示例#1
0
文件: GCode.cpp 项目: vlast3k/Slic3r
// convert a model-space scaled point into G-code coordinates
Pointf
GCode::point_to_gcode(const Point &point)
{
    Pointf extruder_offset = EXTRUDER_CONFIG(extruder_offset);
    return Pointf(
        unscale(point.x) + this->origin.x - extruder_offset.x,
        unscale(point.y) + this->origin.y - extruder_offset.y
    );
}
示例#2
0
std::string
SLAPrint::_SVG_path_d(const Polygon &polygon) const
{
    const Sizef3 size = this->bb.size();
    std::ostringstream d;
    d << "M ";
    for (Points::const_iterator p = polygon.points.begin(); p != polygon.points.end(); ++p) {
        d << unscale(p->x) - this->bb.min.x << " ";
        d << size.y - (unscale(p->y) - this->bb.min.y) << " ";  // mirror Y coordinates as SVG uses downwards Y
    }
    d << "z";
    return d.str();
}
示例#3
0
void Renderer::getClip(Box *box)
{
  DFBRegion clip;
  m_surface->GetClip(m_surface, &clip);
  unscale(&clip.x1);
  unscale(&clip.x2);
  unscale(&clip.y1);
  unscale(&clip.y2);
  box->x = clip.x1;
  box->y = clip.y1;
  box->w = clip.x2-clip.x1+1;
  box->h = clip.y2-clip.y1+1;
}
示例#4
0
文件: windll.c 项目: ks6g10/CA
/* Remove all scaling from the problem */
void __declspec(dllexport) WINAPI _unscale(lprec *lp)
 {
  if (lp != NULL) {
   freebuferror();
   unscale(lp);
  }
 }
示例#5
0
文件: linux.c 项目: bingzhang/pegasus
static void parse_status_file(const char* fn, LinuxStatus* status) {
    char line[256];
    FILE* f;
    if ((f = fopen(fn, "r"))) {
        while (fgets(line, sizeof(line), f)) {
            if (strncmp(line, "State:", 6) == 0) {
                char* s = line+7;
                while (*s && isspace(*s)) ++s;
                switch (*s) {
                    case 'R':
                        status->state[S_RUNNING]++;
                        break;
                    case 'S':
                        status->state[S_SLEEPING]++;
                        break;
                    case 'D':
                        status->state[S_WAITING]++;
                        break;
                    case 'T':
                        status->state[S_STOPPED]++;
                        break;
                    case 'Z':
                        status->state[S_ZOMBIE]++;
                        break;
                    default:
                        status->state[S_OTHER]++;
                        break;
                }
            } else if (line[0] == 'V') {
                unsigned long value;
                char scale[4];
                if (strncmp(line, "VmSize:", 7) == 0) {
                    char* s = line+8;
                    while (*s && isspace(*s)) ++s;
                    sscanf(s, "%lu %4s", &value, scale);
                    status->size += unscale(value, scale[0]);
                } else if (strncmp(line, "VmRSS:", 6) == 0) {
                    char* s = line+7;
                    while (*s && isspace(*s)) ++s;
                    sscanf(s, "%lu %4s", &value, scale);
                    status->rss += unscale(value, scale[0]);
                }
            }
        }
        fclose(f);
    }
}
示例#6
0
int Renderer::textWidth(const char *str)
{
  if (!m_font) return 0;

  int width = m_font->width(str);
  unscale(&width);
  return width;
}
示例#7
0
// Loads an stl file, projects it to the XY plane and calculates a polygon.
void BedShapePanel::load_stl()
{
	auto dialog = new wxFileDialog(this, _(L("Choose a file to import bed shape from (STL/OBJ/AMF/3MF/PRUSA):")), "", "",
		file_wildcards(FT_MODEL), wxFD_OPEN | wxFD_FILE_MUST_EXIST);
	if (dialog->ShowModal() != wxID_OK) {
		dialog->Destroy();
		return;
	}
	wxArrayString input_file;
	dialog->GetPaths(input_file);
	dialog->Destroy();

	std::string file_name = input_file[0].ToUTF8().data();

	Model model;
	try {
		model = Model::read_from_file(file_name);
	}
	catch (std::exception &e) {
		auto msg = _(L("Error! ")) + file_name + " : " + e.what() + ".";
		show_error(this, msg);
		exit(1);
	}

	auto mesh = model.mesh();
	auto expolygons = mesh.horizontal_projection();

	if (expolygons.size() == 0) {
		show_error(this, _(L("The selected file contains no geometry.")));
		return;
	}
	if (expolygons.size() > 1) {
		show_error(this, _(L("The selected file contains several disjoint areas. This is not supported.")));
		return;
	}

	auto polygon = expolygons[0].contour;
	std::vector<Vec2d> points;
	for (auto pt : polygon.points)
		points.push_back(unscale(pt));
	m_canvas->m_bed_shape = points;
	update_preview();
}
示例#8
0
文件: implicit.c 项目: NKSG/embed
int demoImplicit(void)
{
# if defined ERROR
#  undef ERROR
# endif
# define ERROR() { fprintf(stderr, "Error\n"); return(1); }
  lprec *lp;
  int majorversion, minorversion, release, build;
  char buf[1024];

  if ((lp = make_lp(0,4)) == NULL)
    ERROR();

  lp_solve_version(&majorversion, &minorversion, &release, &build);

  /* let's first demonstrate the logfunc callback feature */
  put_logfunc(lp, Mylogfunc, 0);
  sprintf(buf, "lp_solve %d.%d.%d.%d demo\n\n", majorversion, minorversion, release, build);
  print_str(lp, buf);
  solve(lp); /* just to see that a message is send via the logfunc routine ... */
  /* ok, that is enough, no more callback */
  put_logfunc(lp, NULL, 0);

  /* Now redirect all output to a file */
  /* set_outputfile(lp, "result.txt"); */

  /* set an abort function. Again optional */
  put_abortfunc(lp, Myctrlcfunc, 0);

  /* set a message function. Again optional */
  put_msgfunc(lp, Mymsgfunc, 0, MSG_PRESOLVE | MSG_LPFEASIBLE | MSG_LPOPTIMAL | MSG_MILPEQUAL | MSG_MILPFEASIBLE | MSG_MILPBETTER);

  printf("lp_solve %d.%d.%d.%d demo\n\n", majorversion, minorversion, release, build);
  printf("This demo will show most of the features of lp_solve %d.%d.%d.%d\n", majorversion, minorversion, release, build);
  press_ret();
  printf("\nWe start by creating a new problem with 4 variables and 0 constraints\n");
  printf("We use: lp=make_lp(0,4);\n");
  press_ret();

  printf("We can show the current problem with print_lp(lp)\n");
  print_lp(lp);
  press_ret();
  printf("Now we add some constraints\n");
  printf("str_add_constraint(lp, \"3 2 2 1\" ,LE,4)\n");
  printf("This is the string version of add_constraint. For the normal version\n");
  printf("of add_constraint see the help file.\n");
  if (!str_add_constraint(lp, "3 2 2 1", LE, 4))
    ERROR();
  print_lp(lp);
  press_ret();
  printf("str_add_constraint(lp, \"0 4 3 1\" ,GE,3)\n");
  if (!str_add_constraint(lp, "0 4 3 1", GE, 3))
    ERROR();
  print_lp(lp);
  press_ret();
  printf("Set the objective function\n");
  printf("str_set_obj_fn(lp, \"2 3 -2 3\")\n");
  if (!str_set_obj_fn(lp, "2 3 -2 3"))
    ERROR();
  print_lp(lp);
  press_ret();
  printf("Now solve the problem with printf(solve(lp));\n");
  printf("%d",solve(lp));
  press_ret();
  printf("The value is 0, this means we found an optimal solution\n");
  printf("We can display this solution with print_objective(lp) and print_solution(lp)\n");
  print_objective(lp);
  print_solution(lp, 1);
  print_constraints(lp, 1);

  press_ret();
  printf("The dual variables of the solution are printed with\n");
  printf("print_duals(lp);\n");
  print_duals(lp);
  press_ret();
  printf("We can change a single element in the matrix with\n");
  printf("set_mat(lp,2,1,0.5)\n");
  if (!set_mat(lp,2,1,0.5))
    ERROR();
  print_lp(lp);
  press_ret();
  printf("If we want to maximize the objective function use set_maxim(lp);\n");
  set_maxim(lp);
  print_lp(lp);
  press_ret();
  printf("after solving this gives us:\n");
  solve(lp);
  print_objective(lp);
  print_solution(lp, 1);
  print_constraints(lp, 1);
  print_duals(lp);
  press_ret();
  printf("Change the value of a rhs element with set_rh(lp,1,7.45)\n");
  set_rh(lp,1,7.45);
  print_lp(lp);
  solve(lp);
  print_objective(lp);
  print_solution(lp, 1);
  print_constraints(lp, 1);
  press_ret();
  printf("We change %s to the integer type with\n", get_col_name(lp, 4));
  printf("set_int(lp, 4, TRUE)\n");
  set_int(lp, 4, TRUE);
  print_lp(lp);
  printf("We set branch & bound debugging on with set_debug(lp, TRUE)\n");
  set_debug(lp, TRUE);
  printf("and solve...\n");
  press_ret();
  solve(lp);
  print_objective(lp);
  print_solution(lp, 1);
  print_constraints(lp, 1);
  press_ret();
  printf("We can set bounds on the variables with\n");
  printf("set_lowbo(lp,2,2); & set_upbo(lp,4,5.3)\n");
  set_lowbo(lp,2,2);
  set_upbo(lp,4,5.3);
  print_lp(lp);
  press_ret();
  solve(lp);
  print_objective(lp);
  print_solution(lp, 1);
  print_constraints(lp, 1);
  press_ret();
  printf("Now remove a constraint with del_constraint(lp, 1)\n");
  del_constraint(lp,1);
  print_lp(lp);
  printf("Add an equality constraint\n");
  if (!str_add_constraint(lp, "1 2 1 4", EQ, 8))
    ERROR();
  print_lp(lp);
  press_ret();
  printf("A column can be added with:\n");
  printf("str_add_column(lp,\"3 2 2\");\n");
  if (!str_add_column(lp,"3 2 2"))
    ERROR();
  print_lp(lp);
  press_ret();
  printf("A column can be removed with:\n");
  printf("del_column(lp,3);\n");
  del_column(lp,3);
  print_lp(lp);
  press_ret();
  printf("We can use automatic scaling with:\n");
  printf("set_scaling(lp, SCALE_MEAN);\n");
  set_scaling(lp, SCALE_MEAN);
  print_lp(lp);
  press_ret();
  printf("The function get_mat(lprec *lp, int row, int column) returns a single\n");
  printf("matrix element\n");
  printf("%s get_mat(lp,2,3), get_mat(lp,1,1); gives\n","printf(\"%f %f\\n\",");
  printf("%f %f\n", (double)get_mat(lp,2,3), (double)get_mat(lp,1,1));
  printf("Notice that get_mat returns the value of the original unscaled problem\n");
  press_ret();
  printf("If there are any integer type variables, then only the rows are scaled\n");
  printf("set_scaling(lp, SCALE_MEAN);\n");
  set_scaling(lp, SCALE_MEAN);
  printf("set_int(lp,3,FALSE);\n");
  set_int(lp,3,FALSE);
  print_lp(lp);
  press_ret();
  solve(lp);
  printf("print_objective, print_solution gives the solution to the original problem\n");
  print_objective(lp);
  print_solution(lp, 1);
  print_constraints(lp, 1);
  press_ret();
  printf("Scaling is turned off with unscale(lp);\n");
  unscale(lp);
  print_lp(lp);
  press_ret();
  printf("Now turn B&B debugging off and simplex tracing on with\n");
  printf("set_debug(lp, FALSE), set_trace(lp, TRUE) and solve(lp)\n");
  set_debug(lp, FALSE);
  set_trace(lp, TRUE);
  press_ret();
  solve(lp);
  printf("Where possible, lp_solve will start at the last found basis\n");
  printf("We can reset the problem to the initial basis with\n");
  printf("default_basis(lp). Now solve it again...\n");
  press_ret();
  default_basis(lp);
  solve(lp);

  printf("It is possible to give variables and constraints names\n");
  printf("set_row_name(lp,1,\"speed\"); & set_col_name(lp,2,\"money\")\n");
  if (!set_row_name(lp,1,"speed"))
    ERROR();
  if (!set_col_name(lp,2,"money"))
    ERROR();
  print_lp(lp);
  printf("As you can see, all column and rows are assigned default names\n");
  printf("If a column or constraint is deleted, the names shift place also:\n");
  press_ret();
  printf("del_column(lp,1);\n");
  del_column(lp,1);
  print_lp(lp);
  press_ret();

  delete_lp(lp);

/*
  printf("A lp structure can be created and read from a .lp file\n");
  printf("lp = read_LP(\"lp_examples/demo_lag.lp\", TRUE);\n");
  printf("The verbose option is used\n");
  if ((lp = read_LP("lp_examples/demo_lag.lp", TRUE, "test")) == NULL)
    ERROR();
  press_ret();
  printf("lp is now:\n");
  print_lp(lp);

  press_ret();
  printf("solution:\n");
  set_debug(lp, TRUE);
  solve(lp);
  set_debug(lp, FALSE);
  print_objective(lp);
  print_solution(lp, 1);
  print_constraints(lp, 1);
  press_ret();
  printf("You can see that branch & bound was used in this problem\n");

  printf("Now remove the last constraint and use lagrangian relaxation\n");
  printf("del_constraint(lp,6);\n");
  printf("str_add_lag_con(lp, \"1 1 1 0 0 0\", LE, 2);\n");
  del_constraint(lp,6);
  if (!str_add_lag_con(lp, "1 1 1 0 0 0", LE, 2))
    ERROR();
  print_lp(lp);
*/

/*
  printf("Lagrangian relaxation is used in some heuristics. It is now possible\n");
  printf("to get a feasible integer solution without usage of branch & bound.\n");
  printf("Use lag_solve(lp, 0, 30); 0 is the initial bound, 30 the maximum\n");
  printf("number of iterations, the last variable turns the verbose mode on.\n");
  press_ret();
  set_lag_trace(lp, TRUE);
  printf("%d\n",lag_solve(lp, 0, 30));
  printf("The returncode of lag_solve is 6 or FEAS_FOUND. this means that a feasible\n");
  printf("solution has been found. For a list of other possible return values\n");
  printf("see the help file. Print this solution with print_objective, print_solution\n");
  print_objective(lp);
  print_solution(lp, 1);
  print_constraints(lp, 1);

  delete_lp(lp);
*/

  press_ret();

  return(0);
}
示例#9
0
int main(void)
{
  lprec *lp1,*lp2;
  FILE  *input_file;

  printf("lp_solve 2.0 demo by Jeroen J. Dirks ([email protected])\n\n");
  printf("This demo will show most of the features of lp_solve 2.0\n");
  press_ret();
  printf("\nWe start by creating a new problem with 4 variables and 0 constraints\n");
  printf("We use: lp1=make_lp(0,4);\n");
  lp1=make_lp(0,4);
  press_ret();
  printf("We can show the current problem with print_lp(lp1)\n");
  print_lp(lp1);
  press_ret();
  printf("Now we add some constraints\n");
  printf("str_add_constraint(lp1, \"3 2 2 1\" ,LE,4)\n");
  printf("This is the string version of add_constraint. For the normal version\n");
  printf("of add_constraint see the file lpkit.h\n");
  str_add_constraint(lp1, "3 2 2 1", LE, 4);
  print_lp(lp1);
  press_ret();
  printf("str_add_constraint(lp1, \"0 4 3 1\" ,GE,3)\n");
  str_add_constraint(lp1, "0 4 3 1", GE, 3);
  print_lp(lp1);
  press_ret();
  printf("Set the objective function\n");
  printf("str_set_obj_fn(lp1, \"2 3 -2 3\")\n");
  str_set_obj_fn(lp1, "2 3 -2 3");
  print_lp(lp1);
  press_ret();
  printf("Now solve the problem with printf(solve(lp1));\n");
  printf("%d",solve(lp1));
  press_ret();
  printf("The value is 0, this means we found an optimal solution\n");
  printf("We can display this solution with print_solution(lp1)\n");
  print_solution(lp1);
  press_ret();
  printf("The dual variables of the solution are printed with\n");
  printf("print_duals(lp1);\n");
  print_duals(lp1);
  press_ret();
  printf("We can change a single element in the matrix with\n");
  printf("set_mat(lp1,2,1,0.5)\n");
  set_mat(lp1,2,1,0.5);
  print_lp(lp1);
  press_ret();  
  printf("It we want to maximise the objective function use set_maxim(lp1);\n");
  set_maxim(lp1);
  print_lp(lp1);
  press_ret();
  printf("after solving this gives us:\n");
  solve(lp1);
  print_solution(lp1);
  print_duals(lp1);
  press_ret();
  printf("Change the value of a rhs element with set_rh(lp1,1,7.45)\n");
  set_rh(lp1,1,7.45);
  print_lp(lp1);
  solve(lp1);
  print_solution(lp1);
  press_ret();
  printf("We change Var[4] to the integer type with\n");
  printf("set_int(lp1, 4, TRUE)\n");
  set_int(lp1, 4, TRUE);
  print_lp(lp1);
  printf("We set branch & bound debugging on with lp1->debug=TRUE\n");
  lp1->debug=TRUE;
  printf("and solve...\n");
  press_ret();
  solve(lp1);
  print_solution(lp1);	
  press_ret();
  printf("We can set bounds on the variables with\n");
  printf("set_lowbo(lp1,2,2); & set_upbo(lp1,4,5.3)\n");
  set_lowbo(lp1,2,2);
  set_upbo(lp1,4,5.3);
  print_lp(lp1);
  press_ret();
  solve(lp1);
  print_solution(lp1);
  press_ret();
  printf("Now remove a constraint with del_constraint(lp1, 1)\n");
  del_constraint(lp1,1);
  print_lp(lp1);
  printf("Add an equality constraint\n");
  str_add_constraint(lp1, "1 2 1 4", EQ, 8);
  print_lp(lp1);
  press_ret();
  printf("A column can be added with:\n");
  printf("str_add_column(lp1,\"3 2 2\");\n");
  str_add_column(lp1,"3 2 2");
  print_lp(lp1);
  press_ret();
  printf("A column can be removed with:\n");
  printf("del_column(lp1,3);\n");
  del_column(lp1,3);
  print_lp(lp1);
  press_ret();
  printf("We can use automatic scaling with:\n");
  printf("auto_scale(lp1);\n");
  auto_scale(lp1);
  print_lp(lp1);
   press_ret();
  printf("The function mat_elm(lprec *lp, int row, int column) returns a single\n");
  printf("matrix element\n");
  printf("%s mat_elm(lp1,2,3), mat_elm(lp1,1,1); gives\n","printf(\"%f %f\\n\",");
  printf("%f %f\n",mat_elm(lp1,2,3), mat_elm(lp1,1,1));
  printf("Notice that mat_elm returns the value of the original unscaled problem\n");
  press_ret();
  printf("It there are any integer type variables, then only the rows are scaled\n");
  printf("set_int(lp1,3,FALSE);\n");
  printf("auto_scale(lp1);\n");
  set_int(lp1,3,FALSE);
  auto_scale(lp1);
  print_lp(lp1);
  press_ret();
  solve(lp1); 
  printf("print_solution gives the solution to the original problem\n");
  print_solution(lp1);
  press_ret();
  printf("Scaling is turned off with unscale(lp1);\n");
  unscale(lp1);
  print_lp(lp1);
  press_ret();
  printf("Now turn B&B debugging of and simplex tracing on with\n");
  printf("lp1->debug=FALSE, lp1->trace=TRUE and solve(lp1)\n");
  lp1->debug=FALSE;
  lp1->trace=TRUE;
  press_ret();
  solve(lp1);
  printf("Where possible, lp_solve will start at the last found basis\n");
  printf("We can reset the problem to the initial basis with\n");
  printf("reset_basis(lp1). Now solve it again...\n");
  press_ret();
  reset_basis(lp1);
  solve(lp1);
  press_ret();
  printf("It is possible to give variables and constraints names\n");
  printf("set_row_name(lp1,1,\"speed\"); & set_col_name(lp1,2,\"money\")\n");
  set_row_name(lp1,1,"speed");
  set_col_name(lp1,2,"money");
  print_lp(lp1);
  printf("As you can see, all column and rows are assigned default names\n");
  printf("If a column or constraint is deleted, the names shift place also:\n");
  press_ret(); 
  printf("del_column(lp1,1);\n");
  del_column(lp1,1);
  print_lp(lp1);
  press_ret();
  printf("A lp structure can be created and read from a .lp file\n");
  printf("input_file=fopen(\"lp_examples/demo_lag.lp\",\"r\");\n");
  printf("lp2 = read_lp_file(input_file, TRUE);\n");
  printf("The verbose option is used\n");
  input_file = fopen("lp_examples/demo_lag.lp", "r");
  if (input_file == NULL)
    {
      printf("Can't find demo_lag.lp, stopping\n");
      exit(EXIT_FAILURE);
    }
  lp2 = read_lp_file(input_file, TRUE, "test");
  press_ret();
  printf("lp2 is now:\n");
  print_lp(lp2);
  press_ret();
  printf("solution:\n");
  lp2->debug=TRUE; 
  solve(lp2);
  lp2->debug=FALSE;
  print_solution(lp2);
  press_ret();
  printf("You can see that branch & bound was used in this problem\n");
  printf("Now remove the last constraint and use lagrangian relaxation\n");
  printf("del_constraint(lp2,6);\n");
  printf("str_add_lag_con(lp2, \"1 1 1 0 0 0\", LE, 2);\n");
  del_constraint(lp2,6);
  str_add_lag_con(lp2, "1 1 1 0 0 0", LE, 2);
  print_lp(lp2);
  printf("Lagrangian relaxation is used in some heuristics. It is now possible\n");
  printf("to get a feasible integer soltution without usage of branch & bound.\n");
  printf("Use lag_solve(lp2, 0, 40, TRUE); 0 is the initial bound, 30 the maximum\n");
  printf("number of iterations, the last variable turns the verbose mode on.\n");
  press_ret();
  printf("%d\n",lag_solve(lp2, 0, 30, TRUE));
  printf("The returncode of lag_solve is 6 or FEAS_FOUND. this means that a feasible\n");
  printf("solution has been found. For a list of other possible return values\n");
  printf("see \"lpkit.h\". Print this solution with print_solution\n");
  print_solution(lp2);
  press_ret();

  return(0);
}
示例#10
0
 static Pointf new_unscale(const Point &p) {
     return Pointf(unscale(p.x), unscale(p.y));
 };
示例#11
0
 static Pointf new_unscale(coord_t x, coord_t y) {
     return Pointf(unscale(x), unscale(y));
 };
示例#12
0
 static Pointf3 new_unscale(coord_t x, coord_t y, coord_t z) {
     return Pointf3(unscale(x), unscale(y), unscale(z));
 };
示例#13
0
void
PerimeterGenerator::process()
{
    // other perimeters
    this->_mm3_per_mm           = this->perimeter_flow.mm3_per_mm();
    coord_t pwidth              = this->perimeter_flow.scaled_width();
    coord_t pspacing            = this->perimeter_flow.scaled_spacing();
    
    // external perimeters
    this->_ext_mm3_per_mm       = this->ext_perimeter_flow.mm3_per_mm();
    coord_t ext_pwidth          = this->ext_perimeter_flow.scaled_width();
    coord_t ext_pspacing        = this->ext_perimeter_flow.scaled_spacing();
    coord_t ext_pspacing2       = this->ext_perimeter_flow.scaled_spacing(this->perimeter_flow);
    
    // overhang perimeters
    this->_mm3_per_mm_overhang  = this->overhang_flow.mm3_per_mm();
    
    // solid infill
    coord_t ispacing            = this->solid_infill_flow.scaled_spacing();
    coord_t gap_area_threshold  = pwidth * pwidth;
    
    // Calculate the minimum required spacing between two adjacent traces.
    // This should be equal to the nominal flow spacing but we experiment
    // with some tolerance in order to avoid triggering medial axis when
    // some squishing might work. Loops are still spaced by the entire
    // flow spacing; this only applies to collapsing parts.
    // For ext_min_spacing we use the ext_pspacing calculated for two adjacent
    // external loops (which is the correct way) instead of using ext_pspacing2
    // which is the spacing between external and internal, which is not correct
    // and would make the collapsing (thus the details resolution) dependent on 
    // internal flow which is unrelated.
    coord_t min_spacing         = pspacing      * (1 - INSET_OVERLAP_TOLERANCE);
    coord_t ext_min_spacing     = ext_pspacing  * (1 - INSET_OVERLAP_TOLERANCE);
    
    // prepare grown lower layer slices for overhang detection
    if (this->lower_slices != NULL && this->config->overhangs) {
        // We consider overhang any part where the entire nozzle diameter is not supported by the
        // lower layer, so we take lower slices and offset them by half the nozzle diameter used 
        // in the current layer
        double nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->perimeter_extruder-1);
        
        this->_lower_slices_p = offset(*this->lower_slices, scale_(+nozzle_diameter/2));
    }
    
    // we need to process each island separately because we might have different
    // extra perimeters for each one
    for (Surfaces::const_iterator surface = this->slices->surfaces.begin();
        surface != this->slices->surfaces.end(); ++surface) {
        // detect how many perimeters must be generated for this island
        signed short loop_number = this->config->perimeters + surface->extra_perimeters;
        loop_number--;  // 0-indexed loops
        
        Polygons gaps;
        
        Polygons last = surface->expolygon.simplify_p(SCALED_RESOLUTION);
        if (loop_number >= 0) {  // no loops = -1
            
            std::vector<PerimeterGeneratorLoops> contours(loop_number+1);    // depth => loops
            std::vector<PerimeterGeneratorLoops> holes(loop_number+1);       // depth => loops
            Polylines thin_walls;
            
            // we loop one time more than needed in order to find gaps after the last perimeter was applied
            for (signed short i = 0; i <= loop_number+1; ++i) {  // outer loop is 0
                Polygons offsets;
                if (i == 0) {
                    // the minimum thickness of a single loop is:
                    // ext_width/2 + ext_spacing/2 + spacing/2 + width/2
                    if (this->config->thin_walls) {
                        offsets = offset2(
                            last,
                            -(ext_pwidth/2 + ext_min_spacing/2 - 1),
                            +(ext_min_spacing/2 - 1)
                        );
                    } else {
                        offsets = offset(last, -ext_pwidth/2);
                    }
                    
                    // look for thin walls
                    if (this->config->thin_walls) {
                        Polygons diffpp = diff(
                            last,
                            offset(offsets, +ext_pwidth/2),
                            true  // medial axis requires non-overlapping geometry
                        );
                        
                        // the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width
                        // (actually, something larger than that still may exist due to mitering or other causes)
                        coord_t min_width = ext_pwidth / 2;
                        ExPolygons expp = offset2_ex(diffpp, -min_width/2, +min_width/2);
                        
                        // the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop
                        Polylines pp;
                        for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex)
                            ex->medial_axis(ext_pwidth + ext_pspacing2, min_width, &pp);
                        
                        double threshold = ext_pwidth * 2;
                        for (Polylines::const_iterator p = pp.begin(); p != pp.end(); ++p) {
                            if (p->length() > threshold) {
                                thin_walls.push_back(*p);
                            }
                        }
                        
                        #ifdef DEBUG
                        printf("  %zu thin walls detected\n", thin_walls.size());
                        #endif
                        
                        /*
                        if (false) {
                            require "Slic3r/SVG.pm";
                            Slic3r::SVG::output(
                                "medial_axis.svg",
                                no_arrows       => 1,
                                #expolygons      => \@expp,
                                polylines       => \@thin_walls,
                            );
                        }
                        */
                    }
                } else {
                    coord_t distance = (i == 1) ? ext_pspacing2 : pspacing;
                    
                    if (this->config->thin_walls) {
                        offsets = offset2(
                            last,
                            -(distance + min_spacing/2 - 1),
                            +(min_spacing/2 - 1)
                        );
                    } else {
                        offsets = offset(
                            last,
                            -distance
                        );
                    }
                    
                    // look for gaps
                    if (this->config->gap_fill_speed.value > 0 && this->config->fill_density.value > 0) {
                        // not using safety offset here would "detect" very narrow gaps
                        // (but still long enough to escape the area threshold) that gap fill
                        // won't be able to fill but we'd still remove from infill area
                        ExPolygons diff_expp = diff_ex(
                            offset(last, -0.5*distance),
                            offset(offsets, +0.5*distance + 10)  // safety offset
                        );
                        for (ExPolygons::const_iterator ex = diff_expp.begin(); ex != diff_expp.end(); ++ex) {
                            if (fabs(ex->area()) >= gap_area_threshold) {
                                Polygons pp = *ex;
                                gaps.insert(gaps.end(), pp.begin(), pp.end());
                            }
                        }
                    }
                }
                
                if (offsets.empty()) break;
                if (i > loop_number) break; // we were only looking for gaps this time
                
                last = offsets;
                for (Polygons::const_iterator polygon = offsets.begin(); polygon != offsets.end(); ++polygon) {
                    PerimeterGeneratorLoop loop(*polygon, i);
                    loop.is_contour = polygon->is_counter_clockwise();
                    if (loop.is_contour) {
                        contours[i].push_back(loop);
                    } else {
                        holes[i].push_back(loop);
                    }
                }
            }
            
            // nest loops: holes first
            for (signed short d = 0; d <= loop_number; ++d) {
                PerimeterGeneratorLoops &holes_d = holes[d];
                
                // loop through all holes having depth == d
                for (signed short i = 0; i < holes_d.size(); ++i) {
                    const PerimeterGeneratorLoop &loop = holes_d[i];
                    
                    // find the hole loop that contains this one, if any
                    for (signed short t = d+1; t <= loop_number; ++t) {
                        for (signed short j = 0; j < holes[t].size(); ++j) {
                            PerimeterGeneratorLoop &candidate_parent = holes[t][j];
                            if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
                                candidate_parent.children.push_back(loop);
                                holes_d.erase(holes_d.begin() + i);
                                --i;
                                goto NEXT_LOOP;
                            }
                        }
                    }
                    
                    // if no hole contains this hole, find the contour loop that contains it
                    for (signed short t = loop_number; t >= 0; --t) {
                        for (signed short j = 0; j < contours[t].size(); ++j) {
                            PerimeterGeneratorLoop &candidate_parent = contours[t][j];
                            if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
                                candidate_parent.children.push_back(loop);
                                holes_d.erase(holes_d.begin() + i);
                                --i;
                                goto NEXT_LOOP;
                            }
                        }
                    }
                    NEXT_LOOP: ;
                }
            }
        
            // nest contour loops
            for (signed short d = loop_number; d >= 1; --d) {
                PerimeterGeneratorLoops &contours_d = contours[d];
                
                // loop through all contours having depth == d
                for (signed short i = 0; i < contours_d.size(); ++i) {
                    const PerimeterGeneratorLoop &loop = contours_d[i];
                
                    // find the contour loop that contains it
                    for (signed short t = d-1; t >= 0; --t) {
                        for (signed short j = 0; j < contours[t].size(); ++j) {
                            PerimeterGeneratorLoop &candidate_parent = contours[t][j];
                            if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
                                candidate_parent.children.push_back(loop);
                                contours_d.erase(contours_d.begin() + i);
                                --i;
                                goto NEXT_CONTOUR;
                            }
                        }
                    }
                    
                    NEXT_CONTOUR: ;
                }
            }
        
            // at this point, all loops should be in contours[0]
            
            ExtrusionEntityCollection entities = this->_traverse_loops(contours.front(), thin_walls);
            
            // if brim will be printed, reverse the order of perimeters so that
            // we continue inwards after having finished the brim
            // TODO: add test for perimeter order
            if (this->config->external_perimeters_first
                || (this->layer_id == 0 && this->print_config->brim_width.value > 0))
                    entities.reverse();
            
            // append perimeters for this slice as a collection
            if (!entities.empty())
                this->loops->append(entities);
        }
        
        // fill gaps
        if (!gaps.empty()) {
            /*
            if (false) {
                require "Slic3r/SVG.pm";
                Slic3r::SVG::output(
                    "gaps.svg",
                    expolygons => union_ex(\@gaps),
                );
            }
            */
            
            // where $pwidth < thickness < 2*$pspacing, infill with width = 2*$pwidth
            // where 0.1*$pwidth < thickness < $pwidth, infill with width = 1*$pwidth
            std::vector<PerimeterGeneratorGapSize> gap_sizes;
            gap_sizes.push_back(PerimeterGeneratorGapSize(pwidth, 2*pspacing, 2*pwidth));
            gap_sizes.push_back(PerimeterGeneratorGapSize(0.1*pwidth, pwidth, 1*pwidth));
            
            for (std::vector<PerimeterGeneratorGapSize>::const_iterator gap_size = gap_sizes.begin();
                gap_size != gap_sizes.end(); ++gap_size) {
                ExtrusionEntityCollection gap_fill = this->_fill_gaps(gap_size->min, 
                    gap_size->max, unscale(gap_size->width), gaps);
                this->gap_fill->append(gap_fill.entities);
                
                // Make sure we don't infill narrow parts that are already gap-filled
                // (we only consider this surface's gaps to reduce the diff() complexity).
                // Growing actual extrusions ensures that gaps not filled by medial axis
                // are not subtracted from fill surfaces (they might be too short gaps
                // that medial axis skips but infill might join with other infill regions
                // and use zigzag).
                coord_t dist = gap_size->width/2;
                Polygons filled;
                for (ExtrusionEntitiesPtr::const_iterator it = gap_fill.entities.begin();
                    it != gap_fill.entities.end(); ++it) {
                    Polygons f;
                    offset((*it)->as_polyline(), &f, dist);
                    filled.insert(filled.end(), f.begin(), f.end());
                }
                last = diff(last, filled);
                gaps = diff(gaps, filled);  // prevent more gap fill here
            }
        }
        
        // create one more offset to be used as boundary for fill
        // we offset by half the perimeter spacing (to get to the actual infill boundary)
        // and then we offset back and forth by half the infill spacing to only consider the
        // non-collapsing regions
        coord_t inset = 0;
        if (loop_number == 0) {
            // one loop
            inset += ext_pspacing2/2;
        } else if (loop_number > 0) {
            // two or more loops
            inset += pspacing/2;
        }
        
        // only apply infill overlap if we actually have one perimeter
        if (inset > 0)
            inset -= this->config->get_abs_value("infill_overlap", inset + ispacing/2);
        
        {
            ExPolygons expp = union_ex(last);
            
            // simplify infill contours according to resolution
            Polygons pp;
            for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex)
                ex->simplify_p(SCALED_RESOLUTION, &pp);
            
            // collapse too narrow infill areas
            coord_t min_perimeter_infill_spacing = ispacing * (1 - INSET_OVERLAP_TOLERANCE);
            expp = offset2_ex(
                pp,
                -inset -min_perimeter_infill_spacing/2,
                +min_perimeter_infill_spacing/2
            );
            
            // append infill areas to fill_surfaces
            for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex)
                this->fill_surfaces->surfaces.push_back(Surface(stInternal, *ex));  // use a bogus surface type
        }
    }
}
示例#14
0
void
SLAPrint::write_svg(const std::string &outputfile) const
{
    const Sizef3 size = this->bb.size();
    const double support_material_radius = sm_pillars_radius();
    
    FILE* f = fopen(outputfile.c_str(), "w");
    fprintf(f,
        "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"yes\"?>\n"
        "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.0//EN\" \"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd\">\n"
        "<svg width=\"%f\" height=\"%f\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:svg=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" xmlns:slic3r=\"http://slic3r.org/namespaces/slic3r\" viewport-fill=\"black\">\n"
        "<!-- Generated using Slic3r %s http://slic3r.org/ -->\n"
        , size.x, size.y, SLIC3R_VERSION);
    
    for (size_t i = 0; i < this->layers.size(); ++i) {
        const Layer &layer = this->layers[i];
        fprintf(f,
            "\t<g id=\"layer%zu\" slic3r:z=\"%0.4f\" slic3r:slice-z=\"%0.4f\" slic3r:layer-height=\"%0.4f\">\n",
            i,
            layer.print_z,
            layer.slice_z,
            layer.print_z - ((i == 0) ? 0. : this->layers[i-1].print_z)
        );
        
        if (layer.solid) {
            const ExPolygons &slices = layer.slices.expolygons;
            for (ExPolygons::const_iterator it = slices.begin(); it != slices.end(); ++it) {
                std::string pd = this->_SVG_path_d(*it);
                
                fprintf(f,"\t\t<path d=\"%s\" style=\"fill: %s; stroke: %s; stroke-width: %s; fill-type: evenodd\" slic3r:area=\"%0.4f\" />\n",
                    pd.c_str(), "white", "black", "0", unscale(unscale(it->area()))
                );
            }
        } else {
            // Perimeters.
            for (ExPolygons::const_iterator it = layer.perimeters.expolygons.begin();
                it != layer.perimeters.expolygons.end(); ++it) {
                std::string pd = this->_SVG_path_d(*it);
                
                fprintf(f,"\t\t<path d=\"%s\" style=\"fill: %s; stroke: %s; stroke-width: %s; fill-type: evenodd\" slic3r:type=\"perimeter\" />\n",
                    pd.c_str(), "white", "black", "0"
                );
            }
            
            // Solid infill.
            for (ExPolygons::const_iterator it = layer.solid_infill.expolygons.begin();
                it != layer.solid_infill.expolygons.end(); ++it) {
                std::string pd = this->_SVG_path_d(*it);
                
                fprintf(f,"\t\t<path d=\"%s\" style=\"fill: %s; stroke: %s; stroke-width: %s; fill-type: evenodd\" slic3r:type=\"infill\" />\n",
                    pd.c_str(), "white", "black", "0"
                );
            }
            
            // Internal infill.
            for (ExtrusionEntitiesPtr::const_iterator it = layer.infill.entities.begin();
                it != layer.infill.entities.end(); ++it) {
                const ExPolygons infill = union_ex((*it)->grow());
                
                for (ExPolygons::const_iterator e = infill.begin(); e != infill.end(); ++e) {
                    std::string pd = this->_SVG_path_d(*e);
                
                    fprintf(f,"\t\t<path d=\"%s\" style=\"fill: %s; stroke: %s; stroke-width: %s; fill-type: evenodd\" slic3r:type=\"infill\" />\n",
                        pd.c_str(), "white", "black", "0"
                    );
                }
            }
        }
        
        // don't print support material in raft layers
        if (i >= (size_t)this->config.raft_layers) {
            // look for support material pillars belonging to this layer
            for (std::vector<SupportPillar>::const_iterator it = this->sm_pillars.begin(); it != this->sm_pillars.end(); ++it) {
                if (!(it->top_layer >= i && it->bottom_layer <= i)) continue;
            
                // generate a conic tip
                float radius = fminf(
                    support_material_radius,
                    (it->top_layer - i + 1) * this->config.layer_height.value
                );
            
                fprintf(f,"\t\t<circle cx=\"%f\" cy=\"%f\" r=\"%f\" stroke-width=\"0\" fill=\"white\" slic3r:type=\"support\" />\n",
                    unscale(it->x) - this->bb.min.x,
                    size.y - (unscale(it->y) - this->bb.min.y),
                    radius
                );
            }
        }
        
        fprintf(f,"\t</g>\n");
    }
    fprintf(f,"</svg>\n");
}
示例#15
0
void
SVGExport::writeSVG(const std::string &outputfile)
{
    // align to origin taking raft into account
    BoundingBoxf3 bb = this->mesh.bounding_box();
    if (this->config.raft_layers > 0) {
        bb.min.x -= this->config.raft_offset.value;
        bb.min.y -= this->config.raft_offset.value;
        bb.max.x += this->config.raft_offset.value;
        bb.max.y += this->config.raft_offset.value;
    }
    this->mesh.translate(-bb.min.x, -bb.min.y, -bb.min.z);  // align to origin
    bb.translate(-bb.min.x, -bb.min.y, -bb.min.z);          // align to origin
    const Sizef3 size = bb.size();
    
    // if we are generating a raft, first_layer_height will not affect mesh slicing
    const float lh = this->config.layer_height.value;
    const float first_lh = this->config.first_layer_height.value;
    
    // generate the list of Z coordinates for mesh slicing
    // (we slice each layer at half of its thickness)
    std::vector<float> slice_z, layer_z;
    {
        const float first_slice_lh = (this->config.raft_layers > 0) ? lh : first_lh;
        slice_z.push_back(first_slice_lh/2);
        layer_z.push_back(first_slice_lh);
    }
    while (layer_z.back() + lh/2 <= this->mesh.stl.stats.max.z) {
        slice_z.push_back(layer_z.back() + lh/2);
        layer_z.push_back(layer_z.back() + lh);
    }
    
    // perform the slicing
    std::vector<ExPolygons> layers;
    TriangleMeshSlicer(&this->mesh).slice(slice_z, &layers);
    
    // generate a solid raft if requested
    if (this->config.raft_layers > 0) {
        ExPolygons raft = offset_ex(layers.front(), scale_(this->config.raft_offset));
        for (int i = this->config.raft_layers; i >= 1; --i) {
            layer_z.insert(layer_z.begin(), first_lh + lh * (i-1));
            layers.insert(layers.begin(), raft);
        }
        
        // prepend total raft height to all sliced layers
        for (int i = this->config.raft_layers; i < layer_z.size(); ++i)
            layer_z[i] += first_lh + lh * (this->config.raft_layers-1);
    }
    
    // generate support material
    std::vector<Points> support_material(layers.size());
    if (this->config.support_material) {
        // generate a grid of points according to the configured spacing,
        // covering the entire object bounding box
        Points support_material_points;
        for (coordf_t x = bb.min.x; x <= bb.max.x; x += this->config.support_material_spacing) {
            for (coordf_t y = bb.min.y; y <= bb.max.y; y += this->config.support_material_spacing) {
                support_material_points.push_back(Point(scale_(x), scale_(y)));
            }
        }
        
        // check overhangs, starting from the upper layer, and detect which points apply 
        // to each layer
        ExPolygons overhangs;
        for (int i = layer_z.size()-1; i >= 0; --i) {
            overhangs = diff_ex(union_(overhangs, layers[i+1]), layers[i]);
            for (Points::const_iterator it = support_material_points.begin(); it != support_material_points.end(); ++it) {
                for (ExPolygons::const_iterator e = overhangs.begin(); e != overhangs.end(); ++e) {
                    if (e->contains(*it)) {
                        support_material[i].push_back(*it);
                        break;
                    }
                }
            }
        }
    }
    
    double support_material_radius = this->config.support_material_extrusion_width.get_abs_value(this->config.layer_height)/2;
    
    FILE* f = fopen(outputfile.c_str(), "w");
    fprintf(f,
        "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"yes\"?>\n"
        "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.0//EN\" \"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd\">\n"
        "<svg width=\"%f\" height=\"%f\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:svg=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" xmlns:slic3r=\"http://slic3r.org/namespaces/slic3r\" viewport-fill=\"black\">\n"
        "<!-- Generated using Slic3r %s http://slic3r.org/ -->\n"
        , size.x, size.y, SLIC3R_VERSION);
    
    for (size_t i = 0; i < layer_z.size(); ++i) {
        fprintf(f, "\t<g id=\"layer%zu\" slic3r:z=\"%0.4f\">\n", i, layer_z[i]);
        for (ExPolygons::const_iterator it = layers[i].begin(); it != layers[i].end(); ++it) {
            std::string pd;
            Polygons pp = *it;
            for (Polygons::const_iterator mp = pp.begin(); mp != pp.end(); ++mp) {
                std::ostringstream d;
                d << "M ";
                for (Points::const_iterator p = mp->points.begin(); p != mp->points.end(); ++p) {
                    d << unscale(p->x) << " ";
                    d << unscale(p->y) << " ";
                }
                d << "z";
                pd += d.str() + " ";
            }
            fprintf(f,"\t\t<path d=\"%s\" style=\"fill: %s; stroke: %s; stroke-width: %s; fill-type: evenodd\" slic3r:area=\"%0.4f\" />\n",
                pd.c_str(), "white", "black", "0", unscale(unscale(it->area()))
            );
        }
        for (Points::const_iterator it = support_material[i].begin(); it != support_material[i].end(); ++it) {
            fprintf(f,"\t\t<circle cx=\"%f\" cy=\"%f\" r=\"%f\" stroke-width=\"0\" fill=\"white\" slic3r:type=\"support\" />\n",
                unscale(it->x), unscale(it->y), support_material_radius
            );
        }
        fprintf(f,"\t</g>\n");
    }
    fprintf(f,"</svg>\n");
}
示例#16
0
/// The LayerRegion at this point of time may contain
/// surfaces of various types (internal/bridge/top/bottom/solid).
/// The infills are generated on the groups of surfaces with a compatible type.
/// Fills an array of ExtrusionPathCollection objects containing the infills generated now
/// and the thin fills generated by generate_perimeters().
void
LayerRegion::make_fill()
{
    this->fills.clear();
    
    const double fill_density          = this->region()->config.fill_density;
    const Flow   infill_flow           = this->flow(frInfill);
    const Flow   solid_infill_flow     = this->flow(frSolidInfill);
    const Flow   top_solid_infill_flow = this->flow(frTopSolidInfill);
    const coord_t perimeter_spacing    = this->flow(frPerimeter).scaled_spacing();

    SurfaceCollection surfaces;
    
    // merge adjacent surfaces
    // in case of bridge surfaces, the ones with defined angle will be attached to the ones
    // without any angle (shouldn't this logic be moved to process_external_surfaces()?)
    {
        Polygons polygons_bridged;
        polygons_bridged.reserve(this->fill_surfaces.surfaces.size());
        for (Surfaces::const_iterator it = this->fill_surfaces.surfaces.begin(); it != this->fill_surfaces.surfaces.end(); ++it)
            if (it->is_bridge() && it->bridge_angle >= 0)
                append_to(polygons_bridged, (Polygons)*it);
        
        // group surfaces by distinct properties (equal surface_type, thickness, thickness_layers, bridge_angle)
        // group is of type SurfaceCollection
        // FIXME: Use some smart heuristics to merge similar surfaces to eliminate tiny regions.
        std::vector<SurfacesConstPtr> groups;
        this->fill_surfaces.group(&groups);
        
        // merge compatible solid groups (we can generate continuous infill for them)
        {
            // cache flow widths and patterns used for all solid groups
            // (we'll use them for comparing compatible groups)
            std::vector<SurfaceGroupAttrib> group_attrib(groups.size());
            for (size_t i = 0; i < groups.size(); ++i) {
                const Surface &surface = *groups[i].front();
                // we can only merge solid non-bridge surfaces, so discard
                // non-solid or bridge surfaces
                if (!surface.is_solid() || surface.is_bridge()) continue;
                
                group_attrib[i].is_solid = true;
                group_attrib[i].fw = (surface.is_top()) ? top_solid_infill_flow.width : solid_infill_flow.width;
                group_attrib[i].pattern = surface.is_top() ? this->region()->config.top_infill_pattern.value
                    : surface.is_bottom() ? this->region()->config.bottom_infill_pattern.value
                    : ipRectilinear;
            }
            // Loop through solid groups, find compatible groups and append them to this one.
            for (size_t i = 0; i < groups.size(); ++i) {
                if (!group_attrib[i].is_solid)
                    continue;
                for (size_t j = i + 1; j < groups.size();) {
                    if (group_attrib[i] == group_attrib[j]) {
                        // groups are compatible, merge them
                        append_to(groups[i], groups[j]);
                        groups.erase(groups.begin() + j);
                        group_attrib.erase(group_attrib.begin() + j);
                    } else {
                        ++j;
                    }
                }
            }
        }
        
        // Give priority to oriented bridges. Process the bridges in the first round, the rest of the surfaces in the 2nd round.
        for (size_t round = 0; round < 2; ++ round) {
            for (std::vector<SurfacesConstPtr>::const_iterator it_group = groups.begin(); it_group != groups.end(); ++ it_group) {
                const SurfacesConstPtr &group = *it_group;
                const bool is_oriented_bridge = group.front()->is_bridge() && group.front()->bridge_angle >= 0;
                if (is_oriented_bridge != (round == 0))
                    continue;
                
                // Make a union of polygons defining the infiill regions of a group, use a safety offset.
                Polygons union_p = union_(to_polygons(group), true);
                
                // Subtract surfaces having a defined bridge_angle from any other, use a safety offset.
                if (!is_oriented_bridge && !polygons_bridged.empty())
                    union_p = diff(union_p, polygons_bridged, true);
                
                // subtract any other surface already processed
                //FIXME Vojtech: Because the bridge surfaces came first, they are subtracted twice!
                surfaces.append(
                    diff_ex(union_p, to_polygons(surfaces), true),
                    *group.front()  // template
                );
            }
        }
    }
    
    // we need to detect any narrow surfaces that might collapse
    // when adding spacing below
    // such narrow surfaces are often generated in sloping walls
    // by bridge_over_infill() and combine_infill() as a result of the
    // subtraction of the combinable area from the layer infill area,
    // which leaves small areas near the perimeters
    // we are going to grow such regions by overlapping them with the void (if any)
    // TODO: detect and investigate whether there could be narrow regions without
    // any void neighbors
    {
        coord_t distance_between_surfaces = std::max(
            std::max(infill_flow.scaled_spacing(), solid_infill_flow.scaled_spacing()),
            top_solid_infill_flow.scaled_spacing()
        );
        
        Polygons surfaces_polygons = (Polygons)surfaces;
        Polygons collapsed = diff(
            surfaces_polygons,
            offset2(surfaces_polygons, -distance_between_surfaces/2, +distance_between_surfaces/2),
            true
        );
            
        Polygons to_subtract;
        surfaces.filter_by_type((stInternal | stVoid), &to_subtract);
                
        append_to(to_subtract, collapsed);
        surfaces.append(
            intersection_ex(
                offset(collapsed, distance_between_surfaces),
                to_subtract,
                true
            ),
            (stInternal | stSolid)
        );
    }

    if (false) {
//        require "Slic3r/SVG.pm";
//        Slic3r::SVG::output("fill_" . $layerm->print_z . ".svg",
//            expolygons      => [ map $_->expolygon, grep !$_->is_solid, @surfaces ],
//            red_expolygons  => [ map $_->expolygon, grep  $_->is_solid, @surfaces ],
//        );
    }

    for (Surfaces::const_iterator surface_it = surfaces.surfaces.begin();
        surface_it != surfaces.surfaces.end(); ++surface_it) {
        
        const Surface &surface = *surface_it;
        if (surface.surface_type == (stInternal | stVoid))
            continue;
        
        InfillPattern fill_pattern = this->region()->config.fill_pattern.value;
        double density = fill_density;
        FlowRole role = (surface.is_top()) ? frTopSolidInfill
            : surface.is_solid() ? frSolidInfill
            : frInfill;
        const bool is_bridge = this->layer()->id() > 0 && surface.is_bridge();
        
        if (surface.is_solid()) {
            density = 100.;
            fill_pattern = (surface.is_top()) ? this->region()->config.top_infill_pattern.value
                : (surface.is_bottom() && !is_bridge) ? this->region()->config.bottom_infill_pattern.value
                : ipRectilinear;
        } else if (density <= 0)
            continue;
        
        // get filler object
        #if SLIC3R_CPPVER >= 11
            std::unique_ptr<Fill> f = std::unique_ptr<Fill>(Fill::new_from_type(fill_pattern));
        #else
            std::auto_ptr<Fill> f = std::auto_ptr<Fill>(Fill::new_from_type(fill_pattern));
        #endif
        
        // switch to rectilinear if this pattern doesn't support solid infill
        if (density > 99 && !f->can_solid())
            #if SLIC3R_CPPVER >= 11
                f = std::unique_ptr<Fill>(Fill::new_from_type(ipRectilinear));
            #else
                f = std::auto_ptr<Fill>(Fill::new_from_type(ipRectilinear));
            #endif
        
        f->bounding_box = this->layer()->object()->bounding_box();
        
        // calculate the actual flow we'll be using for this infill
        coordf_t h = (surface.thickness == -1) ? this->layer()->height : surface.thickness;
        Flow flow = this->region()->flow(
            role,
            h,
            is_bridge || f->use_bridge_flow(),  // bridge flow?
            this->layer()->id() == 0,           // first layer?
            -1,                                 // auto width
            *this->layer()->object()
        );
        
        // calculate flow spacing for infill pattern generation
        bool using_internal_flow = false;
        if (!surface.is_solid() && !is_bridge) {
            // it's internal infill, so we can calculate a generic flow spacing
            // for all layers, for avoiding the ugly effect of
            // misaligned infill on first layer because of different extrusion width and
            // layer height
            Flow internal_flow = this->region()->flow(
                frInfill,
                h,  // use the calculated surface thickness here for internal infill instead of the layer height to account for infill_every_layers
                false,  // no bridge
                false,  // no first layer
                -1,     // auto width
                *this->layer()->object()
            );
            f->min_spacing = internal_flow.spacing();
            using_internal_flow = true;
        } else {
            f->min_spacing = flow.spacing();
        }
        
        f->endpoints_overlap = scale_(this->region()->config.get_abs_value("infill_overlap",
            (unscale(perimeter_spacing) + (f->min_spacing))/2));
        f->layer_id = this->layer()->id();
        f->z        = this->layer()->print_z;
        f->angle    = Geometry::deg2rad(this->region()->config.fill_angle.value);
        
        // Maximum length of the perimeter segment linking two infill lines.
        f->link_max_length = (!is_bridge && density > 80)
            ? scale_(3 * f->min_spacing)
            : 0;
        
        // Used by the concentric infill pattern to clip the loops to create extrusion paths.
        f->loop_clipping = scale_(flow.nozzle_diameter) * LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER;
        
        // apply half spacing using this flow's own spacing and generate infill
        f->density = density/100;
        f->dont_adjust = false;
        /*
        std::cout << surface.expolygon.dump_perl() << std::endl
            << " layer_id: " << f->layer_id << " z: " << f->z
            << " angle: " << f->angle << " min-spacing: " << f->min_spacing
            << " endpoints_overlap: " << f->endpoints_overlap << std::endl << std::endl;
        */
        Polylines polylines = f->fill_surface(surface);
        if (polylines.empty())
            continue;

        // calculate actual flow from spacing (which might have been adjusted by the infill
        // pattern generator)
        if (using_internal_flow) {
            // if we used the internal flow we're not doing a solid infill
            // so we can safely ignore the slight variation that might have
            // been applied to f->spacing()
        } else {
            flow = Flow::new_from_spacing(f->spacing(), flow.nozzle_diameter, h, is_bridge || f->use_bridge_flow());
        }

        // Save into layer.
        ExtrusionEntityCollection* coll = new ExtrusionEntityCollection();
        coll->no_sort = f->no_sort();
        this->fills.entities.push_back(coll);
        
        {
            ExtrusionRole role;
            if (is_bridge) {
                role = erBridgeInfill;
            } else if (surface.is_solid()) {
                role = (surface.is_top()) ? erTopSolidInfill : erSolidInfill;
            } else {
                role = erInternalInfill;
            }
            
            ExtrusionPath templ(role);
            templ.mm3_per_mm    = flow.mm3_per_mm();
            templ.width         = flow.width;
            templ.height        = flow.height;
            
            coll->append(STDMOVE(polylines), templ);
        }
    }

    // add thin fill regions
    // thin_fills are of C++ Slic3r::ExtrusionEntityCollection, perl type Slic3r::ExtrusionPath::Collection
    // Unpacks the collection, creates multiple collections per path so that they will
    // be individually included in the nearest neighbor search.
    // The path type could be ExtrusionPath, ExtrusionLoop or ExtrusionEntityCollection.
    for (ExtrusionEntitiesPtr::const_iterator thin_fill = this->thin_fills.entities.begin(); thin_fill != this->thin_fills.entities.end(); ++ thin_fill) {
        ExtrusionEntityCollection* coll = new ExtrusionEntityCollection();
        this->fills.entities.push_back(coll);
        coll->append(**thin_fill);
    }
}
示例#17
0
int main ( int argv, char * argc[] )
{

# if defined ERROR
#  undef ERROR
# endif
# define ERROR() { fprintf(stderr, "Error\n"); exit(1); }
  lprec *lp;
  int majorversion, minorversion, release, build;

#if defined FORTIFY
  Fortify_EnterScope();
#endif

  lp_solve_version(&majorversion, &minorversion, &release, &build);
  printf("lp_solve %d.%d.%d.%d demo\n\n", majorversion, minorversion, release, build);
  printf("This demo will show most of the features of lp_solve %d.%d.%d.%d\n", majorversion, minorversion, release, build);
  press_ret();
  printf("\nWe start by creating a new problem with 4 variables and 0 constraints\n");
  printf("We use: lp=make_lp(0,4);\n");
  if ((lp = make_lp(0,4)) == NULL)
    ERROR();
  press_ret();

  printf("We can show the current problem with print_lp(lp)\n");
  print_lp(lp);
  press_ret();
  printf("Now we add some constraints\n");
  printf("add_constraint(lp, {0, 3, 2, 2, 1}, LE, 4)\n");
  {
    double row[] = {0, 3, 2, 2, 1};
    if (!add_constraint(lp, row, LE, 4))
      ERROR();
  }
  print_lp(lp);
  press_ret();
  printf("add_constraintex is now used to add a row. Only the npn-zero values must be specfied with this call.\n");
  printf("add_constraintex(lp, 3, {4, 3, 1}, {2, 3, 4}, GE, 3)\n");
  {
    int colno[] = {2, 3, 4};
    double row[] = {4, 3, 1};
    if (!add_constraintex(lp, sizeof(colno) / sizeof(*colno), row, colno, GE, 3))
      ERROR();
  }
  print_lp(lp);
  press_ret();
  printf("Set the objective function\n");
  printf("set_obj_fn(lp, {0, 2, 3, -2, 3})\n");
  {
    double row[] = {0, 2, 3, -2, 3};
    if (!set_obj_fn(lp, row))
      ERROR();
  }
  print_lp(lp);
  press_ret();
  printf("Now solve the problem with printf(solve(lp));\n");
  printf("%d",solve(lp));
  press_ret();
  printf("The value is 0, this means we found an optimal solution\n");
  printf("We can display this solution with print_objective(lp) and print_solution(lp)\n");
  print_objective(lp);
  print_solution(lp, 1);
  print_constraints(lp, 1);

  press_ret();
  printf("The dual variables of the solution are printed with\n");
  printf("print_duals(lp);\n");
  print_duals(lp);
  press_ret();
  printf("We can change a single element in the matrix with\n");
  printf("set_mat(lp,2,1,0.5)\n");
  if (!set_mat(lp,2,1,0.5))
    ERROR();
  print_lp(lp);
  press_ret();
  printf("If we want to maximize the objective function use set_maxim(lp);\n");
  set_maxim(lp);
  print_lp(lp);
  press_ret();
  printf("after solving this gives us:\n");
  solve(lp);
  print_objective(lp);
  print_solution(lp, 1);
  print_constraints(lp, 1);
  print_duals(lp);
  press_ret();
  printf("Change the value of a rhs element with set_rh(lp,1,7.45)\n");
  set_rh(lp,1,7.45);
  print_lp(lp);
  solve(lp);
  print_objective(lp);
  print_solution(lp, 1);
  print_constraints(lp, 1);
  press_ret();
  printf("We change %s to the integer type with\n", get_col_name(lp, 4));
  printf("set_int(lp, 4, TRUE)\n");
  set_int(lp, 4, TRUE);
  print_lp(lp);
  printf("We set branch & bound debugging on with set_debug(lp, TRUE)\n");
  set_debug(lp, TRUE);
  printf("and solve...\n");
  press_ret();
  solve(lp);
  print_objective(lp);
  print_solution(lp, 1);
  print_constraints(lp, 1);
  press_ret();
  printf("We can set bounds on the variables with\n");
  printf("set_lowbo(lp,2,2); & set_upbo(lp,4,5.3)\n");
  set_lowbo(lp,2,2);
  set_upbo(lp,4,5.3);
  print_lp(lp);
  press_ret();
  solve(lp);
  print_objective(lp);
  print_solution(lp, 1);
  print_constraints(lp, 1);
  press_ret();
  printf("Now remove a constraint with del_constraint(lp, 1)\n");
  del_constraint(lp,1);
  print_lp(lp);
  printf("Add an equality constraint\n");
  {
    double row[] = {0, 1, 2, 1, 4};
    if (!add_constraint(lp, row, EQ, 8))
      ERROR();
  }
  print_lp(lp);
  press_ret();
  printf("A column can be added with:\n");
  printf("add_column(lp,{3, 2, 2});\n");
  {
    double col[] = {3, 2, 2};
    if (!add_column(lp, col))
      ERROR();
  }
  print_lp(lp);
  press_ret();
  printf("A column can be removed with:\n");
  printf("del_column(lp,3);\n");
  del_column(lp,3);
  print_lp(lp);
  press_ret();
  printf("We can use automatic scaling with:\n");
  printf("set_scaling(lp, SCALE_MEAN);\n");
  set_scaling(lp, SCALE_MEAN);
  print_lp(lp);
  press_ret();
  printf("The function get_mat(lprec *lp, int row, int column) returns a single\n");
  printf("matrix element\n");
  printf("%s get_mat(lp,2,3), get_mat(lp,1,1); gives\n","printf(\"%f %f\\n\",");
  printf("%f %f\n", (double)get_mat(lp,2,3), (double)get_mat(lp,1,1));
  printf("Notice that get_mat returns the value of the original unscaled problem\n");
  press_ret();
  printf("If there are any integer type variables, then only the rows are scaled\n");
  printf("set_scaling(lp, SCALE_MEAN);\n");
  set_scaling(lp, SCALE_MEAN);
  printf("set_int(lp,3,FALSE);\n");
  set_int(lp,3,FALSE);
  print_lp(lp);
  press_ret();
  solve(lp);
  printf("print_objective, print_solution gives the solution to the original problem\n");
  print_objective(lp);
  print_solution(lp, 1);
  print_constraints(lp, 1);
  press_ret();
  printf("Scaling is turned off with unscale(lp);\n");
  unscale(lp);
  print_lp(lp);
  press_ret();
  printf("Now turn B&B debugging off and simplex tracing on with\n");
  printf("set_debug(lp, FALSE), set_trace(lp, TRUE) and solve(lp)\n");
  set_debug(lp, FALSE);
  set_trace(lp, TRUE);
  press_ret();
  solve(lp);
  printf("Where possible, lp_solve will start at the last found basis\n");
  printf("We can reset the problem to the initial basis with\n");
  printf("default_basis(lp). Now solve it again...\n");
  press_ret();
  default_basis(lp);
  solve(lp);

  printf("It is possible to give variables and constraints names\n");
  printf("set_row_name(lp,1,\"speed\"); & set_col_name(lp,2,\"money\")\n");
  if (!set_row_name(lp,1,"speed"))
    ERROR();
  if (!set_col_name(lp,2,"money"))
    ERROR();
  print_lp(lp);
  printf("As you can see, all column and rows are assigned default names\n");
  printf("If a column or constraint is deleted, the names shift place also:\n");
  press_ret();
  printf("del_column(lp,1);\n");
  del_column(lp,1);
  print_lp(lp);
  press_ret();

  write_lp(lp, "lp.lp");

  delete_lp(lp);

  printf("An lp structure can be created and read from a .lp file\n");
  printf("lp = read_lp(\"lp.lp\", TRUE);\n");
  printf("The verbose option is used\n");
  if ((lp = read_LP("lp.lp", TRUE, "test")) == NULL)
    ERROR();
  press_ret();
  printf("lp is now:\n");
  print_lp(lp);

  press_ret();
  printf("solution:\n");
  set_debug(lp, TRUE);
  solve(lp);
  set_debug(lp, FALSE);
  print_objective(lp);
  print_solution(lp, 1);
  print_constraints(lp, 1);
  press_ret();

  delete_lp(lp);

#if defined FORTIFY
  Fortify_LeaveScope();
#endif

    return 0;
}
示例#18
0
// Called from the constructor.
// Set the initial bed shape from a list of points.
// Deduce the bed shape type(rect, circle, custom)
// This routine shall be smart enough if the user messes up
// with the list of points in the ini file directly.
void BedShapePanel::set_shape(ConfigOptionPoints* points)
{
	auto polygon = Polygon::new_scale(points->values);

	// is this a rectangle ?
	if (points->size() == 4) {
		auto lines = polygon.lines();
		if (lines[0].parallel_to(lines[2]) && lines[1].parallel_to(lines[3])) {
			// okay, it's a rectangle
			// find origin
			// the || 0 hack prevents "-0" which might confuse the user
			int x_min, x_max, y_min, y_max;
			x_max = x_min = points->values[0].x;
			y_max = y_min = points->values[0].y;
			for (auto pt : points->values){
				if (x_min > pt.x) x_min = pt.x;
				if (x_max < pt.x) x_max = pt.x;
				if (y_min > pt.y) y_min = pt.y;
				if (y_max < pt.y) y_max = pt.y;
			}
			if (x_min < 0) x_min = 0;
			if (x_max < 0) x_max = 0;
			if (y_min < 0) y_min = 0;
			if (y_max < 0) y_max = 0;
			auto origin = new ConfigOptionPoints{ Pointf(-x_min, -y_min) };

			m_shape_options_book->SetSelection(SHAPE_RECTANGULAR);
			auto optgroup = m_optgroups[SHAPE_RECTANGULAR];
			optgroup->set_value("rect_size", new ConfigOptionPoints{ Pointf(x_max - x_min, y_max - y_min) });//[x_max - x_min, y_max - y_min]);
			optgroup->set_value("rect_origin", origin);
			update_shape();
			return;
		}
	}

	// is this a circle ?
	{
		// Analyze the array of points.Do they reside on a circle ?
		auto center = polygon.bounding_box().center();
		std::vector<double> vertex_distances;
		double avg_dist = 0;
		for (auto pt: polygon.points)
		{
			double distance = center.distance_to(pt);
			vertex_distances.push_back(distance);
			avg_dist += distance;
		}
			
		bool defined_value = true;
		for (auto el: vertex_distances)
		{
			if (abs(el - avg_dist) > 10 * SCALED_EPSILON)
				defined_value = false;
			break;
		}
		if (defined_value) {
			// all vertices are equidistant to center
			m_shape_options_book->SetSelection(SHAPE_CIRCULAR);
			auto optgroup = m_optgroups[SHAPE_CIRCULAR];
			boost::any ret = wxNumberFormatter::ToString(unscale(avg_dist * 2), 0);
 			optgroup->set_value("diameter", ret);
			update_shape();
			return;
		}
	}

	if (points->size() < 3) {
		// Invalid polygon.Revert to default bed dimensions.
		m_shape_options_book->SetSelection(SHAPE_RECTANGULAR);
		auto optgroup = m_optgroups[SHAPE_RECTANGULAR];
		optgroup->set_value("rect_size", new ConfigOptionPoints{ Pointf(200, 200) });
		optgroup->set_value("rect_origin", new ConfigOptionPoints{ Pointf(0, 0) });
		update_shape();
		return;
	}

	// This is a custom bed shape, use the polygon provided.
	m_shape_options_book->SetSelection(SHAPE_CUSTOM);
	// Copy the polygon to the canvas, make a copy of the array.
	m_canvas->m_bed_shape = points->values;
	update_shape();
}
示例#19
0
// caller is responsible for supplying NO lines with zero length
void
_3DScene::_extrusionentity_to_verts_do(const Lines &lines, const std::vector<double> &widths,
        const std::vector<double> &heights, bool closed, double top_z, const Point &copy,
        GLVertexArray* qverts, GLVertexArray* tverts)
{
    /* It looks like it's faster without reserving capacity...
    // each segment has 4 quads, thus 16 vertices; + 2 caps
    qverts->reserve_more(3 * 4 * (4 * lines.size() + 2));
    
    // two triangles for each corner
    tverts->reserve_more(3 * 3 * 2 * (lines.size() + 1));
    */
    
    Line prev_line;
    Pointf prev_b1, prev_b2;
    Vectorf3 prev_xy_left_normal, prev_xy_right_normal;
    
    // loop once more in case of closed loops
    bool first_done = false;
    for (size_t i = 0; i <= lines.size(); ++i) {
        if (i == lines.size()) i = 0;
        
        const Line &line = lines.at(i);
        if (i == 0 && first_done && !closed) break;
        
        double len = line.length();
        double unscaled_len = unscale(len);
        
        double bottom_z = top_z - heights.at(i);
        double middle_z = (top_z + bottom_z) / 2;
        double dist = widths.at(i)/2;  // scaled
        
        Vectorf v = Vectorf::new_unscale(line.vector());
        v.scale(1/unscaled_len);
        
        Pointf a = Pointf::new_unscale(line.a);
        Pointf b = Pointf::new_unscale(line.b);
        Pointf a1 = a;
        Pointf a2 = a;
        a1.translate(+dist*v.y, -dist*v.x);
        a2.translate(-dist*v.y, +dist*v.x);
        Pointf b1 = b;
        Pointf b2 = b;
        b1.translate(+dist*v.y, -dist*v.x);
        b2.translate(-dist*v.y, +dist*v.x);
        
        // calculate new XY normals
        Vector n = line.normal();
        Vectorf3 xy_right_normal = Vectorf3::new_unscale(n.x, n.y, 0);
        xy_right_normal.scale(1/unscaled_len);
        Vectorf3 xy_left_normal = xy_right_normal;
        xy_left_normal.scale(-1);
        
        if (first_done) {
            // if we're making a ccw turn, draw the triangles on the right side, otherwise draw them on the left side
            double ccw = line.b.ccw(prev_line);
            if (ccw > EPSILON) {
                // top-right vertex triangle between previous line and this one
                {
                    // use the normal going to the right calculated for the previous line
                    tverts->push_norm(prev_xy_right_normal);
                    tverts->push_vert(prev_b1.x, prev_b1.y, middle_z);
            
                    // use the normal going to the right calculated for this line
                    tverts->push_norm(xy_right_normal);
                    tverts->push_vert(a1.x, a1.y, middle_z);
            
                    // normal going upwards
                    tverts->push_norm(0,0,1);
                    tverts->push_vert(a.x, a.y, top_z);
                }
                // bottom-right vertex triangle between previous line and this one
                {
                    // use the normal going to the right calculated for the previous line
                    tverts->push_norm(prev_xy_right_normal);
                    tverts->push_vert(prev_b1.x, prev_b1.y, middle_z);
            
                    // normal going downwards
                    tverts->push_norm(0,0,-1);
                    tverts->push_vert(a.x, a.y, bottom_z);
            
                    // use the normal going to the right calculated for this line
                    tverts->push_norm(xy_right_normal);
                    tverts->push_vert(a1.x, a1.y, middle_z);
                }
            } else if (ccw < -EPSILON) {
                // top-left vertex triangle between previous line and this one
                {
                    // use the normal going to the left calculated for the previous line
                    tverts->push_norm(prev_xy_left_normal);
                    tverts->push_vert(prev_b2.x, prev_b2.y, middle_z);
            
                    // normal going upwards
                    tverts->push_norm(0,0,1);
                    tverts->push_vert(a.x, a.y, top_z);
            
                    // use the normal going to the right calculated for this line
                    tverts->push_norm(xy_left_normal);
                    tverts->push_vert(a2.x, a2.y, middle_z);
                }
                // bottom-left vertex triangle between previous line and this one
                {
                    // use the normal going to the left calculated for the previous line
                    tverts->push_norm(prev_xy_left_normal);
                    tverts->push_vert(prev_b2.x, prev_b2.y, middle_z);
            
                    // use the normal going to the right calculated for this line
                    tverts->push_norm(xy_left_normal);
                    tverts->push_vert(a2.x, a2.y, middle_z);
            
                    // normal going downwards
                    tverts->push_norm(0,0,-1);
                    tverts->push_vert(a.x, a.y, bottom_z);
                }
            }
        }
        
        // if this was the extra iteration we were only interested in the triangles
        if (first_done && i == 0) break;
        
        prev_line = line;
        prev_b1 = b1;
        prev_b2 = b2;
        prev_xy_right_normal = xy_right_normal;
        prev_xy_left_normal  = xy_left_normal;
        
        if (!closed) {
            // terminate open paths with caps
            if (i == 0) {
                // normal pointing downwards
                qverts->push_norm(0,0,-1);
                qverts->push_vert(a.x, a.y, bottom_z);
            
                // normal pointing to the right
                qverts->push_norm(xy_right_normal);
                qverts->push_vert(a1.x, a1.y, middle_z);
            
                // normal pointing upwards
                qverts->push_norm(0,0,1);
                qverts->push_vert(a.x, a.y, top_z);
            
                // normal pointing to the left
                qverts->push_norm(xy_left_normal);
                qverts->push_vert(a2.x, a2.y, middle_z);
            }
            // we don't use 'else' because both cases are true if we have only one line
            if (i == lines.size()-1) {
                // normal pointing downwards
                qverts->push_norm(0,0,-1);
                qverts->push_vert(b.x, b.y, bottom_z);
            
                // normal pointing to the left
                qverts->push_norm(xy_left_normal);
                qverts->push_vert(b2.x, b2.y, middle_z);
            
                // normal pointing upwards
                qverts->push_norm(0,0,1);
                qverts->push_vert(b.x, b.y, top_z);
            
                // normal pointing to the right
                qverts->push_norm(xy_right_normal);
                qverts->push_vert(b1.x, b1.y, middle_z);
            }
        }
        
        // bottom-right face
        {
            // normal going downwards
            qverts->push_norm(0,0,-1);
            qverts->push_norm(0,0,-1);
            qverts->push_vert(a.x, a.y, bottom_z);
            qverts->push_vert(b.x, b.y, bottom_z);
            
            qverts->push_norm(xy_right_normal);
            qverts->push_norm(xy_right_normal);
            qverts->push_vert(b1.x, b1.y, middle_z);
            qverts->push_vert(a1.x, a1.y, middle_z);
        }
        
        // top-right face
        {
            qverts->push_norm(xy_right_normal);
            qverts->push_norm(xy_right_normal);
            qverts->push_vert(a1.x, a1.y, middle_z);
            qverts->push_vert(b1.x, b1.y, middle_z);
            
            // normal going upwards
            qverts->push_norm(0,0,1);
            qverts->push_norm(0,0,1);
            qverts->push_vert(b.x, b.y, top_z);
            qverts->push_vert(a.x, a.y, top_z);
        }
         
        // top-left face
        {
            qverts->push_norm(0,0,1);
            qverts->push_norm(0,0,1);
            qverts->push_vert(a.x, a.y, top_z);
            qverts->push_vert(b.x, b.y, top_z);
            
            qverts->push_norm(xy_left_normal);
            qverts->push_norm(xy_left_normal);
            qverts->push_vert(b2.x, b2.y, middle_z);
            qverts->push_vert(a2.x, a2.y, middle_z);
        }
        
        // bottom-left face
        {
            qverts->push_norm(xy_left_normal);
            qverts->push_norm(xy_left_normal);
            qverts->push_vert(a2.x, a2.y, middle_z);
            qverts->push_vert(b2.x, b2.y, middle_z);
            
            // normal going downwards
            qverts->push_norm(0,0,-1);
            qverts->push_norm(0,0,-1);
            qverts->push_vert(b.x, b.y, bottom_z);
            qverts->push_vert(a.x, a.y, bottom_z);
        }
        
        first_done = true;
    }
}
示例#20
0
float Scale::unscaleDiffNormalized( float toValue1 , float toValue2 )
{
	ASSERT( doScale );
	return( ( unscale( toValue1 ) - unscale( toValue2 ) ) / ( rangeFromMax - rangeFromMin ) );
}