIP = 0x%08X %s\n", (r_eip - ADDRESS) + tr_eip, (r_eip == tr_eip ? "" : "(m)\n"));
    printf(">>> EFLAGS = 0x%08X %s\n", eflags, (eflags == t_eflags ? "" : "(m)"));

    printf(">>> Instructions executed %" PRIu64 "\n", instructions);

    assert(r_eax == 0x1DB10106);
    assert(r_ebx == 0x7EFDE000);
    assert(r_ecx == 0x00000006);
    assert(r_edx == 0x00000001);
    assert(r_ebp == 0x0018FF88);
    assert(r_esp == 0x0018FF14);
    assert(r_esi == 0x00000000);
    assert(r_edi == 0x00000000);
    assert(eflags == 0x00000206); //we shouldn't fail this assert, eflags should be 0x00000206 because the last AND instruction produces a non-zero result.

    instructions = 0;
}
示例#24
0
int main(int argc, char **argv, char **envp)
{
    uc_engine *uc;
    uc_hook trace1;
    uc_err err;
    uint8_t bytes[8];
    uint32_t esp;
    int map_stack = 0;

    if (argc == 2 && strcmp(argv[1], "--map-stack") == 0) {
        map_stack = 1;
    }

    printf("Memory mapping test\n");

    // Initialize emulator in X86-32bit mode
    err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
    if (err) {
        printf("Failed on uc_open() with error returned: %u\n", err);
        return 1;
    }

    uc_mem_map(uc, 0x100000, 0x1000, UC_PROT_ALL);
    uc_mem_map(uc, 0x200000, 0x2000, UC_PROT_ALL);
    uc_mem_map(uc, 0x300000, 0x3000, UC_PROT_ALL);
    uc_mem_map(uc, 0x400000, 0x4000, UC_PROT_READ);

    if (map_stack) {
        printf("Pre-mapping stack\n");
        uc_mem_map(uc, STACK, STACK_SIZE, UC_PROT_READ | UC_PROT_WRITE);
    } else {
        printf("Mapping stack on first invalid memory access\n");
    }

    esp = STACK + STACK_SIZE;

    uc_reg_write(uc, UC_X86_REG_ESP, &esp); 

    // write machine code to be emulated to memory
    if (uc_mem_write(uc, 0x400000, PROGRAM, sizeof(PROGRAM))) {
        printf("Failed to write emulation code to memory, quit!\n");
        return 2;
    } else {
        printf("Allowed to write to read only memory via uc_mem_write\n");
    }

    //uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, 0x400000, 0x400fff);

    // intercept invalid memory events
    uc_hook_add(uc, &trace1, UC_HOOK_MEM_WRITE_UNMAPPED | UC_HOOK_MEM_WRITE_PROT, hook_mem_invalid, NULL, 1, 0);

    // emulate machine code in infinite time
    printf("BEGIN execution - 1\n");
    err = uc_emu_start(uc, 0x400000, 0x400000 + sizeof(PROGRAM), 0, 10);
    if (err) {
        printf("Expected failue on uc_emu_start() with error returned %u: %s\n",
                err, uc_strerror(err));
    } else {
        printf("UNEXPECTED uc_emu_start returned UC_ERR_OK\n");
    }
    printf("END execution - 1\n");

    // emulate machine code in infinite time
    printf("BEGIN execution - 2\n");
    //update eax to point to aligned memory (same as add eax,7 above)
    uint32_t eax = 0x40002C;
    uc_reg_write(uc, UC_X86_REG_EAX, &eax); 
    //resume execution at the mov dword [eax], 0x87654321
    //to test an aligned write as well
    err = uc_emu_start(uc, 0x400015, 0x400000 + sizeof(PROGRAM), 0, 2);
    if (err) {
        printf("Expected failure on uc_emu_start() with error returned %u: %s\n",
                err, uc_strerror(err));
    } else {
        printf("UNEXPECTED uc_emu_start returned UC_ERR_OK\n");
    }
    printf("END execution - 2\n");

    printf("Verifying content at 0x400025 is unchanged\n");
    if (!uc_mem_read(uc, 0x400025, bytes, 4)) {
        printf(">>> Read 4 bytes from [0x%x] = 0x%x\n", (uint32_t)0x400025, *(uint32_t*) bytes);
        if (0x41414141 != *(uint32_t*) bytes) {
            printf("ERROR content in read only memory changed\n");
        } else {
            printf("SUCCESS content in read only memory unchanged\n");
        }
    } else {
        printf(">>> Failed to read 4 bytes from [0x%x]\n", (uint32_t)(esp - 4));
        return 4;
    }

    printf("Verifying content at 0x40002C is unchanged\n");
    if (!uc_mem_read(uc, 0x40002C, bytes, 4)) {
        printf(">>> Read 4 bytes from [0x%x] = 0x%x\n", (uint32_t)0x40002C, *(uint32_t*) bytes);
        if (0x42424242 != *(uint32_t*) bytes) {
            printf("ERROR content in read only memory changed\n");
        } else {
            printf("SUCCESS content in read only memory unchanged\n");
        }
    } else {
        printf(">>> Failed to read 4 bytes from [0x%x]\n", (uint32_t)(esp - 4));
        return 4;
    }

    printf("Verifying content at bottom of stack is readable and correct\n");
    if (!uc_mem_read(uc, esp - 4, bytes, 4)) {
        printf(">>> Read 4 bytes from [0x%x] = 0x%x\n", (uint32_t)(esp - 4), *(uint32_t*) bytes);
    } else {
        printf(">>> Failed to read 4 bytes from [0x%x]\n", (uint32_t)(esp - 4));
        return 4;
    }

    uc_close(uc);

    return 0;
}
示例#25
0
bool sk3wldbg_aarch64::save_ret_addr(uint64_t retaddr) {
   uc_reg_write(uc, reg_map[ARM64_LR], &retaddr);
   return true;
}
示例#26
0
文件: uc.c 项目: charlieyqin/unicorn
UNICORN_EXPORT
uc_err uc_emu_start(uc_engine* uc, uint64_t begin, uint64_t until, uint64_t timeout, size_t count)
{
    // reset the counter
    uc->emu_counter = 0;
    uc->invalid_error = UC_ERR_OK;
    uc->block_full = false;
    uc->emulation_done = false;

    switch(uc->arch) {
        default:
            break;

        case UC_ARCH_M68K:
            uc_reg_write(uc, UC_M68K_REG_PC, &begin);
            break;

        case UC_ARCH_X86:
            switch(uc->mode) {
                default:
                    break;
                case UC_MODE_16:
                    uc_reg_write(uc, UC_X86_REG_IP, &begin);
                    break;
                case UC_MODE_32:
                    uc_reg_write(uc, UC_X86_REG_EIP, &begin);
                    break;
                case UC_MODE_64:
                    uc_reg_write(uc, UC_X86_REG_RIP, &begin);
                    break;
            }
            break;

        case UC_ARCH_ARM:
            uc_reg_write(uc, UC_ARM_REG_R15, &begin);
            break;

        case UC_ARCH_ARM64:
            uc_reg_write(uc, UC_ARM64_REG_PC, &begin);
            break;

        case UC_ARCH_MIPS:
            // TODO: MIPS32/MIPS64/BIGENDIAN etc
            uc_reg_write(uc, UC_MIPS_REG_PC, &begin);
            break;

        case UC_ARCH_SPARC:
            // TODO: Sparc/Sparc64
            uc_reg_write(uc, UC_SPARC_REG_PC, &begin);
            break;
    }

    uc->stop_request = false;

    uc->emu_count = count;
    // remove count hook if counting isn't necessary
    if (count <= 0 && uc->count_hook != 0) {
        uc_hook_del(uc, uc->count_hook);
        uc->count_hook = 0;
    }
    // set up count hook to count instructions.
    if (count > 0 && uc->count_hook == 0) {
        uc_err err = uc_hook_add(uc, &uc->count_hook, UC_HOOK_CODE, hook_count_cb, NULL, 1, 0);
        if (err != UC_ERR_OK) {
            return err;
        }
    }

    uc->addr_end = until;

    if (timeout)
        enable_emu_timer(uc, timeout * 1000);   // microseconds -> nanoseconds

    if (uc->vm_start(uc)) {
        return UC_ERR_RESOURCE;
    }

    // emulation is done
    uc->emulation_done = true;

    if (timeout) {
        // wait for the timer to finish
        qemu_thread_join(&uc->timer);
    }

    return uc->invalid_error;
}
示例#27
0
int main(int argc, char *argv[])
{
    uc_engine *uc;
    uc_hook trace;
    uc_err err;
    unsigned int EAX, ESP, val = 0x0c0c0c0c, stkval = STACK;

    EAX = 0;
    ESP = STACK+0x4;

    // Initialize emulator in X86-64bit mode
    err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
    if(err) {
        printf("Failed on uc_open() with error returned: %s\n", uc_strerror(err));
        return 1;
    }

    err = uc_mem_map(uc, ADDRESS, SIZE, UC_PROT_ALL);
    if(err != UC_ERR_OK) {
        printf("Failed to map memory %s\n", uc_strerror(err));
        return 1;
    }

    err = uc_mem_write(uc, ADDRESS, CODE32, sizeof(CODE32) - 1);
    if(err != UC_ERR_OK) {
        printf("Failed to write to memory %s\n", uc_strerror(err));
        return 1;
    }

loop:
    err = uc_mem_map(uc, stkval, STACK_SIZE, UC_PROT_ALL);
    if(err != UC_ERR_OK) {
        printf("Failed to map memory %s\n", uc_strerror(err));
        return 1;
    }

    err = uc_mem_write(uc, ESP, &val, sizeof(val));
    if(err != UC_ERR_OK) {
        printf("Failed to write to memory %s\n", uc_strerror(err));
        return 1;
    }


    uc_hook_add(uc, &trace, UC_HOOK_MEM_WRITE | UC_HOOK_MEM_READ, (void *)hook_mem_rw, NULL);

    uc_reg_write(uc, UC_X86_REG_EAX, &EAX);
    uc_reg_write(uc, UC_X86_REG_ESP, &ESP);

    err = uc_emu_start(uc, ADDRESS, ADDRESS + (sizeof(CODE32) - 1), 0, 0);
    if(err) {
        printf("Failed on uc_emu_start() with error returned %u: %s\n", err, uc_strerror(err));

        uc_close(uc);
        return 1;
    }

    uc_reg_read(uc, UC_X86_REG_EAX, &EAX);

    printf(">>> EAX = %08X\n", EAX);

    if(stkval != STACK2)
    {
        printf("=== Beginning test two ===\n");
        ESP = STACK2+0x4;
        EAX = 0;
        stkval = STACK2;
        goto loop;
    }

    uc_close(uc);
    return 0;
}
示例#28
0
static void test_i386_inout(void **state)
{
    uc_engine *uc;
    uc_err err;
    uc_hook trace1, trace2, trace3, trace4;

    int r_eax = 0x1234;     // EAX register
    int r_ecx = 0x6789;     // ECX register

    static const uint64_t address = 0x1000000;
    static const uint8_t code[] = {
        0x41,           // inc  ecx
        0xE4, 0x3F,     // in   al, 0x3F
        0x4A,           // dec  edx
        0xE6, 0x46,     // out  0x46, al
        0x43,           // inc  ebx
    };


    // Initialize emulator in X86-32bit mode
    err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
    uc_assert_success(err);

    // map 2MB memory for this emulation
    err = uc_mem_map(uc, address, 2 * 1024 * 1024, UC_PROT_ALL);
    uc_assert_success(err);

    // write machine code to be emulated to memory
    err = uc_mem_write(uc, address, code, sizeof(code));
    uc_assert_success(err);

    // initialize machine registers
    err = uc_reg_write(uc, UC_X86_REG_EAX, &r_eax);
    uc_assert_success(err);
    err = uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
    uc_assert_success(err);

    // tracing all basic blocks with customized callback
    err = uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, 1, 0);
    uc_assert_success(err);

    // tracing all instructions
    err = uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, 1, 0);
    uc_assert_success(err);

    // uc IN instruction
    err = uc_hook_add(uc, &trace3, UC_HOOK_INSN, hook_in, NULL, 1, 0, UC_X86_INS_IN);
    uc_assert_success(err);

    // uc OUT instruction
    err = uc_hook_add(uc, &trace4, UC_HOOK_INSN, hook_out, NULL, 1, 0, UC_X86_INS_OUT);
    uc_assert_success(err);

    // emulate machine code in infinite time
    err = uc_emu_start(uc, address, address+sizeof(code), 0, 0);
    uc_assert_success(err);

    uc_reg_read(uc, UC_X86_REG_EAX, &r_eax);
    uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
    //printf(">>> EAX = 0x%x\n", r_eax);
    //printf(">>> ECX = 0x%x\n", r_ecx);
    // TODO: Assert on the register values here

    uc_assert_success(uc_close(uc));
}
示例#29
0
static void test_x86_64(void **state)
{
    uc_engine *uc;
    uc_err err;
    uc_hook trace1, trace2, trace3, trace4;

    static const uint64_t address = 0x1000000;
    static const uint8_t code[] = "\x41\xBC\x3B\xB0\x28\x2A\x49\x0F\xC9\x90\x4D\x0F\xAD\xCF\x49\x87\xFD\x90\x48\x81\xD2\x8A\xCE\x77\x35\x48\xF7\xD9\x4D\x29\xF4\x49\x81\xC9\xF6\x8A\xC6\x53\x4D\x87\xED\x48\x0F\xAD\xD2\x49\xF7\xD4\x48\xF7\xE1\x4D\x19\xC5\x4D\x89\xC5\x48\xF7\xD6\x41\xB8\x4F\x8D\x6B\x59\x4D\x87\xD0\x68\x6A\x1E\x09\x3C\x59";

    int64_t rax = 0x71f3029efd49d41d;
    int64_t rbx = 0xd87b45277f133ddb;
    int64_t rcx = 0xab40d1ffd8afc461;
    int64_t rdx = 0x919317b4a733f01;
    int64_t rsi = 0x4c24e753a17ea358;
    int64_t rdi = 0xe509a57d2571ce96;
    int64_t r8 = 0xea5b108cc2b9ab1f;
    int64_t r9 = 0x19ec097c8eb618c1;
    int64_t r10 = 0xec45774f00c5f682;
    int64_t r11 = 0xe17e9dbec8c074aa;
    int64_t r12 = 0x80f86a8dc0f6d457;
    int64_t r13 = 0x48288ca5671c5492;
    int64_t r14 = 0x595f72f6e4017f6e;
    int64_t r15 = 0x1efd97aea331cccc;

    int64_t rsp = address + 0x200000;


    // Initialize emulator in X86-64bit mode
    err = uc_open(UC_ARCH_X86, UC_MODE_64, &uc);
    uc_assert_success(err);

    // map 2MB memory for this emulation
    err = uc_mem_map(uc, address, 2 * 1024 * 1024, UC_PROT_ALL);
    uc_assert_success(err);

    // write machine code to be emulated to memory
    err = uc_mem_write(uc, address, code, sizeof(code) - 1);
    uc_assert_success(err);

    // initialize machine registers
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_RSP, &rsp));

    uc_assert_success(uc_reg_write(uc, UC_X86_REG_RAX, &rax));
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_RBX, &rbx));
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_RCX, &rcx));
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_RDX, &rdx));
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_RSI, &rsi));
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_RDI, &rdi));
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_R8,  &r8));
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_R9,  &r9));
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_R10, &r10));
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_R11, &r11));
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_R12, &r12));
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_R13, &r13));
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_R14, &r14));
    uc_assert_success(uc_reg_write(uc, UC_X86_REG_R15, &r15));

    // tracing all basic blocks with customized callback
    err = uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, 1, 0);
    uc_assert_success(err);

    // tracing all instructions in the range [address, address+20]
    err = uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code64, NULL, address, address+20);
    uc_assert_success(err);

    // tracing all memory WRITE access (with @begin > @end)
    err = uc_hook_add(uc, &trace3, UC_HOOK_MEM_WRITE, hook_mem64, NULL, 1, 0);
    uc_assert_success(err);

    // tracing all memory READ access (with @begin > @end)
    err = uc_hook_add(uc, &trace4, UC_HOOK_MEM_READ, hook_mem64, NULL, 1, 0);
    uc_assert_success(err);

    // emulate machine code in infinite time (last param = 0), or when
    // finishing all the code.
    err = uc_emu_start(uc, address, address+sizeof(code) - 1, 0, 0);
    uc_assert_success(err);

    // Read registers
    uc_reg_read(uc, UC_X86_REG_RAX, &rax);
    uc_reg_read(uc, UC_X86_REG_RBX, &rbx);
    uc_reg_read(uc, UC_X86_REG_RCX, &rcx);
    uc_reg_read(uc, UC_X86_REG_RDX, &rdx);
    uc_reg_read(uc, UC_X86_REG_RSI, &rsi);
    uc_reg_read(uc, UC_X86_REG_RDI, &rdi);
    uc_reg_read(uc, UC_X86_REG_R8,  &r8);
    uc_reg_read(uc, UC_X86_REG_R9,  &r9);
    uc_reg_read(uc, UC_X86_REG_R10, &r10);
    uc_reg_read(uc, UC_X86_REG_R11, &r11);
    uc_reg_read(uc, UC_X86_REG_R12, &r12);
    uc_reg_read(uc, UC_X86_REG_R13, &r13);
    uc_reg_read(uc, UC_X86_REG_R14, &r14);
    uc_reg_read(uc, UC_X86_REG_R15, &r15);

#if 0
    printf(">>> RAX = 0x%" PRIx64 "\n", rax);
    printf(">>> RBX = 0x%" PRIx64 "\n", rbx);
    printf(">>> RCX = 0x%" PRIx64 "\n", rcx);
    printf(">>> RDX = 0x%" PRIx64 "\n", rdx);
    printf(">>> RSI = 0x%" PRIx64 "\n", rsi);
    printf(">>> RDI = 0x%" PRIx64 "\n", rdi);
    printf(">>> R8 = 0x%" PRIx64 "\n", r8);
    printf(">>> R9 = 0x%" PRIx64 "\n", r9);
    printf(">>> R10 = 0x%" PRIx64 "\n", r10);
    printf(">>> R11 = 0x%" PRIx64 "\n", r11);
    printf(">>> R12 = 0x%" PRIx64 "\n", r12);
    printf(">>> R13 = 0x%" PRIx64 "\n", r13);
    printf(">>> R14 = 0x%" PRIx64 "\n", r14);
    printf(">>> R15 = 0x%" PRIx64 "\n", r15);
#endif

    uc_assert_success(uc_close(uc));
}
示例#30
0
static void test_basic_blocks(void **state)
{
    uc_engine *uc = *state;
    uc_hook trace1;

#define BASEADDR    0x1000000

    uint64_t address = BASEADDR;
    const uint8_t code[] = {
        0x33, 0xC0,     // xor  eax, eax
        0x90,           // nop
        0x90,           // nop
        0xEB, 0x00,     // jmp  $+2
        0x90,           // nop
        0x90,           // nop
        0x90,           // nop
    };

    static const struct bb blocks[] = {
        {BASEADDR,      6},
        {BASEADDR+ 6,   3},
    };

    struct bbtest bbtest = {
        .blocks = blocks,
        .blocknum = 0,
    };


#undef BASEADDR

    // map 2MB memory for this emulation
    OK(uc_mem_map(uc, address, 2 * 1024 * 1024, UC_PROT_ALL));

    // write machine code to be emulated to memory
    OK(uc_mem_write(uc, address, code, sizeof(code)));

    // trace all basic blocks
    OK(uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, test_basic_blocks_hook, &bbtest, 1, 0));

    OK(uc_emu_start(uc, address, address+sizeof(code), 0, 0));
}

/******************************************************************************/

// callback for tracing basic blocks
static void hook_block(uc_engine *uc, uint64_t address, uint32_t size, void *user_data)
{
    //printf(">>> Tracing basic block at 0x%"PRIx64 ", block size = 0x%x\n", address, size);
}

// callback for tracing instruction
static void hook_code(uc_engine *uc, uint64_t address, uint32_t size, void *user_data)
{
    //int eflags;
    //printf(">>> Tracing instruction at 0x%"PRIx64 ", instruction size = 0x%x\n", address, size);

    //uc_reg_read(uc, UC_X86_REG_EFLAGS, &eflags);
    //printf(">>> --- EFLAGS is 0x%x\n", eflags);

    // Uncomment below code to stop the emulation using uc_emu_stop()
    // if (address == 0x1000009)
    //    uc_emu_stop(uc);
}

static void test_i386(void **state)
{
    uc_engine *uc;
    uc_err err;
    uint32_t tmp;
    uc_hook trace1, trace2;

    const uint8_t code[] = "\x41\x4a"; // INC ecx; DEC edx
    const uint64_t address = 0x1000000;

    int r_ecx = 0x1234;     // ECX register
    int r_edx = 0x7890;     // EDX register

    // Initialize emulator in X86-32bit mode
    err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
    uc_assert_success(err);

    // map 2MB memory for this emulation
    err = uc_mem_map(uc, address, 2 * 1024 * 1024, UC_PROT_ALL);
    uc_assert_success(err);

    // write machine code to be emulated to memory
    err = uc_mem_write(uc, address, code, sizeof(code)-1);
    uc_assert_success(err);

    // initialize machine registers
    err = uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
    uc_assert_success(err);
    err = uc_reg_write(uc, UC_X86_REG_EDX, &r_edx);
    uc_assert_success(err);

    // tracing all basic blocks with customized callback
    err = uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, 1, 0);
    uc_assert_success(err);

    // tracing all instruction by having @begin > @end
    err = uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, 1, 0);
    uc_assert_success(err);

    // emulate machine code in infinite time
    err = uc_emu_start(uc, address, address+sizeof(code)-1, 0, 0);
    uc_assert_success(err);

    // now print out some registers
    //printf(">>> Emulation done. Below is the CPU context\n");

    uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
    uc_reg_read(uc, UC_X86_REG_EDX, &r_edx);

    assert_int_equal(r_ecx, 0x1235);
    assert_int_equal(r_edx, 0x788F);

    // read from memory
    err = uc_mem_read(uc, address, (uint8_t *)&tmp, 4);
    uc_assert_success(err);
    //printf(">>> Read 4 bytes from [0x%"PRIX64"] = 0x%x\n", address, tmp);

    uc_close(uc);
}