static void remove_button_clicked(GtkButton *button, XmiMsimGuiLayerDialog *dialog) { GtkTreeModel *model; GtkTreeSelection *selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(dialog->compositionTreeView)); GList *selected_rows = gtk_tree_selection_get_selected_rows(selection, &model); gint n_selected_rows = gtk_tree_selection_count_selected_rows(selection); GtkTreeRowReference **refs = (GtkTreeRowReference**) g_malloc(sizeof(GtkTreeRowReference*)*n_selected_rows); int i; // the following really needs two for loops!!! // paths change while rows are being added or removed, while references never change for (i = 0 ; i < n_selected_rows ; i++) { refs[i] = gtk_tree_row_reference_new(model, (GtkTreePath *) g_list_nth_data(selected_rows, i)); } for (i = 0 ; i < n_selected_rows ; i++) { GtkTreePath *path = gtk_tree_row_reference_get_path(refs[i]); GtkTreeIter iter; gtk_tree_model_get_iter(model, &iter, path); //delete row happens here gtk_list_store_remove(GTK_LIST_STORE(model), &iter); gtk_tree_path_free(path); gtk_tree_row_reference_free(refs[i]); } g_list_free_full(selected_rows, (GDestroyNotify) gtk_tree_path_free); g_free(refs); //the sum needs to be updated update_sum(dialog); return; }
static void element_row_activated(GtkTreeView *tree_view, GtkTreePath *path, GtkTreeViewColumn *column, XmiMsimGuiLayerDialog *dialog) { GtkTreeIter iter; gchar *element; double weight; GtkListStore *store = GTK_LIST_STORE(gtk_tree_view_get_model(GTK_TREE_VIEW(dialog->compositionTreeView))); gtk_tree_model_get_iter(GTK_TREE_MODEL(store), &iter, path); gtk_tree_model_get(GTK_TREE_MODEL(store), &iter, SYMBOL_COLUMN, &element, WEIGHT_COLUMN, &weight, -1); GtkWidget *compound_dialog = xmi_msim_gui_compound_dialog_new(GTK_WINDOW(dialog), XMI_MSIM_GUI_COMPOUND_DIALOG_TYPE_EDIT); xmi_msim_gui_compound_dialog_set_compound(XMI_MSIM_GUI_COMPOUND_DIALOG(compound_dialog), element); xmi_msim_gui_compound_dialog_set_weight(XMI_MSIM_GUI_COMPOUND_DIALOG(compound_dialog), weight); int rv = gtk_dialog_run(GTK_DIALOG(compound_dialog)); if (rv == GTK_RESPONSE_ACCEPT) { // weight has been modified by user weight = xmi_msim_gui_compound_dialog_get_weight(XMI_MSIM_GUI_COMPOUND_DIALOG(compound_dialog)); // update model gtk_list_store_set(store, &iter, WEIGHT_COLUMN, weight, -1); update_sum(dialog); } g_free(element); gtk_widget_destroy(compound_dialog); return; }
static void edit_button_clicked(GtkButton *button, XmiMsimGuiLayerDialog *dialog) { GtkTreeIter iter; GtkTreeModel *model; gchar *element; double weight; GList *paths; GtkTreeSelection *select = gtk_tree_view_get_selection(GTK_TREE_VIEW(dialog->compositionTreeView)); //get selection paths = gtk_tree_selection_get_selected_rows(select, &model); GtkTreePath *path = (GtkTreePath *) g_list_nth_data(paths, 0); gtk_tree_model_get_iter(model, &iter, path); //get data from selected gtk_tree_model_get(model, &iter, SYMBOL_COLUMN, &element, WEIGHT_COLUMN, &weight, -1); //put it in dialog GtkWidget *compound_dialog = xmi_msim_gui_compound_dialog_new(GTK_WINDOW(dialog), XMI_MSIM_GUI_COMPOUND_DIALOG_TYPE_EDIT); xmi_msim_gui_compound_dialog_set_compound(XMI_MSIM_GUI_COMPOUND_DIALOG(compound_dialog), element); xmi_msim_gui_compound_dialog_set_weight(XMI_MSIM_GUI_COMPOUND_DIALOG(compound_dialog), weight); int rv = gtk_dialog_run(GTK_DIALOG(compound_dialog)); if (rv == GTK_RESPONSE_ACCEPT) { //something was changed weight = xmi_msim_gui_compound_dialog_get_weight(XMI_MSIM_GUI_COMPOUND_DIALOG(compound_dialog)); // update model gtk_list_store_set(GTK_LIST_STORE(model), &iter, WEIGHT_COLUMN, weight, -1); update_sum(dialog); } g_free(element); g_list_free_full(paths, (GDestroyNotify) gtk_tree_path_free); gtk_widget_destroy(compound_dialog); return; }
int main(int argc, char *argv[]) { FILE *in_fp; int out_fd; char *infile, *outmap; int xcol, ycol, zcol, max_col, percent; int do_zfilter; int method = -1; int bin_n, bin_min, bin_max, bin_sum, bin_sumsq, bin_index; double zrange_min, zrange_max, d_tmp; char *fs; /* field delim */ off_t filesize; int linesize; long estimated_lines; int from_stdin; int can_seek; RASTER_MAP_TYPE rtype; struct History history; char title[64]; void *n_array, *min_array, *max_array, *sum_array, *sumsq_array, *index_array; void *raster_row, *ptr; struct Cell_head region; int rows, cols; /* scan box size */ int row, col; /* counters */ int pass, npasses; unsigned long line; char buff[BUFFSIZE]; double x, y, z; char **tokens; int ntokens; /* number of tokens */ double pass_north, pass_south; int arr_row, arr_col; unsigned long count, count_total; double min = 0.0 / 0.0; /* init as nan */ double max = 0.0 / 0.0; /* init as nan */ double zscale = 1.0; size_t offset, n_offset; int n = 0; double sum = 0.; double sumsq = 0.; double variance, mean, skew, sumdev; int pth = 0; double trim = 0.0; int j, k; int head_id, node_id; int r_low, r_up; struct GModule *module; struct Option *input_opt, *output_opt, *delim_opt, *percent_opt, *type_opt; struct Option *method_opt, *xcol_opt, *ycol_opt, *zcol_opt, *zrange_opt, *zscale_opt; struct Option *trim_opt, *pth_opt; struct Flag *scan_flag, *shell_style, *skipline; G_gisinit(argv[0]); module = G_define_module(); module->keywords = _("raster, import, LIDAR"); module->description = _("Create a raster map from an assemblage of many coordinates using univariate statistics."); input_opt = G_define_standard_option(G_OPT_F_INPUT); input_opt->description = _("ASCII file containing input data (or \"-\" to read from stdin)"); output_opt = G_define_standard_option(G_OPT_R_OUTPUT); method_opt = G_define_option(); method_opt->key = "method"; method_opt->type = TYPE_STRING; method_opt->required = NO; method_opt->description = _("Statistic to use for raster values"); method_opt->options = "n,min,max,range,sum,mean,stddev,variance,coeff_var,median,percentile,skewness,trimmean"; method_opt->answer = "mean"; method_opt->guisection = _("Statistic"); type_opt = G_define_option(); type_opt->key = "type"; type_opt->type = TYPE_STRING; type_opt->required = NO; type_opt->options = "CELL,FCELL,DCELL"; type_opt->answer = "FCELL"; type_opt->description = _("Storage type for resultant raster map"); delim_opt = G_define_standard_option(G_OPT_F_SEP); delim_opt->guisection = _("Input"); xcol_opt = G_define_option(); xcol_opt->key = "x"; xcol_opt->type = TYPE_INTEGER; xcol_opt->required = NO; xcol_opt->answer = "1"; xcol_opt->description = _("Column number of x coordinates in input file (first column is 1)"); xcol_opt->guisection = _("Input"); ycol_opt = G_define_option(); ycol_opt->key = "y"; ycol_opt->type = TYPE_INTEGER; ycol_opt->required = NO; ycol_opt->answer = "2"; ycol_opt->description = _("Column number of y coordinates in input file"); ycol_opt->guisection = _("Input"); zcol_opt = G_define_option(); zcol_opt->key = "z"; zcol_opt->type = TYPE_INTEGER; zcol_opt->required = NO; zcol_opt->answer = "3"; zcol_opt->description = _("Column number of data values in input file"); zcol_opt->guisection = _("Input"); zrange_opt = G_define_option(); zrange_opt->key = "zrange"; zrange_opt->type = TYPE_DOUBLE; zrange_opt->required = NO; zrange_opt->key_desc = "min,max"; zrange_opt->description = _("Filter range for z data (min,max)"); zscale_opt = G_define_option(); zscale_opt->key = "zscale"; zscale_opt->type = TYPE_DOUBLE; zscale_opt->required = NO; zscale_opt->answer = "1.0"; zscale_opt->description = _("Scale to apply to z data"); percent_opt = G_define_option(); percent_opt->key = "percent"; percent_opt->type = TYPE_INTEGER; percent_opt->required = NO; percent_opt->answer = "100"; percent_opt->options = "1-100"; percent_opt->description = _("Percent of map to keep in memory"); pth_opt = G_define_option(); pth_opt->key = "pth"; pth_opt->type = TYPE_INTEGER; pth_opt->required = NO; pth_opt->options = "1-100"; pth_opt->description = _("pth percentile of the values"); pth_opt->guisection = _("Statistic"); trim_opt = G_define_option(); trim_opt->key = "trim"; trim_opt->type = TYPE_DOUBLE; trim_opt->required = NO; trim_opt->options = "0-50"; trim_opt->description = _("Discard <trim> percent of the smallest and <trim> percent of the largest observations"); trim_opt->guisection = _("Statistic"); scan_flag = G_define_flag(); scan_flag->key = 's'; scan_flag->description = _("Scan data file for extent then exit"); shell_style = G_define_flag(); shell_style->key = 'g'; shell_style->description = _("In scan mode, print using shell script style"); skipline = G_define_flag(); skipline->key = 'i'; skipline->description = _("Ignore broken lines"); if (G_parser(argc, argv)) exit(EXIT_FAILURE); /* parse input values */ infile = input_opt->answer; outmap = output_opt->answer; if (shell_style->answer && !scan_flag->answer) { scan_flag->answer = 1; } fs = delim_opt->answer; if (strcmp(fs, "\\t") == 0) fs = "\t"; if (strcmp(fs, "tab") == 0) fs = "\t"; if (strcmp(fs, "space") == 0) fs = " "; xcol = atoi(xcol_opt->answer); ycol = atoi(ycol_opt->answer); zcol = atoi(zcol_opt->answer); if ((xcol < 0) || (ycol < 0) || (zcol < 0)) G_fatal_error(_("Please specify a reasonable column number.")); max_col = (xcol > ycol) ? xcol : ycol; max_col = (zcol > max_col) ? zcol : max_col; percent = atoi(percent_opt->answer); zscale = atof(zscale_opt->answer); /* parse zrange */ do_zfilter = FALSE; if (zrange_opt->answer != NULL) { if (zrange_opt->answers[0] == NULL) G_fatal_error(_("Invalid zrange")); sscanf(zrange_opt->answers[0], "%lf", &zrange_min); sscanf(zrange_opt->answers[1], "%lf", &zrange_max); do_zfilter = TRUE; if (zrange_min > zrange_max) { d_tmp = zrange_max; zrange_max = zrange_min; zrange_min = d_tmp; } } /* figure out what maps we need in memory */ /* n n min min max max range min max max - min sum sum mean sum n sum/n stddev sum sumsq n sqrt((sumsq - sum*sum/n)/n) variance sum sumsq n (sumsq - sum*sum/n)/n coeff_var sum sumsq n sqrt((sumsq - sum*sum/n)/n) / (sum/n) median n array index to linked list percentile n array index to linked list skewness n array index to linked list trimmean n array index to linked list */ bin_n = FALSE; bin_min = FALSE; bin_max = FALSE; bin_sum = FALSE; bin_sumsq = FALSE; bin_index = FALSE; if (strcmp(method_opt->answer, "n") == 0) { method = METHOD_N; bin_n = TRUE; } if (strcmp(method_opt->answer, "min") == 0) { method = METHOD_MIN; bin_min = TRUE; } if (strcmp(method_opt->answer, "max") == 0) { method = METHOD_MAX; bin_max = TRUE; } if (strcmp(method_opt->answer, "range") == 0) { method = METHOD_RANGE; bin_min = TRUE; bin_max = TRUE; } if (strcmp(method_opt->answer, "sum") == 0) { method = METHOD_SUM; bin_sum = TRUE; } if (strcmp(method_opt->answer, "mean") == 0) { method = METHOD_MEAN; bin_sum = TRUE; bin_n = TRUE; } if (strcmp(method_opt->answer, "stddev") == 0) { method = METHOD_STDDEV; bin_sum = TRUE; bin_sumsq = TRUE; bin_n = TRUE; } if (strcmp(method_opt->answer, "variance") == 0) { method = METHOD_VARIANCE; bin_sum = TRUE; bin_sumsq = TRUE; bin_n = TRUE; } if (strcmp(method_opt->answer, "coeff_var") == 0) { method = METHOD_COEFF_VAR; bin_sum = TRUE; bin_sumsq = TRUE; bin_n = TRUE; } if (strcmp(method_opt->answer, "median") == 0) { method = METHOD_MEDIAN; bin_index = TRUE; } if (strcmp(method_opt->answer, "percentile") == 0) { if (pth_opt->answer != NULL) pth = atoi(pth_opt->answer); else G_fatal_error(_("Unable to calculate percentile without the pth option specified!")); method = METHOD_PERCENTILE; bin_index = TRUE; } if (strcmp(method_opt->answer, "skewness") == 0) { method = METHOD_SKEWNESS; bin_index = TRUE; } if (strcmp(method_opt->answer, "trimmean") == 0) { if (trim_opt->answer != NULL) trim = atof(trim_opt->answer) / 100.0; else G_fatal_error(_("Unable to calculate trimmed mean without the trim option specified!")); method = METHOD_TRIMMEAN; bin_index = TRUE; } if (strcmp("CELL", type_opt->answer) == 0) rtype = CELL_TYPE; else if (strcmp("DCELL", type_opt->answer) == 0) rtype = DCELL_TYPE; else rtype = FCELL_TYPE; if (method == METHOD_N) rtype = CELL_TYPE; G_get_window(®ion); rows = (int)(region.rows * (percent / 100.0)); cols = region.cols; G_debug(2, "region.n=%f region.s=%f region.ns_res=%f", region.north, region.south, region.ns_res); G_debug(2, "region.rows=%d [box_rows=%d] region.cols=%d", region.rows, rows, region.cols); npasses = (int)ceil(1.0 * region.rows / rows); if (!scan_flag->answer) { /* allocate memory (test for enough before we start) */ if (bin_n) n_array = G_calloc(rows * (cols + 1), G_raster_size(CELL_TYPE)); if (bin_min) min_array = G_calloc(rows * (cols + 1), G_raster_size(rtype)); if (bin_max) max_array = G_calloc(rows * (cols + 1), G_raster_size(rtype)); if (bin_sum) sum_array = G_calloc(rows * (cols + 1), G_raster_size(rtype)); if (bin_sumsq) sumsq_array = G_calloc(rows * (cols + 1), G_raster_size(rtype)); if (bin_index) index_array = G_calloc(rows * (cols + 1), G_raster_size(CELL_TYPE)); /* and then free it again */ if (bin_n) G_free(n_array); if (bin_min) G_free(min_array); if (bin_max) G_free(max_array); if (bin_sum) G_free(sum_array); if (bin_sumsq) G_free(sumsq_array); if (bin_index) G_free(index_array); /** end memory test **/ } /* open input file */ if (strcmp("-", infile) == 0) { from_stdin = TRUE; in_fp = stdin; infile = G_store("stdin"); /* filename for history metadata */ } else { if ((in_fp = fopen(infile, "r")) == NULL) G_fatal_error(_("Unable to open input file <%s>"), infile); } can_seek = fseek(in_fp, 0, SEEK_SET) == 0; /* can't rewind() non-files */ if (!can_seek && npasses != 1) { G_warning(_("If input is not from a file it is only possible to perform a single pass.")); npasses = 1; } if (scan_flag->answer) { if (zrange_opt->answer) G_warning(_("zrange will not be taken into account during scan")); scan_bounds(in_fp, xcol, ycol, zcol, fs, shell_style->answer, skipline->answer, zscale); if (!from_stdin) fclose(in_fp); exit(EXIT_SUCCESS); } /* open output map */ out_fd = G_open_raster_new(outmap, rtype); if (out_fd < 0) G_fatal_error(_("Unable to create raster map <%s>"), outmap); if (can_seek) { /* guess at number of lines in the file without actually reading it all in */ for (line = 0; line < 10; line++) { /* arbitrarily use 10th line for guess */ if (0 == G_getl2(buff, BUFFSIZE - 1, in_fp)) break; linesize = strlen(buff) + 1; } fseek(in_fp, 0L, SEEK_END); filesize = ftell(in_fp); rewind(in_fp); if (linesize < 6) /* min possible: "0,0,0\n" */ linesize = 6; estimated_lines = filesize / linesize; G_debug(2, "estimated number of lines in file: %ld", estimated_lines); } else estimated_lines = -1; /* allocate memory for a single row of output data */ raster_row = G_allocate_raster_buf(rtype); G_message(_("Reading data ...")); count_total = 0; /* main binning loop(s) */ for (pass = 1; pass <= npasses; pass++) { if (npasses > 1) G_message(_("Pass #%d (of %d) ..."), pass, npasses); if (can_seek) rewind(in_fp); /* figure out segmentation */ pass_north = region.north - (pass - 1) * rows * region.ns_res; if (pass == npasses) rows = region.rows - (pass - 1) * rows; pass_south = pass_north - rows * region.ns_res; G_debug(2, "pass=%d/%d pass_n=%f pass_s=%f rows=%d", pass, npasses, pass_north, pass_south, rows); if (bin_n) { G_debug(2, "allocating n_array"); n_array = G_calloc(rows * (cols + 1), G_raster_size(CELL_TYPE)); blank_array(n_array, rows, cols, CELL_TYPE, 0); } if (bin_min) { G_debug(2, "allocating min_array"); min_array = G_calloc(rows * (cols + 1), G_raster_size(rtype)); blank_array(min_array, rows, cols, rtype, -1); /* fill with NULLs */ } if (bin_max) { G_debug(2, "allocating max_array"); max_array = G_calloc(rows * (cols + 1), G_raster_size(rtype)); blank_array(max_array, rows, cols, rtype, -1); /* fill with NULLs */ } if (bin_sum) { G_debug(2, "allocating sum_array"); sum_array = G_calloc(rows * (cols + 1), G_raster_size(rtype)); blank_array(sum_array, rows, cols, rtype, 0); } if (bin_sumsq) { G_debug(2, "allocating sumsq_array"); sumsq_array = G_calloc(rows * (cols + 1), G_raster_size(rtype)); blank_array(sumsq_array, rows, cols, rtype, 0); } if (bin_index) { G_debug(2, "allocating index_array"); index_array = G_calloc(rows * (cols + 1), G_raster_size(CELL_TYPE)); blank_array(index_array, rows, cols, CELL_TYPE, -1); /* fill with NULLs */ } line = 0; count = 0; G_percent_reset(); while (0 != G_getl2(buff, BUFFSIZE - 1, in_fp)) { line++; if (line % 10000 == 0) { /* mod for speed */ if (!can_seek) G_clicker(); else if (line < estimated_lines) G_percent(line, estimated_lines, 3); } if ((buff[0] == '#') || (buff[0] == '\0')) { continue; /* line is a comment or blank */ } G_chop(buff); /* remove leading and trailing whitespace from the string. unneded?? */ tokens = G_tokenize(buff, fs); ntokens = G_number_of_tokens(tokens); if ((ntokens < 3) || (max_col > ntokens)) { if (skipline->answer) { G_warning(_("Not enough data columns. " "Incorrect delimiter or column number? " "Found the following character(s) in row %lu:\n[%s]"), line, buff); G_warning(_("Line ignored as requested")); continue; /* line is garbage */ } else { G_fatal_error(_("Not enough data columns. " "Incorrect delimiter or column number? " "Found the following character(s) in row %lu:\n[%s]"), line, buff); } } /* too slow? if ( G_projection() == PROJECTION_LL ) { G_scan_easting( tokens[xcol-1], &x, region.proj); G_scan_northing( tokens[ycol-1], &y, region.proj); } else { */ if (1 != sscanf(tokens[ycol - 1], "%lf", &y)) G_fatal_error(_("Bad y-coordinate line %lu column %d. <%s>"), line, ycol, tokens[ycol - 1]); if (y <= pass_south || y > pass_north) { G_free_tokens(tokens); continue; } if (1 != sscanf(tokens[xcol - 1], "%lf", &x)) G_fatal_error(_("Bad x-coordinate line %lu column %d. <%s>"), line, xcol, tokens[xcol - 1]); if (x < region.west || x > region.east) { G_free_tokens(tokens); continue; } if (1 != sscanf(tokens[zcol - 1], "%lf", &z)) G_fatal_error(_("Bad z-coordinate line %lu column %d. <%s>"), line, zcol, tokens[zcol - 1]); z = z * zscale; if (zrange_opt->answer) { if (z < zrange_min || z > zrange_max) { G_free_tokens(tokens); continue; } } count++; /* G_debug(5, "x: %f, y: %f, z: %f", x, y, z); */ G_free_tokens(tokens); /* find the bin in the current array box */ arr_row = (int)((pass_north - y) / region.ns_res); arr_col = (int)((x - region.west) / region.ew_res); /* G_debug(5, "arr_row: %d arr_col: %d", arr_row, arr_col); */ /* The range should be [0,cols-1]. We use (int) to round down, but if the point exactly on eastern edge arr_col will be /just/ on the max edge .0000000 and end up on the next row. We could make above bounds check "if(x>=region.east) continue;" But instead we go to all sorts of trouble so that not one single data point is lost. GE is too small to catch them all. We don't try to make y happy as percent segmenting will make some points happen twice that way; so instead we use the y<= test above. */ if (arr_col >= cols) { if (((x - region.west) / region.ew_res) - cols < 10 * GRASS_EPSILON) arr_col--; else { /* oh well, we tried. */ G_debug(3, "skipping extraneous data point [%.3f], column %d of %d", x, arr_col, cols); continue; } } if (bin_n) update_n(n_array, cols, arr_row, arr_col); if (bin_min) update_min(min_array, cols, arr_row, arr_col, rtype, z); if (bin_max) update_max(max_array, cols, arr_row, arr_col, rtype, z); if (bin_sum) update_sum(sum_array, cols, arr_row, arr_col, rtype, z); if (bin_sumsq) update_sumsq(sumsq_array, cols, arr_row, arr_col, rtype, z); if (bin_index) { ptr = index_array; ptr = G_incr_void_ptr(ptr, ((arr_row * cols) + arr_col) * G_raster_size(CELL_TYPE)); if (G_is_null_value(ptr, CELL_TYPE)) { /* first node */ head_id = new_node(); nodes[head_id].next = -1; nodes[head_id].z = z; G_set_raster_value_c(ptr, head_id, CELL_TYPE); /* store index to head */ } else { /* head is already there */ head_id = G_get_raster_value_c(ptr, CELL_TYPE); /* get index to head */ head_id = add_node(head_id, z); if (head_id != -1) G_set_raster_value_c(ptr, head_id, CELL_TYPE); /* store index to head */ } } } /* while !EOF */ G_percent(1, 1, 1); /* flush */ G_debug(2, "pass %d finished, %lu coordinates in box", pass, count); count_total += count; /* calc stats and output */ G_message(_("Writing to map ...")); for (row = 0; row < rows; row++) { switch (method) { case METHOD_N: /* n is a straight copy */ G_raster_cpy(raster_row, n_array + (row * cols * G_raster_size(CELL_TYPE)), cols, CELL_TYPE); break; case METHOD_MIN: G_raster_cpy(raster_row, min_array + (row * cols * G_raster_size(rtype)), cols, rtype); break; case METHOD_MAX: G_raster_cpy(raster_row, max_array + (row * cols * G_raster_size(rtype)), cols, rtype); break; case METHOD_SUM: G_raster_cpy(raster_row, sum_array + (row * cols * G_raster_size(rtype)), cols, rtype); break; case METHOD_RANGE: /* (max-min) */ ptr = raster_row; for (col = 0; col < cols; col++) { offset = (row * cols + col) * G_raster_size(rtype); min = G_get_raster_value_d(min_array + offset, rtype); max = G_get_raster_value_d(max_array + offset, rtype); G_set_raster_value_d(ptr, max - min, rtype); ptr = G_incr_void_ptr(ptr, G_raster_size(rtype)); } break; case METHOD_MEAN: /* (sum / n) */ ptr = raster_row; for (col = 0; col < cols; col++) { offset = (row * cols + col) * G_raster_size(rtype); n_offset = (row * cols + col) * G_raster_size(CELL_TYPE); n = G_get_raster_value_c(n_array + n_offset, CELL_TYPE); sum = G_get_raster_value_d(sum_array + offset, rtype); if (n == 0) G_set_null_value(ptr, 1, rtype); else G_set_raster_value_d(ptr, (sum / n), rtype); ptr = G_incr_void_ptr(ptr, G_raster_size(rtype)); } break; case METHOD_STDDEV: /* sqrt(variance) */ case METHOD_VARIANCE: /* (sumsq - sum*sum/n)/n */ case METHOD_COEFF_VAR: /* 100 * stdev / mean */ ptr = raster_row; for (col = 0; col < cols; col++) { offset = (row * cols + col) * G_raster_size(rtype); n_offset = (row * cols + col) * G_raster_size(CELL_TYPE); n = G_get_raster_value_c(n_array + n_offset, CELL_TYPE); sum = G_get_raster_value_d(sum_array + offset, rtype); sumsq = G_get_raster_value_d(sumsq_array + offset, rtype); if (n == 0) G_set_null_value(ptr, 1, rtype); else { variance = (sumsq - sum * sum / n) / n; if (variance < GRASS_EPSILON) variance = 0.0; if (method == METHOD_STDDEV) G_set_raster_value_d(ptr, sqrt(variance), rtype); else if (method == METHOD_VARIANCE) G_set_raster_value_d(ptr, variance, rtype); else if (method == METHOD_COEFF_VAR) G_set_raster_value_d(ptr, 100 * sqrt(variance) / (sum / n), rtype); } ptr = G_incr_void_ptr(ptr, G_raster_size(rtype)); } break; case METHOD_MEDIAN: /* median, if only one point in cell we will use that */ ptr = raster_row; for (col = 0; col < cols; col++) { n_offset = (row * cols + col) * G_raster_size(CELL_TYPE); if (G_is_null_value(index_array + n_offset, CELL_TYPE)) /* no points in cell */ G_set_null_value(ptr, 1, rtype); else { /* one or more points in cell */ head_id = G_get_raster_value_c(index_array + n_offset, CELL_TYPE); node_id = head_id; n = 0; while (node_id != -1) { /* count number of points in cell */ n++; node_id = nodes[node_id].next; } if (n == 1) /* only one point, use that */ G_set_raster_value_d(ptr, nodes[head_id].z, rtype); else if (n % 2 != 0) { /* odd number of points: median_i = (n + 1) / 2 */ n = (n + 1) / 2; node_id = head_id; for (j = 1; j < n; j++) /* get "median element" */ node_id = nodes[node_id].next; G_set_raster_value_d(ptr, nodes[node_id].z, rtype); } else { /* even number of points: median = (val_below + val_above) / 2 */ z = (n + 1) / 2.0; n = floor(z); node_id = head_id; for (j = 1; j < n; j++) /* get element "below" */ node_id = nodes[node_id].next; z = (nodes[node_id].z + nodes[nodes[node_id].next].z) / 2; G_set_raster_value_d(ptr, z, rtype); } } ptr = G_incr_void_ptr(ptr, G_raster_size(rtype)); } break; case METHOD_PERCENTILE: /* rank = (pth*(n+1))/100; interpolate linearly */ ptr = raster_row; for (col = 0; col < cols; col++) { n_offset = (row * cols + col) * G_raster_size(CELL_TYPE); if (G_is_null_value(index_array + n_offset, CELL_TYPE)) /* no points in cell */ G_set_null_value(ptr, 1, rtype); else { head_id = G_get_raster_value_c(index_array + n_offset, CELL_TYPE); node_id = head_id; n = 0; while (node_id != -1) { /* count number of points in cell */ n++; node_id = nodes[node_id].next; } z = (pth * (n + 1)) / 100.0; r_low = floor(z); /* lower rank */ if (r_low < 1) r_low = 1; else if (r_low > n) r_low = n; r_up = ceil(z); /* upper rank */ if (r_up > n) r_up = n; node_id = head_id; for (j = 1; j < r_low; j++) /* search lower value */ node_id = nodes[node_id].next; z = nodes[node_id].z; /* save lower value */ node_id = head_id; for (j = 1; j < r_up; j++) /* search upper value */ node_id = nodes[node_id].next; z = (z + nodes[node_id].z) / 2; G_set_raster_value_d(ptr, z, rtype); } ptr = G_incr_void_ptr(ptr, G_raster_size(rtype)); } break; case METHOD_SKEWNESS: /* skewness = sum(xi-mean)^3/(N-1)*s^3 */ ptr = raster_row; for (col = 0; col < cols; col++) { n_offset = (row * cols + col) * G_raster_size(CELL_TYPE); if (G_is_null_value(index_array + n_offset, CELL_TYPE)) /* no points in cell */ G_set_null_value(ptr, 1, rtype); else { head_id = G_get_raster_value_c(index_array + n_offset, CELL_TYPE); node_id = head_id; n = 0; /* count */ sum = 0.0; /* sum */ sumsq = 0.0; /* sum of squares */ sumdev = 0.0; /* sum of (xi - mean)^3 */ skew = 0.0; /* skewness */ while (node_id != -1) { z = nodes[node_id].z; n++; sum += z; sumsq += (z * z); node_id = nodes[node_id].next; } if (n > 1) { /* if n == 1, skew is "0.0" */ mean = sum / n; node_id = head_id; while (node_id != -1) { z = nodes[node_id].z; sumdev += pow((z - mean), 3); node_id = nodes[node_id].next; } variance = (sumsq - sum * sum / n) / n; if (variance < GRASS_EPSILON) skew = 0.0; else skew = sumdev / ((n - 1) * pow(sqrt(variance), 3)); } G_set_raster_value_d(ptr, skew, rtype); } ptr = G_incr_void_ptr(ptr, G_raster_size(rtype)); } break; case METHOD_TRIMMEAN: ptr = raster_row; for (col = 0; col < cols; col++) { n_offset = (row * cols + col) * G_raster_size(CELL_TYPE); if (G_is_null_value(index_array + n_offset, CELL_TYPE)) /* no points in cell */ G_set_null_value(ptr, 1, rtype); else { head_id = G_get_raster_value_c(index_array + n_offset, CELL_TYPE); node_id = head_id; n = 0; while (node_id != -1) { /* count number of points in cell */ n++; node_id = nodes[node_id].next; } if (1 == n) mean = nodes[head_id].z; else { k = floor(trim * n + 0.5); /* number of ranks to discard on each tail */ if (k > 0 && (n - 2 * k) > 0) { /* enough elements to discard */ node_id = head_id; for (j = 0; j < k; j++) /* move to first rank to consider */ node_id = nodes[node_id].next; j = k + 1; k = n - k; n = 0; sum = 0.0; while (j <= k) { /* get values in interval */ n++; sum += nodes[node_id].z; node_id = nodes[node_id].next; j++; } } else { node_id = head_id; n = 0; sum = 0.0; while (node_id != -1) { n++; sum += nodes[node_id].z; node_id = nodes[node_id].next; } } mean = sum / n; } G_set_raster_value_d(ptr, mean, rtype); } ptr = G_incr_void_ptr(ptr, G_raster_size(rtype)); } break; default: G_fatal_error("?"); } /* write out line of raster data */ if (1 != G_put_raster_row(out_fd, raster_row, rtype)) { G_close_cell(out_fd); G_fatal_error(_("Writing map, row %d"), ((pass - 1) * rows) + row); } } /* free memory */ if (bin_n) G_free(n_array); if (bin_min) G_free(min_array); if (bin_max) G_free(max_array); if (bin_sum) G_free(sum_array); if (bin_sumsq) G_free(sumsq_array); if (bin_index) { G_free(index_array); G_free(nodes); num_nodes = 0; max_nodes = 0; nodes = NULL; } } /* passes loop */ G_percent(1, 1, 1); /* flush */ G_free(raster_row); /* close input file */ if (!from_stdin) fclose(in_fp); /* close raster file & write history */ G_close_cell(out_fd); sprintf(title, "Raw x,y,z data binned into a raster grid by cell %s", method_opt->answer); G_put_cell_title(outmap, title); G_short_history(outmap, "raster", &history); G_command_history(&history); strncpy(history.datsrc_1, infile, RECORD_LEN); history.datsrc_1[RECORD_LEN - 1] = '\0'; /* strncpy() doesn't null terminate if maxfill */ G_write_history(outmap, &history); sprintf(buff, _("%lu points found in region."), count_total); G_done_msg(buff); G_debug(1, "Processed %lu lines.", line); exit(EXIT_SUCCESS); }
widgetdock_calc_laser_line::widgetdock_calc_laser_line(): QDockWidget(tr("Laser line")), method_(tr("Calculation method")), method_threshold_(tr("Threshold")), method_sum_(tr("Sum")), threshold_(tr("Settings")), threshold_show_original_(tr("Show original")), threshold_show_binarize_(tr("Show binarized")), threshold_binarize_l_(tr("Threshold: ")), threshold_show_erode_(tr("Show eroded")), threshold_erode_l_(tr("Erode: ")), threshold_show_line_(tr("Show line")), threshold_subpixel_l_(tr("Subpixel: ")), sum_(tr("Settings")), sum_show_original_(tr("Show original")), sum_min_value_l_(tr("Minimal value: ")), sum_min_sum_l_(tr("Minimal sum: ")), sum_show_line_(tr("Show line")), sum_subpixel_l_(tr("Subpixel: ")) { method_layout_.addWidget(&method_sum_); method_layout_.addWidget(&method_threshold_); method_sum_.setChecked(true); method_.setLayout(&method_layout_); threshold_binarize_.setRange(1, 255); threshold_erode_.setRange(0, 10); threshold_layout_.addWidget(&threshold_show_original_, 0, 0, 1, 2); threshold_layout_.addWidget(&threshold_show_binarize_, 1, 0, 1, 2); threshold_layout_.addWidget(&threshold_binarize_l_, 2, 0, 1, 1); threshold_layout_.addWidget(&threshold_binarize_, 2, 1, 1, 1); threshold_layout_.addWidget(&threshold_show_erode_, 3, 0, 1, 2); threshold_layout_.addWidget(&threshold_erode_l_, 4, 0, 1, 1); threshold_layout_.addWidget(&threshold_erode_, 4, 1, 1, 1); threshold_layout_.addWidget(&threshold_show_line_, 5, 0, 1, 2); threshold_layout_.addWidget(&threshold_subpixel_l_, 6, 0, 1, 1); threshold_layout_.addWidget(&threshold_subpixel_, 6, 1, 1, 1); threshold_show_line_.setChecked(true); threshold_binarize_.setValue(255); threshold_erode_.setValue(2); threshold_subpixel_.setChecked(true); threshold_binarize_l_.setAlignment(Qt::AlignRight | Qt::AlignVCenter); threshold_erode_l_.setAlignment(Qt::AlignRight | Qt::AlignVCenter); threshold_subpixel_l_.setAlignment(Qt::AlignRight | Qt::AlignVCenter); threshold_.setLayout(&threshold_layout_); sum_min_value_.setRange(0, 254); sum_min_sum_.setRange(0, 200000); sum_layout_.addWidget(&sum_show_original_, 0, 0, 1, 2); sum_layout_.addWidget(&sum_min_value_l_, 1, 0, 1, 1); sum_layout_.addWidget(&sum_min_value_, 1, 1, 1, 1); sum_layout_.addWidget(&sum_min_sum_l_, 2, 0, 1, 1); sum_layout_.addWidget(&sum_min_sum_, 2, 1, 1, 1); sum_layout_.addWidget(&sum_show_line_, 3, 0, 1, 2); sum_layout_.addWidget(&sum_subpixel_l_, 4, 0, 1, 1); sum_layout_.addWidget(&sum_subpixel_, 4, 1, 1, 1); sum_show_line_.setChecked(true); sum_min_value_.setValue(128); sum_min_sum_.setValue(500); sum_subpixel_.setChecked(true); sum_min_value_l_.setAlignment(Qt::AlignRight | Qt::AlignVCenter); sum_min_sum_l_.setAlignment(Qt::AlignRight | Qt::AlignVCenter); sum_subpixel_l_.setAlignment(Qt::AlignRight | Qt::AlignVCenter); sum_.setLayout(&sum_layout_); main_layout_.addWidget(&method_); main_layout_.addWidget(&threshold_); main_layout_.addWidget(&sum_); main_layout_.addStretch(); main_widget_.setLayout(&main_layout_); setWidget(&main_widget_); threshold_.hide(); constexpr auto released = &QRadioButton::released; constexpr auto check_released = &QAbstractButton::released; constexpr auto valueChanged = static_cast< void(QSpinBox::*)(int) >(&QSpinBox::valueChanged); auto const update_threshold_v = [this]{ update_threshold(); }; auto const update_threshold_i = [this](int){ update_threshold(); }; auto const update_sum_v = [this]{ update_sum(); }; auto const update_sum_i = [this](int){ update_sum(); }; connect(&method_threshold_, released, [this]{ show_box(threshold_); update_threshold(); }); connect(&method_sum_, released, [this]{ show_box(sum_); update_sum(); }); connect(&threshold_binarize_, valueChanged, update_threshold_i); connect(&threshold_erode_, valueChanged, update_threshold_i); connect(&threshold_subpixel_, check_released, update_threshold_v); connect(&threshold_show_original_, released, update_threshold_v); connect(&threshold_show_binarize_, released, update_threshold_v); connect(&threshold_show_erode_, released, update_threshold_v); connect(&threshold_show_line_, released, update_threshold_v); connect(&sum_min_value_, valueChanged, update_sum_i); connect(&sum_min_sum_, valueChanged, update_sum_i); connect(&sum_subpixel_, check_released, update_sum_v); connect(&sum_show_original_, released, update_sum_v); connect(&sum_show_line_, released, update_sum_v); update_threshold(); update_sum(); }