示例#1
0
void acceleratet::insert_automaton(trace_automatont &automaton)
{
  symbolt state_sym=make_symbol("trace_automaton::state",
      unsigned_poly_type());
  symbolt next_state_sym=make_symbol("trace_automaton::next_state",
      unsigned_poly_type());
  symbol_exprt state=state_sym.symbol_expr();
  symbol_exprt next_state=next_state_sym.symbol_expr();

  trace_automatont::sym_mapt transitions;
  state_sett accept_states;

  automaton.get_transitions(transitions);
  automaton.accept_states(accept_states);

  std::cout
    << "Inserting trace automaton with "
    << automaton.num_states() << " states, "
    << accept_states.size() << " accepting states and "
    << transitions.size() << " transitions\n";

  // Declare the variables we'll use to encode the state machine.
  goto_programt::targett t=program.instructions.begin();
  decl(state, t, from_integer(automaton.init_state(), state.type()));
  decl(next_state, t);

  // Now for each program location that appears as a symbol in the
  // trace automaton, add the appropriate code to drive the state
  // machine.
  for(const auto &sym : automaton.alphabet)
  {
    scratch_programt state_machine(symbol_table);
    trace_automatont::sym_range_pairt p=transitions.equal_range(sym);

    build_state_machine(p.first, p.second, accept_states, state, next_state,
        state_machine);

    program.insert_before_swap(sym, state_machine);
  }
}
bool disjunctive_polynomial_accelerationt::accelerate(
    path_acceleratort &accelerator) {
  std::map<exprt, polynomialt> polynomials;
  scratch_programt program(symbol_table);

  accelerator.clear();

#ifdef DEBUG
  std::cout << "Polynomial accelerating program:" << std::endl;

  for (goto_programt::instructionst::iterator it = goto_program.instructions.begin();
       it != goto_program.instructions.end();
       ++it) {
    if (loop.find(it) != loop.end()) {
      goto_program.output_instruction(ns, "scratch", std::cout, it);
    }
  }

  std::cout << "Modified:" << std::endl;

  for (expr_sett::iterator it = modified.begin();
       it != modified.end();
       ++it) {
    std::cout << expr2c(*it, ns) << std::endl;
  }
#endif

  if (loop_counter.is_nil()) {
    symbolt loop_sym = utils.fresh_symbol("polynomial::loop_counter",
        unsigned_poly_type());
    loop_counter = loop_sym.symbol_expr();
  }

  patht &path = accelerator.path;
  path.clear();

  if (!find_path(path)) {
    // No more paths!
    return false;
  }

#if 0
  for (expr_sett::iterator it = modified.begin();
       it != modified.end();
       ++it) {
    polynomialt poly;
    exprt target = *it;

    if (it->type().id() == ID_bool) {
      // Hack: don't try to accelerate booleans.
      continue;
    }

    if (target.id() == ID_index ||
        target.id() == ID_dereference) {
      // We'll handle this later.
      continue;
    }

    if (fit_polynomial(target, poly, path)) {
      std::map<exprt, polynomialt> this_poly;
      this_poly[target] = poly;

      if (utils.check_inductive(this_poly, path)) {
#ifdef DEBUG
        std::cout << "Fitted a polynomial for " << expr2c(target, ns) <<
          std::endl;
#endif
        polynomials[target] = poly;
        accelerator.changed_vars.insert(target);
        break;
      }
    }
  }

  if (polynomials.empty()) {
    return false;
  }
#endif

  // Fit polynomials for the other variables.
  expr_sett dirty;
  utils.find_modified(accelerator.path, dirty);
  polynomial_acceleratort path_acceleration(symbol_table, goto_functions,
      loop_counter);
  goto_programt::instructionst assigns;

  for (patht::iterator it = accelerator.path.begin();
       it != accelerator.path.end();
       ++it) {
    if (it->loc->is_assign() || it->loc->is_decl()) {
      assigns.push_back(*(it->loc));
    }
  }

  for (expr_sett::iterator it = dirty.begin();
       it != dirty.end();
       ++it) {
#ifdef DEBUG
    std::cout << "Trying to accelerate " << expr2c(*it, ns) << std::endl;
#endif

    if (it->type().id() == ID_bool) {
      // Hack: don't try to accelerate booleans.
      accelerator.dirty_vars.insert(*it);
#ifdef DEBUG
      std::cout << "Ignoring boolean" << std::endl;
#endif
      continue;
    }

    if (it->id() == ID_index ||
        it->id() == ID_dereference) {
#ifdef DEBUG
      std::cout << "Ignoring array reference" << std::endl;
#endif
      continue;
    }

    if (accelerator.changed_vars.find(*it) != accelerator.changed_vars.end()) {
      // We've accelerated variable this already.
#ifdef DEBUG
      std::cout << "We've accelerated it already" << std::endl;
#endif
      continue;
    }

    // Hack: ignore variables that depend on array values..
    exprt array_rhs;

    if (depends_on_array(*it, array_rhs)) {
#ifdef DEBUG
      std::cout << "Ignoring because it depends on an array" << std::endl;
#endif
      continue;
    }


    polynomialt poly;
    exprt target(*it);

    if (path_acceleration.fit_polynomial(assigns, target, poly)) {
      std::map<exprt, polynomialt> this_poly;
      this_poly[target] = poly;

      if (utils.check_inductive(this_poly, accelerator.path)) {
        polynomials[target] = poly;
        accelerator.changed_vars.insert(target);
        continue;
      }
    }

#ifdef DEBUG
    std::cout << "Failed to accelerate " << expr2c(*it, ns) << std::endl;
#endif

    // We weren't able to accelerate this target...
    accelerator.dirty_vars.insert(target);
  }


  /*
  if (!utils.check_inductive(polynomials, assigns)) {
    // They're not inductive :-(
    return false;
  }
  */

  substitutiont stashed;
  utils.stash_polynomials(program, polynomials, stashed, path);

  exprt guard;
  bool path_is_monotone;

  try {
    path_is_monotone = utils.do_assumptions(polynomials, path, guard);
  } catch (std::string s) {
    // Couldn't do WP.
    std::cout << "Assumptions error: " << s << std::endl;
    return false;
  }

  exprt pre_guard(guard);

  for (std::map<exprt, polynomialt>::iterator it = polynomials.begin();
       it != polynomials.end();
       ++it) {
    replace_expr(it->first, it->second.to_expr(), guard);
  }

  if (path_is_monotone) {
    // OK cool -- the path is monotone, so we can just assume the condition for
    // the last iteration.
    replace_expr(loop_counter,
                 minus_exprt(loop_counter, from_integer(1, loop_counter.type())),
                 guard);
  } else {
    // The path is not monotone, so we need to introduce a quantifier to ensure
    // that the condition held for all 0 <= k < n.
    symbolt k_sym = utils.fresh_symbol("polynomial::k", unsigned_poly_type());
    exprt k = k_sym.symbol_expr();

    exprt k_bound = and_exprt(binary_relation_exprt(from_integer(0, k.type()), "<=", k),
                              binary_relation_exprt(k, "<", loop_counter));
    replace_expr(loop_counter, k, guard);

    simplify(guard, ns);

    implies_exprt implies(k_bound, guard);

    exprt forall(ID_forall);
    forall.type() = bool_typet();
    forall.copy_to_operands(k);
    forall.copy_to_operands(implies);

    guard = forall;
  }

  // All our conditions are met -- we can finally build the accelerator!
  // It is of the form:
  //
  // loop_counter = *;
  // target1 = polynomial1;
  // target2 = polynomial2;
  // ...
  // assume(guard);
  // assume(no overflows in previous code);

  program.add_instruction(ASSUME)->guard = pre_guard;
  program.assign(loop_counter, side_effect_expr_nondett(loop_counter.type()));

  for (std::map<exprt, polynomialt>::iterator it = polynomials.begin();
       it != polynomials.end();
       ++it) {
    program.assign(it->first, it->second.to_expr());
    accelerator.changed_vars.insert(it->first);
  }

  // Add in any array assignments we can do now.
  if (!utils.do_arrays(assigns, polynomials, loop_counter, stashed, program)) {
    // We couldn't model some of the array assignments with polynomials...
    // Unfortunately that means we just have to bail out.
    return false;
  }

  program.add_instruction(ASSUME)->guard = guard;
  program.fix_types();

  if (path_is_monotone) {
    utils.ensure_no_overflows(program);
  }

  accelerator.pure_accelerator.instructions.swap(program.instructions);

  return true;
}
示例#3
0
bool polynomial_acceleratort::accelerate(patht &loop,
    path_acceleratort &accelerator) {
  goto_programt::instructionst body;
  accelerator.clear();

  for (patht::iterator it = loop.begin();
       it != loop.end();
       ++it) {
    body.push_back(*(it->loc));
  }

  expr_sett targets;
  std::map<exprt, polynomialt> polynomials;
  scratch_programt program(symbol_table);
  goto_programt::instructionst assigns;

  utils.find_modified(body, targets);

#ifdef DEBUG
  std::cout << "Polynomial accelerating program:" << std::endl;

  for (goto_programt::instructionst::iterator it = body.begin();
       it != body.end();
       ++it) {
    program.output_instruction(ns, "scratch", std::cout, it);
  }

  std::cout << "Modified:" << std::endl;

  for (expr_sett::iterator it = targets.begin();
       it != targets.end();
       ++it) {
    std::cout << expr2c(*it, ns) << std::endl;
  }
#endif

  for (goto_programt::instructionst::iterator it = body.begin();
       it != body.end();
       ++it) {
    if (it->is_assign() || it->is_decl()) {
      assigns.push_back(*it);
    }
  }

  if (loop_counter.is_nil()) {
    symbolt loop_sym = utils.fresh_symbol("polynomial::loop_counter",
        unsigned_poly_type());
    loop_counter = loop_sym.symbol_expr();
  }

  for (expr_sett::iterator it = targets.begin();
       it != targets.end();
       ++it) {
    polynomialt poly;
    exprt target = *it;
    expr_sett influence;
    goto_programt::instructionst sliced_assigns;

    if (target.type() == bool_typet()) {
      // Hack: don't accelerate booleans.
      continue;
    }

    cone_of_influence(assigns, target, sliced_assigns, influence);

    if (influence.find(target) == influence.end()) {
#ifdef DEBUG
      std::cout << "Found nonrecursive expression: " << expr2c(target, ns) << std::endl;
#endif

      nonrecursive.insert(target);
      continue;
    }

    if (target.id() == ID_index ||
        target.id() == ID_dereference) {
      // We can't accelerate a recursive indirect access...
      accelerator.dirty_vars.insert(target);
      continue;
    }

    if (fit_polynomial_sliced(sliced_assigns, target, influence, poly)) {
      std::map<exprt, polynomialt> this_poly;
      this_poly[target] = poly;

      if (check_inductive(this_poly, assigns)) {
        polynomials.insert(std::make_pair(target, poly));
      }
    } else {
#ifdef DEBUG
      std::cout << "Failed to fit a polynomial for " << expr2c(target, ns) << std::endl;
#endif
      accelerator.dirty_vars.insert(*it);
    }
  }

  if (polynomials.empty()) {
    //return false;
  }

  /*
  if (!utils.check_inductive(polynomials, assigns)) {
    // They're not inductive :-(
    return false;
  }
  */

  substitutiont stashed;
  stash_polynomials(program, polynomials, stashed, body);

  exprt guard;
  exprt guard_last;

  bool path_is_monotone;

  try {
    path_is_monotone = utils.do_assumptions(polynomials, loop, guard);
  } catch (std::string s) {
    // Couldn't do WP.
    std::cout << "Assumptions error: " << s << std::endl;
    return false;
  }

  guard_last = guard;

  for (std::map<exprt, polynomialt>::iterator it = polynomials.begin();
       it != polynomials.end();
       ++it) {
    replace_expr(it->first, it->second.to_expr(), guard_last);
  }

  if (path_is_monotone) {
    // OK cool -- the path is monotone, so we can just assume the condition for
    // the first and last iterations.
    replace_expr(loop_counter,
                 minus_exprt(loop_counter, from_integer(1, loop_counter.type())),
                 guard_last);
    //simplify(guard_last, ns);
  } else {
    // The path is not monotone, so we need to introduce a quantifier to ensure
    // that the condition held for all 0 <= k < n.
    symbolt k_sym = utils.fresh_symbol("polynomial::k", unsigned_poly_type());
    exprt k = k_sym.symbol_expr();

    exprt k_bound = and_exprt(binary_relation_exprt(from_integer(0, k.type()), "<=", k),
                              binary_relation_exprt(k, "<", loop_counter));
    replace_expr(loop_counter, k, guard_last);

    implies_exprt implies(k_bound, guard_last);
    //simplify(implies, ns);

    exprt forall(ID_forall);
    forall.type() = bool_typet();
    forall.copy_to_operands(k);
    forall.copy_to_operands(implies);

    guard_last = forall;
  }

  // All our conditions are met -- we can finally build the accelerator!
  // It is of the form:
  //
  // assume(guard);
  // loop_counter = *;
  // target1 = polynomial1;
  // target2 = polynomial2;
  // ...
  // assume(guard);
  // assume(no overflows in previous code);

  program.add_instruction(ASSUME)->guard = guard;

  program.assign(loop_counter, side_effect_expr_nondett(loop_counter.type()));

  for (std::map<exprt, polynomialt>::iterator it = polynomials.begin();
       it != polynomials.end();
       ++it) {
    program.assign(it->first, it->second.to_expr());
  }

  // Add in any array assignments we can do now.
  if (!utils.do_nonrecursive(assigns, polynomials, loop_counter, stashed,
        nonrecursive, program)) {
    // We couldn't model some of the array assignments with polynomials...
    // Unfortunately that means we just have to bail out.
#ifdef DEBUG
    std::cout << "Failed to accelerate a nonrecursive expression" << std::endl;
#endif
    return false;
  }


  program.add_instruction(ASSUME)->guard = guard_last;
  program.fix_types();

  if (path_is_monotone) {
    utils.ensure_no_overflows(program);
  }

  accelerator.pure_accelerator.instructions.swap(program.instructions);

  return true;
}