void TitleWindow::update() { title_x->update((int64_t)client->config.x); title_y->update((int64_t)client->config.y); italic->update(client->config.style & FONT_ITALIC); bold->update(client->config.style & FONT_BOLD); #ifdef USE_OUTLINE stroke->update(client->config.style & FONT_OUTLINE); #endif size->update(client->config.size); #ifndef X_HAVE_UTF8_STRING encoding->update(client->config.encoding); #endif motion->update(TitleMain::motion_to_text(client->config.motion_strategy)); loop->update(client->config.loop); dropshadow->update((float)client->config.dropshadow); fade_in->update((float)client->config.fade_in); fade_out->update((float)client->config.fade_out); #ifdef USE_OUTLINE stroke_width->update((float)client->config.stroke_width); #endif font->update(client->config.font); text->update(client->config.text.c_str()); speed->update(client->config.pixels_per_second); outline->update((int64_t)client->config.outline_size); timecode->update(client->config.timecode); char string[BCTEXTLEN]; for(int i = 0; i < sizeof(timecode_formats) / sizeof(int); i++) { if(timecode_formats[i] == client->config.timecode_format) { timecode_format->set_text( Units::print_time_format(timecode_formats[i], string)); break; } } update_justification(); update_color(); }
constraint mk_class_instance_root_cnstr(std::shared_ptr<class_instance_context> const & C, local_context const & _ctx, expr const & m, bool is_strict, unifier_config const & cfg, delay_factor const & factor) { environment const & env = C->env(); justification j = mk_failed_to_synthesize_jst(env, m); auto choice_fn = [=](expr const & meta, expr const & meta_type, substitution const & s, name_generator const & ngen) { environment const & env = C->env(); auto cls_name_it = is_ext_class(C->tc(), meta_type); if (!cls_name_it) { // do nothing, since type is not a class. return lazy_list<constraints>(constraints()); } local_context ctx = _ctx.instantiate(substitution(s)); pair<expr, justification> mj = update_meta(meta, s); expr new_meta = mj.first; justification new_j = mj.second; unsigned depth = 0; constraint c = mk_class_instance_cnstr(C, ctx, new_meta, depth); unifier_config new_cfg(cfg); new_cfg.m_discard = false; new_cfg.m_use_exceptions = false; new_cfg.m_pattern = true; new_cfg.m_kind = C->m_conservative ? unifier_kind::VeryConservative : unifier_kind::Liberal; auto to_cnstrs_fn = [=](substitution const & subst, constraints const & cnstrs) -> constraints { substitution new_s = subst; // some constraints may have been postponed (example: universe level constraints) constraints postponed = map(cnstrs, [&](constraint const & c) { // we erase internal justifications return update_justification(c, mk_composite1(j, new_j)); }); metavar_closure cls(new_meta); cls.add(meta_type); bool relax = C->m_relax; constraints cs = cls.mk_constraints(new_s, new_j, relax); return append(cs, postponed); }; auto no_solution_fn = [=]() { if (is_strict) return lazy_list<constraints>(); else return lazy_list<constraints>(constraints()); }; unify_result_seq seq1 = unify(env, 1, &c, ngen, substitution(), new_cfg); unify_result_seq seq2 = filter(seq1, [=](pair<substitution, constraints> const & p) { substitution new_s = p.first; expr result = new_s.instantiate(new_meta); // We only keep complete solutions (modulo universe metavariables) return !has_expr_metavar_relaxed(result); }); if (get_class_unique_class_instances(C->m_ios.get_options())) { optional<expr> solution; substitution subst; constraints cnstrs; for_each(seq2, [&](pair<substitution, constraints> const & p) { subst = p.first; cnstrs = p.second; expr next_solution = subst.instantiate(new_meta); if (solution) { throw_class_exception(m, [=](formatter const & fmt) { format r = format("ambiguous class-instance resolution, " "there is more than one solution"); r += pp_indent_expr(fmt, *solution); r += compose(line(), format("and")); r += pp_indent_expr(fmt, next_solution); return r; }); } else { solution = next_solution; } }); if (!solution) { return no_solution_fn(); } else { // some constraints may have been postponed (example: universe level constraints) return lazy_list<constraints>(to_cnstrs_fn(subst, cnstrs)); } } else { if (try_multiple_instances(env, *cls_name_it)) { lazy_list<constraints> seq3 = map2<constraints>(seq2, [=](pair<substitution, constraints> const & p) { return to_cnstrs_fn(p.first, p.second); }); if (is_strict) { return seq3; } else { // make sure it does not fail by appending empty set of constraints return append(seq3, lazy_list<constraints>(constraints())); } } else { auto p = seq2.pull(); if (!p) return no_solution_fn(); else return lazy_list<constraints>(to_cnstrs_fn(p->first.first, p->first.second)); } } }; bool owner = false; bool relax = C->m_relax; return mk_choice_cnstr(m, choice_fn, factor, owner, j, relax); }
/** \brief Create a "choice" constraint that postpones the resolution of a calc proof step. By delaying it, we can perform quick fixes such as: - adding symmetry - adding ! - adding subst */ constraint mk_calc_proof_cnstr(environment const & env, options const & opts, old_local_context const & _ctx, expr const & m, expr const & _e, constraint_seq const & cs, unifier_config const & cfg, info_manager * im, update_type_info_fn const & fn) { justification j = mk_failed_to_synthesize_jst(env, m); auto choice_fn = [=](expr const & meta, expr const & _meta_type, substitution const & _s) { old_local_context ctx = _ctx; expr e = _e; substitution s = _s; expr meta_type = _meta_type; type_checker_ptr tc = mk_type_checker(env); constraint_seq new_cs = cs; expr e_type = tc->infer(e, new_cs); e_type = s.instantiate(e_type); tag g = e.get_tag(); bool calc_assistant = get_elaborator_calc_assistant(opts); if (calc_assistant) { // add '!' is needed while (is_norm_pi(*tc, e_type, new_cs)) { binder_info bi = binding_info(e_type); if (!bi.is_implicit() && !bi.is_inst_implicit()) { if (!has_free_var(binding_body(e_type), 0)) { // if the rest of the type does not reference argument, // then we also stop consuming arguments break; } } expr imp_arg = ctx.mk_meta(some_expr(binding_domain(e_type)), g); e = mk_app(e, imp_arg, g); e_type = instantiate(binding_body(e_type), imp_arg); } if (im) fn(e); } e_type = head_beta_reduce(e_type); expr const & meta_type_fn = get_app_fn(meta_type); expr const & e_type_fn = get_app_fn(e_type); if (is_constant(meta_type_fn) && (!is_constant(e_type_fn) || const_name(e_type_fn) != const_name(meta_type_fn))) { // try to make sure meta_type and e_type have the same head symbol if (!try_normalize_to_head(env, const_name(meta_type_fn), e_type, new_cs) && is_constant(e_type_fn)) { try_normalize_to_head(env, const_name(e_type_fn), meta_type, new_cs); } } auto try_alternative = [&](expr const & e, expr const & e_type, constraint_seq fcs, bool conservative) { justification new_j = mk_type_mismatch_jst(e, e_type, meta_type); if (!tc->is_def_eq(e_type, meta_type, new_j, fcs)) throw unifier_exception(new_j, s); buffer<constraint> cs_buffer; fcs.linearize(cs_buffer); metavar_closure cls(meta); cls.add(meta_type); cls.mk_constraints(s, j, cs_buffer); unifier_config new_cfg(cfg); new_cfg.m_discard = false; new_cfg.m_kind = conservative ? unifier_kind::Conservative : unifier_kind::Liberal; unify_result_seq seq = unify(env, cs_buffer.size(), cs_buffer.data(), substitution(), new_cfg); auto p = seq.pull(); lean_assert(p); substitution new_s = p->first.first; constraints postponed = map(p->first.second, [&](constraint const & c) { // we erase internal justifications return update_justification(c, j); }); expr new_e = new_s.instantiate(e); if (conservative && has_expr_metavar_relaxed(new_s.instantiate_all(e))) throw_elaborator_exception("solution contains metavariables", e); if (im) im->instantiate(new_s); constraints r = cls.mk_constraints(new_s, j); buffer<expr> locals; expr mvar = get_app_args(meta, locals); expr val = Fun(locals, new_e); r = cons(mk_eq_cnstr(mvar, val, j), r); return append(r, postponed); }; if (!get_elaborator_calc_assistant(opts)) { bool conservative = false; return try_alternative(e, e_type, new_cs, conservative); } else { // TODO(Leo): after we have the simplifier and rewriter tactic, we should revise // this code. It is "abusing" the higher-order unifier. { // Try the following possible intrepretations using a "conservative" unification procedure. // That is, we only unfold definitions marked as reducible. // Assume pr is the proof provided. // 1. pr bool conservative = true; try { return try_alternative(e, e_type, new_cs, conservative); } catch (exception & ex) {} // 2. eq.symm pr constraint_seq symm_cs = new_cs; auto symm = apply_symmetry(env, ctx, tc, e, e_type, symm_cs, g); if (symm) { try { return try_alternative(symm->first, symm->second, symm_cs, conservative); } catch (exception &) {} } // 3. subst pr (eq.refl lhs) constraint_seq subst_cs = new_cs; if (auto subst = apply_subst(env, ctx, tc, e, e_type, meta_type, subst_cs, g)) { try { return try_alternative(subst->first, subst->second, subst_cs, conservative); } catch (exception&) {} } // 4. subst (eq.symm pr) (eq.refl lhs) if (symm) { constraint_seq subst_cs = symm_cs; if (auto subst = apply_subst(env, ctx, tc, symm->first, symm->second, meta_type, subst_cs, g)) { try { return try_alternative(subst->first, subst->second, subst_cs, conservative); } catch (exception&) {} } } } { // Try the following possible insterpretations using the default unification procedure. // 1. pr bool conservative = false; std::unique_ptr<throwable> saved_ex; try { return try_alternative(e, e_type, new_cs, conservative); } catch (exception & ex) { saved_ex.reset(ex.clone()); } // 2. eq.symm pr constraint_seq symm_cs = new_cs; auto symm = apply_symmetry(env, ctx, tc, e, e_type, symm_cs, g); if (symm) { try { return try_alternative(symm->first, symm->second, symm_cs, conservative); } catch (exception &) {} } // We use the exception for the first alternative as the error message saved_ex->rethrow(); lean_unreachable(); } } }; bool owner = false; return mk_choice_cnstr(m, choice_fn, to_delay_factor(cnstr_group::Epilogue), owner, j); }